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Abstract— In recent years, we have witnessed a remarkable
surge of usage in shared vehicles in our cities. Shared mobility
offers a future of no congestion in busy city roads with
increasing populations of travelers, passengers, and drivers.
Given the behavioral decision-making of travelers and the
shared vehicles’ operators, however, the question is “how can we
ensure a socially-acceptable assignment between travelers and
vehicles?” In other words, how can we design a shared mobility
system that assigns each traveler to the “right” vehicle? In this
paper, we design a shared mobility market consisted of travelers
and vehicles in a transportation network. We formulate a binary
linear program problem and derive the optimal assignment
between travelers and vehicles. In addition, we provide the
necessary and sufficient conditions for the stable traveler-vehicle
profit allocation. Our objective is to (1) maximize the social
welfare of all travelers with the optimal assignment, and (2)
ensure the feasibility and stability of the traveler-vehicle profit
allocation while respecting the decision-making of both the
travelers and the vehicles’ operators.

I. INTRODUCTION

A. Motivation

Shared mobility can provide access to transportation on
a custom basis without vehicle ownership [1]. Over the
last few years, on-demand ride-sharing services available
via our smartphone have proved to be an innovative and
adaptive mobility strategy for a broad range of travelers,
passengers, and drivers [2]. Besides the apparent benefits
to travelers (e.g., short-term and as-needed mobility access
[3]), shared mobility services have been shown to have a
significant environmental and societal impact. For example,
reduced vehicle use, ownership, and vehicle miles traveled
[4]. However, it is the authors’ belief that shared mobility
can also provide a solution to the social impact of con-
nected and automated vehicles (CAVs), which promise to be
an incoming disruptive innovation with vast technological,
commercial, and regulatory dimensions [5]. Although it is
clear that CAVs will transform the urban transportation
networks and revolutionize mobility [6], we expect CAVs to
have social consequences. For example, CAVs may reshape
urban mobility in the sense of altered tendency-to-travel
and highly increase traffic demand [7]. To elaborate on
this point, evident from similar technological revolutions
(e.g., elevators [8]), human social tendencies and society’s
perspective can change how a technological development
is used and applied. Thus, one fundamental question that
we need to ask ourselves is whether the deployment of
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CAVs in society will give rise to unexpected outcomes. For
example, will the overall vehicle miles traveled increase to
the point where we observe a decrease in traveler usage
of public transit? Shared mobility can be a cost-effective
and flexible mode of transportation alongside CAVs and
provide mobility access to city travelers without increasing
congestion, pollution, accidents, and energy consumption.

In this paper, we address shared mobility by designing
a shared mobility market. This market is consisted of a
finite number of travelers and vehicles, and it is managed
by a social planner. Our goal is to measure the “benefit”
received of both the travelers and the vehicles’ operators,
define the social welfare as a function of these benefits, and
form a maximization problem with integer solutions sub-
ject to physically-related constraints. From a game-theoretic
perspective, our proposed shared mobility market can be
interpreted as an “assignment game,” in which indivisible
goods are exchanged between two parties for money [9].

One may ask why use game theory to analyze such a
problem. Emerging mobility systems (e.g., CAVs, shared
mobility, electric vehicles) will be characterized by their
socio-economic complexity: (i) improved productivity and
energy efficiency, (ii) widespread accessibility, and (iii)
drastic urban redesign and evolved urban culture. In other
words, the interplay of economic implications and social
tendencies of the travelers can be naturally modeled and
analyzed using notions from social choice theory and game
theory. One of the main arguments in this paper is that
the interaction between travelers and shared vehicles can be
modeled as a market, in which we can find the socially-
acceptable equilibrium by ensuring to take into account the
most important factors that influence the travelers’ decision-
making. It is for this reason why the authors of this paper
argue that game-inspired markets offer a complementary
analysis of decision-making in shared mobility systems.

Our current work is supported by previous work that
investigated different yet related problems. Using methods
and techniques from game theory, mechanism design, and
insights from behavioral economics, in previous work, we
modeled the human social interaction with vehicles as a
social dilemma in a game-theoretic approach [10]. We inves-
tigated the social-mobility dilemma, i.e., the binary decision-
making of travelers between commuting with a vehicle
or using public transportation. In [11], using mechanism
design, we modeled the travel time of selfish travelers in
a transportation network with vehicles as a social resource
allocation problem. We solved a social-welfare maximization
problem by eliciting the private information (e.g., preferred
travel time) of each traveler, and by considering a Nash-
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implementation approach, we showed that our information-
ally decentralized mechanism efficiently allocates travel time
to all travelers that seek to commute in the network.

B. Literature Review

In recent years, it has been recognized in the literature
that further research is required to identify and understand
the potential impacts of emerging mobility [12], [13]. Shared
mobility in emerging mobility systems has been investigated
and studied extensively the last decade. Factors that motivate
active research in shared mobility systems are the significant
energy savings [13], the limited importance of parking, and
thus, opportunities for urban redesign with more space, and
the increased demand for mobility access in developing
countries [14]. Even though the promises of shared mobility
have been realized with the implementation of various ride-
sharing, or car-sharing, programs and initiatives, there are
still open questions on how to design a shared mobility
system that is socially-acceptable and profitable. Standard
techniques of optimization and dynamics pricing have been
used to control shared vehicle traffic and the non-strategic
behavior of travelers and passengers [15], [16]. These meth-
ods focus primarily on formulating and solving a dynamic
or stochastic optimization problem with respect to variables
that include preferred and expected departure, arrival, and
in-vehicle travel. One can control the solution by designing
pricing schemes that the travelers, or passengers, react in a
predictable manner (travelers are assumed to be price-takers).

There have been different approaches reported in the
literature to study shared mobility using ideas from game
theory. In particular, game theory has been used to model
and analyze non-cooperative, or cooperative, interactions of
travelers who seek to accommodate their desired origin-
destination commutes through ride-sharing. The authors in
[17] modeled a shared mobility system connected with a
social network in which travelers could communicate and
arrange one-time rides. Their focus was to minimize travel
cost. Assignment games have been used to match sets of
travelers with sets of capacitated routes in a transportation
network [18]. In contrast to game-theoretic techniques, other
efforts used a Vickrey–Clarke–Groves-inspired mechanism
to design a first-mile, ride-sharing mobility system matching
selfish travelers to vehicles [19]. The proposed mechanism
was shown to be incentive compatible, individually rational,
and price non-negative. In most cases, however, traveler,
or passenger, behavior has not been well-understood. This
is so, especially, in relevance to the impact that human
travelers, passengers, and drivers might have on the traffic
and energy efficiency of a mobility system. A very recent
study on “social dilemmas” attempted to remedy this lack of
understanding on the social impact of shared mobility [20].
Informally, a social dilemma is any situation where there is
a subtle yet unwanted discrepancy between individual and
collective interest. The authors provided both a theoretical
and an experimental study of how the strategic decision-
making of travelers can impact the shared mobility’s welfare,
and thus, efficiency. A thorough review on ride-sharing can

be found in [21] and the references therein.
Close in spirit to our approach is the long literature on

stable matching problems. The seminal work in [22] was
the first to study the “marriage problem” for one-to-one
matching, and the “college admissions problem” for many-
to-one matching. In less that a decade later, the authors
in [9] designed the so-called “assignment game,” which
provides cooperative solutions for matching problems, where
the players have transferable utilities. They achieved this
by formulating and solving a linear optimization problem
and by making sure that the solution is an equilibrium such
that no one from the game’s players prefers to deviate. A
comprehensive outlook of assignment games can found in
[23] and the references therein. More recently, an interesting
development was reported in [24], in which the authors
provide bounds in the solutions of the assignment game that
can result in stable mappings.

C. Contribution of the Paper

The main contribution of this paper is the design of a
shared mobility market for the stable assignment of travelers
to shared vehicles. By stable we mean that, considering the
decision-making of both travelers and vehicles’ operators, no
other assignment is preferred. We formulate a binary linear
optimization problem and we show that our shared mobility
market can produce optimal assignments with a feasible and
stable traveler-vehicle profit allocation. For the latter, we also
give the necessary and sufficient conditions when stability
can be guaranteed.

D. Organization of the Paper

The paper is structured as follows. In Section II, we
present the mathematical formulation of our shared mobility
market, which forms the basis for the rest of the paper. In
Section III, we provide a feasibility and stability analysis of
the shared mobility market and finally, in Section IV, we
draw conclusions and offer a discussion of future research.

II. MATHEMATICAL FORMULATION

We consider a mobility system managed by a social
planner whose objective is to assign m ∈ N vehicles to
n ∈ N travelers, where n ≥ m. We denote the set of travelers
by I = {0} ∪ {1, 2, . . . , n} and the set of vehicles by J =
{1, 2, . . . ,m}. In I, the index 0 has no practical meaning
other than helping us to assign any vehicles that have not
been assigned to travelers. Travelers seek to travel in a
transportation network represented by a directed multi-graph
G = (V, E), where each vertex in V represents a different
city area, or neighborhood, and each edge e ∈ E represents
a city road connection. In this network, an arbitrary traveler
i ∈ I wants to travel from their current location oi ∈ V
to their self-chosen destination di ∈ V . So, we say that
traveler i ∈ I is associated with an origin-destination pair
(oi, di). Similarly, each vehicle is associated with a route,
i.e., a specific sequence of edges. Hence, the social planner
aims to assign any traveler i to a vehicle so that their (oi, di)
can be satisfied by the vehicle’s route.
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Definition 1. The traveler-service assignment is a vector
a = (a11, . . . , aij , . . . , anm) = (aij)i∈I,j∈J , where aij is a
binary variable of the form:

aij =

{
1, if i ∈ I is assigned to j ∈ J ,
0, otherwise.

(1)

A traveler i’s satisfaction is represented by a valuation
function vi(aij) ∈ [vi, v̄i] when assigned to vehicle j ∈ J ,
where vi ∈ R≥0 represents the lower bound of traveler i’s
satisfaction, and v̄i ∈ R≥0 represents the upper bound of
traveler i’s satisfaction. Intuitively, a traveler’s satisfaction
reflects the traveler’s value of the service they expect to
receive from a vehicle j ∈ J .

The satisfaction vi(·) can be defined in terms of sev-
eral factors (e.g., preferred and experienced number of co-
travelers, in-vehicle travel time, or pickup time) that measure
how satisfied the traveler can be with vehicle j ∈ J . For
example, a traveler can have a preferred travel time and their
satisfaction can measure the monetary value of the difference
between preferred and experienced travel time. The disutility
caused by vehicle j ∈ J to traveler i ∈ I is given by
φi(aij) ∈ R≥0. We call φi(·) the inconvenience cost as it
can measure the travel inconvenience caused to traveler i.
Thus, we have

vi(aij) = v̄i − φi(aij). (2)

where v̄i is the upper bound of traveler i’s satisfaction.
Although our analysis will treat vi(aij) in its most general
form (2), one can explicitly define vi(aij) as follows,

vi(aij) =


v̄i, if φi = 0,

λi · v̄i, if φi = (1− λi) · v̄i,
0, if φi = v̄i,

(3)

where λi ∈ (0, 1) is a discount rate.
Next, the total utility of traveler i ∈ I is given by

ui(aij) = vi(aij)− ti(aij), (4)

where ti ∈ R>0 is the monetary payment that traveler i ∈ I,
e.g., a fare that traveler i ∈ I may make for the services
of vehicle j ∈ J . Hence, (4) establishes a “quasi-linear”
relationship between a traveler’s satisfaction and payment,
both measured in monetary units.

Definition 2. For each vehicle j ∈ J , the vehicle maximum
capacity εj ∈ N yields how many travelers can receive a
ride from vehicle j ∈ J .

Definition 3. The social welfare of the shared mobility
market is the collective summation of all travelers’ utilities,
i.e., W (a) =

∑
i∈I ui(aij).

As we will see in Subsection II-B, our objective is to
maximize the social welfare.

Definition 4. The operating cost of vehicle j ∈ J denoted
by cj ∈ R>0 is shared (not necessarily equally) by each

traveler i ∈ I assigned to vehicle j ∈ J and can be given
by

cj =
∑

i∈I\{0}

cij(aij), (5)

where cij(aij) is traveler i’s share of the operating cost of
vehicle j ∈ J .

So far, we have described how the shared mobility market
works to assign travelers to shared vehicles. Next, we ex-
plicitly define the “end” of our market in terms of monetary
payments and net profits for both the travelers and the
vehicles.

Definition 5. At the end of travel, each traveler is asked
to make a payment ti(aij) for the service of vehicle j ∈ J
(e.g., a share-mobility fare). The monetary net profit ρij(aij)
of vehicle j ∈ J from traveler i ∈ I is given by

ρij(aij) = ti(aij)− cij(aij). (6)

On the other hand, the monetary net profit of traveler i ∈ I
is

πij(aij) = vi(aij)− ti(aij)− vi, (7)

We call (πij(aij), ρij(aij))i∈I,j∈J the traveler-vehicle profit
allocation.

Remark 1. Naturally, (6) gives the net profit of a vehicle
j ∈ J generated by one traveler i ∈ I as the difference
between the monetary payment ti (e.g., fare) made by the
traveler, and the traveler’s share of the operating cost, cij .
In a similar line of arguments, in (7) the net profit of traveler
i ∈ I is the difference between what they are willing to pay,
vi, what they actually pay, ti, and the minimum accepted
value that they expect to get from vehicle j ∈ J .

Next, following a similar notion from [25], we define when
the traveler-vehicle profit allocation (πij(aij), ρij(aij)) for
each traveler i ∈ I and each vehicle j ∈ J is feasible.

Definition 6. Let Ĵ ⊆ J denote the set of all ve-
hicles that are actually assigned to travelers. We say
(πij(aij), ρij(aij))i∈I,j∈J is feasible if (i) for all vehicles
j ∈ Ĵ , both the traveler’s and vehicle’s net profit are
nonnegative, i.e., πij(aij), ρij(aij) ≥ 0; (ii) the net profit
of any traveler i ∈ I assigned to any vehicle j ∈ J and its
net profit is equal to the total utility of traveler i ∈ I minus
the operating cost of vehicle j ∈ J , i.e.,

πij(aij) + ρij(aij) = ui(aij)− cij(aij); (8)

(iii) for all unassigned vehicles j ∈ J \Ĵ , ρij(aij) = 0; and
(iv) for any traveler i ∈ I left unassigned, πij(aij) = 0.

Definition 7. A feasible traveler-vehicle profit allocation
(πij(aij), ρij(aij))i∈I,j∈J is stable if for all i ∈ I,

ui(aij)− cij(aij) ≥ ui(a′ij)− cij(a′ij), (9)

for any assignment a′ij .

In other words, Definition 7 implies that for any trav-
eler i and any vehicle j that are not assigned together, if
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ui(aij)− cij(aij) < ui(a
′
ij)− cij(a′ij), then neither traveler

i or vehicle j would be satisfied with that assignment. If
we can eliminate those cases, then the traveler-vehicle profit
allocation is socially-acceptable and no traveler, or vehicle,
will seek to deviate.

A. Assumptions
In our modeling framework of a shared mobility market

we impose the following assumptions.

Assumption 1. All travelers participate in the market since
sharing a vehicle is the only commute option.

We impose Assumption 1 in our modeling framework
since the focus is on identifying the best assignment between
travelers and shared vehicles. By including alternative com-
mute options, we would just add complexity in our analysis
without any compelling reason. However, in future work,
we plan to relax this assumption, and allow travelers to
have multiple commute options using different modes of
transportation to reach their destination in the network.

Assumption 2. The travel satisfaction or costs of any
traveler’s utility is represented in monetary units. Also, we
have u0(a0j) = cj for any vehicle j ∈ J .

Although Assumption 2 allows us to simplify the mathe-
matical modeling, it is also natural in a realistic market of
shared mobility to assume that all valuations and transac-
tions between travelers and vehicles are done using money.
Intuitively, u0(a0j) = cj for any vehicle j ∈ J ensures that
for any assignment the vehicle’s operating cost is covered.

Assumption 3. The total operating cost of all vehicles∑
j∈J cj remains fixed.

Assumption 3 implies that the operating cost of all vehicles
cannot be altered in the long run while accommodating the
travelers’ desired origin-destination requests. In other words,
the traveler-service assignments cannot really alter the total
operating cost of all vehicles.

B. Problem Formulation
Problem 1. The optimization problem formulation of the
shared mobility market is

max
aij

W (a) = max
aij

∑
i∈I

ui(aij), (10)

subject to:∑
j∈J

aij ≤ 1, ∀i ∈ I, (11)∑
i∈I

aij ≤ εj , ∀j ∈ J , (12)

where (11) ensures that each traveler i ∈ I is assigned to
only one vehicle j ∈ J , and (12) ensures that the vehicle
maximum capacity is not exceeded while the vehicle shared
by travelers.

Remark 2. We note that the solution of Problem 1 will
always assign a vehicle that can satisfy the origins and
destinations of all the travelers that are assigned to it.

III. MAIN RESULTS

Theorem 1. Let a∗ denote an optimal assignment of Problem
1. Then, the objective function (10) evaluated at a∗ is
mathematically equivalent to the classic maximization of the
social welfare at a∗ with utility function defined as

ui(aij) = vi(aij)− ti(aij)− cij(aij), (13)

where vi(aij) is the satisfaction of traveler i ∈ I, ti(aij)
is the monetary payment made by traveler i ∈ I for using
vehicle j ∈ J , and cij(aij) is the operating cost of vehicle
j ∈ J assigned to traveler i ∈ I.

Proof. By Assumption 2, we can write the objective function
(10) of Problem 1 as follows

max
aij

∑
i∈I

ui(aij) = max
aij

∑
i∈I\{0}

ui(aij) +
∑
j∈J

c0j(a0j),

(14)
where the term

∑
j∈J c0j(a0j) represents the total operating

cost of all the vehicles that are unassigned to travelers, and
can be written as∑

j∈J
c0j(a0j) =

∑
j∈J

cj −
∑
j∈Ĵ

cj . (15)

Substituting (15) into (14) yields

max
aij

∑
i∈I

ui(aij) = max
aij

∑
i∈I\{0}

ui(aij)

+
∑
j∈J

cj −
∑
j∈Ĵ

cj . (16)

Since
∑

j∈J cj is constant by Assumption 3, it can be
neglected from the maximization problem. Hence, by op-
timality, we have

∑
j∈Ĵ cj =

∑
j∈J

∑
i∈I\{0} cij(aij), and

since the series is finite, (16) becomes

max
aij

∑
i∈I\{0}

ui(aij)−
∑

i∈I\{0}

∑
j∈J

cij(aij) =

max
aij

∑
i∈I\{0}

(vi(aij)− ti(aij)− cij(aij)) , (17)

where in the last equation we have used the fact that∑
i∈I\{0} ui(aij) =

∑
i∈I\{0}

∑
j∈J ui(aij), and the result

immediately follows.

Proposition 1. Let the traveler-vehicle profit allocation
(πij(aij), ρij(aij))i∈I,j∈J under the traveler-vehicle as-
signment a of Problem 1 form a space, denoted by S. Then,
S is convex.

Proof. It is straightforward to see that the space of stable so-
lutions S is defined by a set of linear constraints. Therefore,
the space of stable solutions S is convex.

Theorem 2 (Stability). If (πij(aij), ρij(aij))i∈I,j∈J is sta-
ble, then a is an optimal assignment of Problem 1.

Proof. Let a and a′ denote two different traveler-vehicle
assignments of Problem 1. It is sufficient to consider the
case where (πij(aij), ρij(aij))i∈I,j∈J is stable under a and
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only feasible under a′. Then, we want to show that a′ is not
optimal. So, by Definition 7, we have

πij(aij) + ρij(aij) = ui(aij)− cij(aij)
≥ ui(a′ij)− cij(a′ij). (18)

We take the summation over i ∈ I \ {0} and j ∈ Ĵ of (18)
as follows∑

i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) ≥

∑
i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a′ij)

)
. (19)

So, the RHS of (19) becomes∑
i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a′ij)

)
=

∑
i∈I\{0}

∑
j∈J

(
ui(a

′
ij)− (1− a′0j) · cij(a′ij)

)
. (20)

By using conditions (ii) and (iii) from Definition 6, the LHS
of (19) becomes∑

i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) =

∑
i∈I\{0}

∑
j∈J

(ui(aij)− (1− a0j) · cij(aij)) . (21)

Thus, substituting (20) and (21) into (19) yields∑
i∈I\{0}

∑
j∈J

(ui(aij)− (1− a0j) · cij(aij)) ≥∑
i∈I\{0}

∑
j∈J

(
ui(a

′
ij)− (1− a′0j) · cij(a′ij)

)
, (22)

which simplifies to, for any assignment a′ij ,∑
i∈I

ui(aij) ≥
∑
i∈I

ui(a
′
ij), (23)

since the summation over the j ∈ J is redundant. Hence, the
social welfare under assignment a is greater or equal than
the social welfare under a′. Therefore, we conclude that if
(πij(aij), ρij(aij))i∈I,j∈J is stable, then the assignment a
is necessarily optimal.

Theorem 3. If there are two optimal assignments of Prob-
lem 1, denoted by a and ã, respectively, then the resulted
traveler-vehicle profit allocation (πij(aij), ρij(aij))i∈I,j∈J
is feasible and stable under both assignments.

Proof. Let a and ã denote two optimal assignment. What we
have to show is that if (πij(aij), ρij(aij))i∈I,j∈J is stable
under assignment a and feasible under ã, then it is also stable
under ã. We follow the same arguments up until (19) to get∑

i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) ≥

∑
i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a′ij)

)
. (24)

Hence, we observe that if ã is an optimal assignment, then
by Definition 7, (24) will hold at equality. Thus, the feasi-
bility equation (8) is satisfied. Therefore, under the optimal
assignment ã, we conclude that (πij(aij), ρij(aij))i∈I,j∈J
is stable.

Proposition 2. If there are two arbitrary travelers with the
same needs that are assigned to different vehicles, then there
is no difference in their utility.

Proof. Suppose there are two travelers i, i′ ∈ I with the
same needs and two vehicles j, j′ ∈ J . We want to show that
in our market both travelers will receive the same utility even
under different assignments. So, we assume that there are two
assignments a and a′, where in a traveler i ∈ I is assigned
to vehicle j ∈ J while in a′ traveler i ∈ I is assigned to
vehicle j′. Similarly, for traveler i′. For an optimal a, the
stability conditions of (πij(aij), ρij(aij))i∈I,j∈J are

πij(aij) +
∑

`∈I\{i}

(π`j(a`j) + ρij(aij)) =

ui(aij) +
∑

`∈I\{i}

(ui(a`j)− c`j(a`j)) , (25)

πij(aij) +
∑

`∈I\{i′}

(π`j(a`j) + ρij′(aij′)) ≥

ui(aij′) +
∑

`∈I\{i′}

(ui(a`j′)− c`j′(a`j′)) . (26)

Similarly, for traveler i′, we have the following:

πi′j(ai′j) +
∑

`∈I\{i′}

(π`j(a`j) + ρij′(aij′)) ≥

ui(ai′j′) +
∑

`∈I\{i′}

(ui(a`j′)− c`j′(a`j′)) , (27)

πi′j(ai′j) +
∑

`∈I\{i}

(π`j(a`j) + ρij(aij)) =

ui(ai′j) +
∑

`∈I\{i}

(ui(a`j)− c`j(a`j)) . (28)

In a similar way, we can argue that since a′ is optimal, the
stability conditions of (πij(aij), ρij(aij))i∈I,j∈J are

πij(aij) +
∑

`∈I\{i}

(π`j(a`j) + ρij′(aij′)) =

ui(aij′) +
∑

`∈I\{i}

(ui(a`j′)− c`j′(a`j′)) , (29)

πij(aij) +
∑

`∈I\{i′}

(π`j(a`j) + ρij(aij)) ≥

ui(aij) +
∑

`∈I\{i′}

(ui(a`j)− c`j(a`j)) . (30)
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Similarly, for traveler i′, we have the following:

πi′j(ai′j) +
∑

`∈I\{i′}

(π`j(a`j) + ρij(aij)) =

ui(ai′j) +
∑

`∈I\{i′}

(ui(a`j)− c`j(a`j)) , (31)

πi′j(ai′j) +
∑

`∈I\{i}

(π`j(a`j) + ρij′(aij′)) ≥

ui(ai′j′) +
∑

`∈I\{i}

(ui(a`j′)− c`j′(a`j′)) . (32)

Recall that both travelers i, i′ ∈ I have the same needs. Thus,
ui(aij) = ui′(ai′j) and ui(aij′) = ui′(ai′j′). Therefore,
from (25) - (32), it follows that πij(aij) = πi′j(ai′j).

IV. CONCLUSIONS

In this paper, we provided an answer to how one can
ensure a socially-acceptable assignment between travelers
and the shared vehicles’ operators. We focused on the behav-
ioral decision-making of both the travelers and the vehicles’
operators and designed a shared mobility market consisted
of travelers and vehicles in a transportation network. We
formulated a binary linear program and derived necessary
and sufficient conditions for its solution to be an assignment
between travelers and vehicles that cannot be improved
any further. Consequently, we showed that our optimal
assignment maximizes the social welfare of all travelers, and
ensures the feasibility and stability of the traveler-vehicle
profit allocation while respecting the decision-making of both
the travelers and the vehicles’ operators.

Ongoing work includes conducting a simulation-based
analysis under different traffic scenarios to showcase the
practical implications of our work. Furthermore, in [26]
we provide the design of a mobility market with strategic
decision-making, in which we relax the assumption that
travelers have no other alternative modes of transportation.
An interesting research direction would involve to extend
and enhance the traveler-behavioral model, motivated by a
social-mobility survey. The objective with such a survey
would be to observe any correlations between behavioral
tendencies or attitudes of travelers and how they use shared
vehicles (e.g., Uber, Lyft, taxicabs). We plan to address the
following unanswered questions: (i) “will CAVs play a role
and have a significant impact on the travelers’ tendencies and
behavior regarding mobility?” and (ii) “in emerging mobility
systems, how likely will people share CAVs and will be the
implications of a major mode of transportation shift?”
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S. Koenig, “Ridesharing: The State-of-the-Art and Future Directions,”
Transportation Research Part B: Methodological, vol. 57, pp. 28–46,
2013.

[22] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” The American Mathematical Monthly, vol. 69(1), pp. 9–15,
1962.

[23] A. E. Roth and M. Sotomayor, Two Sided Matching: A Study in Game
Theoretic Modeling and Analysis. Cambridge University Press, 1990.

[24] E. Anshelevich, S. Das, and Y. Naamad, “Anarchy, Stability, and
Utopia: Creating Better Matchings,” in Autonomous Agents and Multi-
Agent Systems, vol. 26(1), 2013, pp. 120–140.

[25] M. Sotomayor, “The Multiple Partners Game,” in Equilibrium and
Dynamics, 1992, pp. 322–354.

[26] I. V. Chremos and A. A. Malikopoulos, “A Socially-Efficient Emerging
Mobility Market,” arXiv preprint arXiv:2011.14399, 2020.

379


