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Abstract— Trajectory planning of connected and automated
vehicles (CAVs) poses significant challenges in a mixed traffic
environment due to the presence of human-driven vehicles
(HDVs). In this paper, we apply a framework that allows
optimal coordination of CAVs and HDVs traveling through
a traffic corridor consisting of an on-ramp merging, a speed
reduction zone, and a roundabout. We study the impact of
different penetration rates of CAVs and traffic volumes on
the efficiency of the corridor. We provide extensive simulation
results and report on the benefits in terms of total travel time
and fuel economy.

I. INTRODUCTION

The emergence of connected and automated vehicles
(CAVs) enables a novel computational framework to provide
real-time control actions that optimize energy consumption
and associated benefits such as improving travel time and
significantly reducing stop-and-go driving. By optimally
controlling CAVs, we can alleviate congestion at different
traffic scenarios, reduce emission, improve fuel efficiency
and increase passenger safety [1]-[4]. Several efforts in
the literature have addressed the problem of optimal
coordination of CAVs to improve the vehicle- and network-
level performances [5]-[10]. Recent efforts have reported
results on coordination of CAVs at on-ramp merging
roadways, roundabouts, speed reduction zones, signal-free
intersections, and traffic corridors (see [11]-[16]).

It is expected that CAVs will gradually penetrate the
market and interact with human-driven vehicles (HDVs) by
2060 [17]. However, different penetration rates of CAVs can
significantly alter transportation efficiency and safety. While
the aforementioned studies have shown the benefits of CAVs
to reduce energy and alleviate traffic congestion in specific
traffic scenarios, most of these efforts have focused on 100%
CAV penetration rates without considering HDVs.

One of the research directions towards controlling the
CAVs in a mixed traffic environment has been the
development of adaptive cruise control [18]-[20] where a
CAV, preceded by a single or a group of HDVs, applies cruise
control to optimize a given objective, e.g., improvement of
fuel economy [21], minimization of backward propagating
wave [22], [23], etc. Although these research efforts [24]
aim at enhancing our understanding of improving the
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efficiency through coordination of CAVs in a mixed traffic
environment, deriving a tractable solution to the problem
of CAV coordination at merging or roundabout scenario
still remains challenging. Several approaches reported in
the literature implemented well-known car-following models,
which emulate the human-driving behavior [25], [26],
to derive a deterministic quantification of the wvehicle
trajectory [27], [28]. Other approaches have used car-
following models [29] or learning algorithms [30], [31]
for CAV coordination in mixed traffic environment. There
have been also some research efforts that have investigated
the effects of CAV penetration on a mixed traffic network
through microscopic [32] or meso/macroscopic simulation
[33], [34] environments.

In this paper, we analyze the impact of optimally
coordinating CAVs traveling through a mixed traffic corridor
including three different scenario: on-ramp merging, speed
reduction zone and roundabout. In this context, CAVs
interact with HDVs at varying penetration rates and different
traffic volumes. The contributions of this paper are the (i)
development of a simulation environment of an optimal
CAV coordination framework at a corridor in a mixed traffic
network, and (ii) a detailed analysis of the impact of CAV
penetration on the vehicle- and network level performance,
in terms of fuel economy and travel time, under different
traffic volumes.

The remainder of the paper proceeds as follows. In Section
we provide the modeling framework for a mixed traffic
environment. In Section we present the coordination
framework for CAVs traveling through the traffic corridor
while interacting with HDVs. In Section we provide a
detailed analysis and simulation results. Finally, we draw
concluding remarks in Section [V]

II. PROBLEM FORMULATION

We consider the University of Michigan’s Mcity where
CAVs and HDVs are traveling through a particular test route
as illustrated by the black trajectory in Fig. [T} The route
consists of three traffic scenarios, indexed by z = 1,2, 3,
representing a highway on-ramp, a speed reduction zone,
and a roundabout, respectively. Note that to create traffic
congestion in the test route, we consider additional traffic
flow at the adjacent roads.

Upstream of each traffic scenario, we define a control
zone where CAVs coordinate with each other to avoid
any rear-end or lateral collision. The length of the control
zone is L, € RT for each traffic scenario z. Since the
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Fig. 1: Corridor of Mcity with three traffic scenarios: on-
ramp merging, speed reduction zone and roundabout.

HDVs do not share their state information, we consider
the presence of coordinators, which can be loop-detectors,
roadside units, or comparable sensory devices, that collect
the state information of the HDVs traveling within each
control zone. The coordinators transmit the HDVs’ state
information to each CAV within each control zone using
standard vehicle-to-infrastructure communication protocols.
Note that, the coordinators do not make any control decisions
for the CAVs. They only handle the information flow for the
CAVs and HDVs within each control zone. We define the
area of potential lateral collision to be the merging zone
of length S, specific to traffic scenario z, as illustrated
by the red marked area numbers 1, 2, and 3 in Fig.
The objective of each CAV is to derive its optimal control
input (acceleration/deceleration) to cross the traffic scenarios
without any rear-end or lateral collision with the other CAVs
and HDVs.

Let t(i)’z be the time when each vehicle 7 enters the control
zone towards traffic scenario z, ¢;"° be the time when the
each vehicle enters the merging zone of the traffic scenario z,
and tlf "* be the time when vehicle 4 exits the corresponding
merging zone. Let N, = {1,...,N(t)}, t € R, be a queue
of vehicles to be analyzed for traffic scenario z, where N (t)
is the total number of CAVs within the control zone of the
specific traffic scenario z at time t € R*. We denote N, and
Npay to be the set of CAVs and HDVs such that N,y UNLgy =
N..

The dynamics of each vehicle i € N, are represented as
X(t) = f(xiu), xi(£7) = %7, )

where x;(t),u;(t) are the state and control input,
respectively. For simplicity, we model each vehicle as a
double integrator, i.e., p; = v;(t) and ©¥; = w;(t), where
pi(t) € Pi,vi(t) € Vi, and u;(t) € U; denote the position,
speed, and acceleration/deceleration (control input) of each

vehicle 4. Let x,(t) = vl t T denote the state of each
vehicle 4, with initial Value x; (197°) = [pi(t0%) v (¢ T
In our modeling framework, we 1mpose the following state

and control constraints,
Umin < ©i(t) < Umax, and

2
0 < Vmin < 0;(t) < Vmax, Vte[oz tf’} @

where  Umin, Umax are the minimum deceleration and
maximum acceleration, vpin, Umax are the minimum and
maximum speed limits respectively. Next, we consider the
rear-end and lateral safety constraints as

si(t) = pr(t) — pit) > 8i(t), Vt € [t)7, t]7],  (3)

where vehicle k is immediately ahead of i on the same lane.
Lateral collision between any two vehicles 7, j € N, can be
avoided if the following constraint holds

0,ND; =@, Vte [t 107, i,jeN.(t), @)

where I; := {t |t € [t* ¢]7]}.

For the CAV i € Ny, the control input u;(t) in can
be derived within the control zone, the structure of which we
discuss in Section In contrast, we consider a generic car-
following model of the following form to derive the control
input of each HDV i € N0,

ui(t) = f(pi(t), pi-1 (1), vi (1), vi-1(1)), (5)

where the function f represents the behavioral model of
the car-following dynamics. In this paper, we employ the
Wiedemann car-following model proposed in [26].

In the modelling framework presented above, we impose
the following assumptions.

Assumption 1. The communication among the CAVs and
the coordinator occurs without any transmission latency,
errors or data loss.

Assumption 2. No lane change is allowed inside the control
zone.

Assumption (1| might be strong, but can be relaxed as long
as the noise in the measurements and/or delays is bounded.
Assumption [2] simplifies the formulation by restricting the
traffic flow to a single lane within the control zone.

III. OPTIMAL COORDINATION FRAMEWORK

For each CAV i € M.y, we adopt the optimal control
problem presented in [35], i.e.,

2

1 i
mini/ u(t)dt, Vi € N, V2 =1,2,3,  (6)
s t?,z
subject to : (1), (),

pilty?) = %, wilt)) = o, pi(t]7) = s,
and given {7, t/"*

s Y I

where p, is the location (i.e., entry position) of merging
zone z; p?’z, vio’z are the initial position and speed of
vehicle ¢ when it enters the control zone of traffic scenario
z, respectively. The merging time ¢;"* can be obtained by



solving an upper-level control problem including the safety
constraints (3), @) in an iterative manner, as detailed in [35].
Suppose that, each CAV i € N, is aware of the information
of the sets £7 and C7, which contain the unique id of
the preceding vehicles travelling on the same lane, or on a
conflict lane relative to CAV 1, respectively. Then, each CAV
i determines the time ¢."* that will be entering the traffic
zone z = 1,2, 3, upon arrival at the entry of the corridor as
follows (see [35]). If vehicle (i—1) € £Z and (i—1) € My,
we have

6(vi(t)) 0., L
tE :max{min {tﬁi’z—k i T+ —= 0,
! =t Ui—l(t?i’f) ! Umin
L L
0,z z 0,z z
% + % + : 7
% vo (t?,Z) () Umax } ( )

while, if vehicle (i — 1) € C7 and (i — 1) € Ny, then

S L
t;n’z = max { min {tznf + Zm,z 02 + —= },

Ui71(757;_1)7 ¢ VUmin
z L, z L,
e R ST
U()(tl-7 ) Umax

where L, and S, are the length of the control zone and the
length of the area of potential lateral collision, respectively.

Note that, if the vehicle preceding CAV ¢ is an HDV, i.e.,
(i — 1) € Npav» then we apply 77 = 197 + mf(#z) to
estimate the merging time ¢; ] of HDV i — 1. We then use
t:7 in [@)-() to derive the merging time ¢;* of CAV 1.
The recursion of the above computation is initialized when
the first vehicle enters the control zone.

Using Hamiltonian analysis [36], the unconstrained
optimal control input uf(¢) of CAV i € N, and the

corresponding state trajectories at time ¢t € [t"*, 77| are
[37]
uj (t) = a; -t + b, 9)
1
vi(t) = it bt + e, (10)
1 1
pf(t):éai-t3+§bi~t2+ci~t+di, (11)

where a;, b;, ¢;, and d; are the constants of integration and
can be computed using the analysis presented in [37].

For the control of CAVs in a mixed environment, if the
physically leading vehicle of a CAV is HDV, the CAV will
probe the safety constraint continuously to make adjustment
to its travel behavior. A switching mechanism is applied in
the study: the control algorithm for a CAV would always
be switched on until the safety constraint (3 is activated in
terms of the distance between itself and its preceding HDV.

IV. SIMULATION AND DISCUSSION
A. Simulation Setup

To implement the control framework presented in the
previous section, we use the microscopic multi-modal
commercial traffic simulation software PTV VISSIM [38],
[39] by creating a simulation environment replicating Mcity,
as shown in Fig. [I} The corridor through which the vehicle

travels has a length of 1,300 m within the Mcity. The
maximum and minimum acceleration considered for each
vehicle are 1.5 m/s? and -3.0 m/s?, respectively. The speed
limit on the on-ramp merging, speed reduction zone and
roundabout are 40 m/s, 18.6 m/s and 25 m/s, respectively.
The control zone length is 150 m and safe headway time
considered is 1.2 s.

In our study, we consider the following three different
cases:

Baseline: We construct the baseline case considering all
the vehicles to be HDVs and without any communication
capability. The vehicles subscribe to the VISSIM built-in
Wiedemann car following model [26] to emulate the driving
behavior of real human driven vehicles. We adopt priority
based (yield/stop) traffic movement at the roundabout and
on-ramp merging scenarios.

Optimal Coordination: In this case, all the vehicles are
CAVs, and communicate with each other inside the control
zone. Therefore, they can optimize their individual travel
time and fuel efficiency, and plan their optimal trajectories.
We consider three isolated coordinators for each traffic
scenario. For the uncontrolled paths in-between the control
zones, the CAVs revert back to the Wiedemann car following
model [26] to traverse their respective routes. To apply the
optimal control framework, we override VISSIM’s built-in
car following module and associated attributes using the
DriverModel APIL.

Partial Penetration: To simulate the partial penetration
case, we consider both of the above cases as the two
extremes, and traverse the cases in between with different
percentage of CAV inclusion. We adopt a priority based
(yield/stop) traffic movement at the roundabout and on-ramp
merging scenarios only for the HDVs, whereas the CAVs
are allowed to ignore the traffic signs while exiting a traffic
scenario when it is safe to do so.

In our simulation study, we consider high, medium and
low traffic volumes for the test route as 500, 400 and 300
vehicles per hour, and for the adjacent roads as 800, 600 and
400 vehicles per hour, respectively.

B. Simulation Results and Analysis

We analyzed the implications of 11 different penetration
rates of CAVs ranging from 0% to 100% that may have
on fuel economy, travel time improvement as well as the
mean speed changes and driving behavior. For the fuel
consumption analysis, we used the polynomial metamodel
presented in [40]. Using different penetration rates of CAVs,
the simulation results allow several observations. First, for all
traffic volumes, fuel economy increases when the penetration
rate of CAVs increases, as shown in Fig. E} From 0% to
40% penetration rates, the higher improvements are at low
traffic volumes. Although in the optimal scenario (i.e., 100%
CAVs), fuel economy improvement is between 24% and
33% at all traffic volumes, the improvement for 60% to
80% penetration rate is between 13% to 19%, with mean
and standard deviation as shown in Table [l From a general
fuel economy improvement point of view, the best CAV



penetration rate before the optimal scenario for all the traffic
volumes is 70%, because it has the lowest standard deviation.
Fuel economy improvement is increasing at all the traffic
volumes as shown in Fig.[2] Similarly, the average travel time
decreases, which represents an improvement in the network
(Fig. B). At low traffic volumes, the variations in average
speed and travel time, represented by the blue lines in Fig.
[l are more gradual, in comparison with the other traffic
volumes. High traffic volumes, represented by the yellow
lines, have the most prominent changes, especially after 50%
penetration. Medium traffic volumes, represented by the red
lines, exhibit similar behavior but with some changes around
50% and 70% which we discussed more next.

TABLE I: Mean and standard deviation of fuel economy
improvement of the three traffic volumes, from 60% to 80%
penetration rate.

CAV penetration rate[%] | Mean Standard
Deviation

60% 13.83% 0.41
70% 16.12% 0.25
80% 17.89% 0.34
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Fig. 2: Different penetration rates of CAVs impact on fuel
economy, and fuel economy improvement. Both of them
increases when the penetration increases, which represents
improvement in the general network.

From a general view, the average travel time is decreasing
for high and medium traffic volumes. In particular, the
travel time distribution, illustrated in Fig. EL shows how at
a high traffic volume, all vehicles improve their travel times
for a 50% penetration rate. At least 80% improve it by
5 s, which explains the strong change seen in Fig. [3] for
that penetration rate. Since high traffic volume experiences
more stop-and-go driving than the other traffic volumes, the
50% penetration rate of CAVs has an important impact on
travel time decrement and average speed increment, as is
going to be shown further in this section. At the low traffic
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Fig. 3: Effect of different penetration rates of CAVs on

average speed and travel time. Average speed increases while

average travel time decreases for medium and high traffic
volumes.

volume, the travel time distribution does not improve for
50% penetration rate, although at least 95% of the vehicles
improve their travel times, as Fig. [ illustrates. This is due
to the fact that for this traffic volume, CAVs have an impact
on fuel economy improvement, but not on average speed,
as it is shown in Figs. 2] and [3] For a 50% penetration
rate in medium traffic volume, at least 80% of the vehicles
improve their times, but around 15% of them get worse times,
which explains why average travel time increases for this
penetration rate in Fig. 3] The same behavior is exhibited
for the 70% penetration rate.

Considering the information presented in Figs. [3] and [
at the high traffic volume, the average travel time improves
for penetration rates above 50%, and has gradual changes for
penetration rates from 10% to 40% and then again from 50%
to 90%, as shown in Fig. 5] Although Figs. [3|and [5] present a
decreasing slope for the high traffic volume, the remarkable
improvements occur at 50% and 100% penetration rates. At
a medium traffic volume, Fig. [3|shows that the average travel
time is, in general, also decreasing, but the behavior is not
the same. According to Fig. 5] the remarkable improvement
for this traffic volume occurs at 60% and maintains a
constant improvement after 70%. Considering the variations
of average travel time, and consequently average speed for
medium traffic volume at 70%, the best CAV penetration rate
for this volume is 60%, and not 70% as was stated just with
fuel consumption analysis.

Low traffic volume has its best performance at 10%
penetration rate, and it remains slightly invariant up to 70%,
where it gets worse. At 100%, the travel time variation is
almost 0% compared to the baseline, which means that from
this point of view, the best CAV penetration rate for low
traffic volume is 10%. Consistently, Fig. |§| shows that, at
the high traffic volume, travel time oscillates between 105
s and 155 s for all penetrations until 40%. For 50%, travel
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Fig. 5: Effect of partial penetration on percentage variation
of fuel economy, travel time and average speed. 50% and
60% are interesting penetration rates for high traffic volume;
60% for medium, and 10 and 60% for low.

time goes from 98 s to 143 s, and it remains in that interval
for all penetrations until 90%. Nevertheless, the travel time
for penetrations from 50% to 90% is not the same, it
keeps decreasing because, for each penetration rate, a higher
number of vehicles get lower travel times. Correspondingly,
Fig.|7| shows how travel time variation is decreasing for high
traffic volume (represented by the yellow line), and average
speed is increasing directly proportional to it, a combination
that supports the fuel economy improvement seen in Fig[2]

Distribution for the medium traffic volume has its best
improvements at 60% and 100% penetration rates. In
particular with values between 98 s and 138 s for the first
one, and 103 s and 121 s for the optimal scenario. The
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Fig. 6: Travel time distribution for high traffic volume at each
penetration rate. A small variance is seen for penetration rates
from 0% to 40%, and from 50% to 90%.

low traffic volume distribution is homogeneous, remaining
between 95 s and 138 s for all penetrations. However, the
distribution for 100% has values between 96 s and 121
s. Nevertheless, the behavior for medium traffic volume is
different from high and low. For 50% penetration, more than
70% of the vehicles have travel times between 98 s and 119
s, but at least 8% of them have times from 140 s to 177 s, the
highest travel time of the simulation. This 8% corresponds to
HDVs and is responsible for the positive variation of travel
time in Fig. [}

Low traffic volume has an increasing average travel
time, as shown in Fig. [3] Fig. [ presents how CAVs
penetration improves fuel economy by 9% for just 10%
penetration, and it increases as the penetration rate increases.
The travel time distribution in Fig. [7] illustrates why
fuel economy is improving while travel time is not; this
occurs when a greater portion of the vehicles share the
same travel time, more than just somehow decreasing the
average travel time. In other words, for this particular traffic
volume, the travel time interval remains the same for at
least 98% of the vehicles. The relationship between fuel
economy improvement, travel time variation, and average
speed variation is clearly illustrated in Fig. 5] At all traffic
volumes, average speed variation is inversely proportional to
travel time improvement. At the three traffic volumes, fuel
economy improves as the penetration rate increases, even
though at the low traffic volume the average speed is not
increasing.

The variation of average speed profiles from high traffic
volume is shown in Fig. [8] where the penetrations of interest
are compared with the baseline and the optimal scenario.
The critical penetrations at this volume are 50% and 60%.
It is clear how the improvements of 35% and 40% happen
between 200 m and 400 m, which corresponds to a portion
of the first traffic scenario (i.e., on-ramp), and the part of the
corridor immediately after it, and between 990 m and 1000
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penetration rate, emphasizing in 50% and 60% as critical

penetrations rates. Speed profile has gradual variations from
0% to 40%, and from 70% to 90%.

m, where the third traffic scenario (i.e., roundabout) occurs.
It is also apparent how for penetrations smaller than 40%,
the mean speed profile has small variations. The changes for
50% and 60% remain very close until 90% penetration.
Improvements in the speed profile are related to avoiding
stop-and-go driving in conflict zones, like the first and
the third traffic scenarios, and also with speed general
reduction in zones like the second traffic scenario. The
average speeds at the high traffic volume, shown in Figs. [§]
andEL correspond to the baseline case, 50% penetration case,
and the optimal scenario case. Stop-and-go driving decreases
while the penetration rate increases. The speed for the second
traffic scenario decreases as well. The average speed in red
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0 200 400 600 800 1000 1200

Speed profile [m/s]

Distance [m]

Fig. 9: High traffic volume speed profile at the baseline,
critical penetration rate and optimal scenario. Stop-and-go
driving decreases for 50% and is avoided for 100%.

becomes smoother while the speed profile of all the vehicles
tends to converge to a single behavior, as happens in the
optimal scenario.

C. Human-Driven Vehicles vs Connected and Automated
Vehicles

The behavior of HDVs and CAVs differs from each other
in mixed traffic scenarios as shown in Fig. [I0] at the high
traffic volume. The penetration rates of interest are 50% and
60%. In both cases, they are compared with the baseline
and optimal scenario. Around the rates of interest, it can be
seen that the CAVs dominate the speed profile improvement
for the first and third traffic scenarios. However, the HDVs
have better behavior in the speed reduction zone and a slight
improvement near the end of the corridor. The performance
improvement of the network for both penetrations of interest
is due to the effect of CAVs and HDVs interaction. For 60%
penetration rate at the medium traffic volume, the HDVs
improve the average speed during the transitions before and
after the third conflict zone (just along the last portion of
the corridor) as it can be seen in Fig. [IT} At the medium
traffic volume, the improvement of the network is led by
the CAVs. At the low traffic volume, CAVs and HDVs have
similar behaviors for all the penetration rates of interest.

At all three traffic volumes, HDVs exhibit fuel economy
improvement as it is shown in Table [l This is related to
the information presented and discussed in Fig. [7 However,
the best CAV penetration rate for the HDVs fuel economy
is at 60% at all the traffic volumes. From Table [ it can be
stated that the best fuel economy improvement happens for
90%. However, for this penetration just 10% of the vehicles
are HDVs, so the high percentage values reported on the
table are not giving accurate information about an interesting
improvement for HDVs fuel economy in a mixed traffic
scenario.
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Fig. 10: High traffic volume average speed for CAVs and
HDVs, in penetration rates of interest, compared with the
baseline and optimal scenario.

TABLE II: Fuel economy improvement for HDVs. The best
penetration rate for HDVs fuel economy improvement is 60%
for the three traffic volumes.

CAV Fuel economy improvement [%]
penetration
rate [%]

High Medium Low
10% 2.3% -1% 0%
20% 0.3% 0.7% 5.4%
30% -0.3% 1.7% 2.9%
40% 1.2% -0.7% 3.1%
50% 2.7% 2% 4.1%
60% 2.6% 7.4% 7.2%
70% 0.5% 5.2% 9%
80% -1.2% 7.5% 14.3%
90% 9.8% 18.7% 23.4%
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Fig. 11: Medium traffic volume average speed for CAVs and
HDVs, in penetration rates of interest, compared with the
baseline and optimal scenario.

V. CONCLUSION

In this paper, we developed a simulation framework
to analyze the implications that different penetration rates
of CAVs and their interaction with HDVs can have on
fuel economy and travel time. We adopted the framework
presented in [35] to capture the interaction between CAVs
and HDVs. Using different penetration rates of CAVs, the
results indicate that for low penetration rates fuel economy
improvement is significant, although travel time and average
speed do not improve. At this traffic volume, the best
penetration rate for HDVs is 60%. At medium and high
traffic volumes, we observed significant benefits in fuel
economy while the penetration increases; however, the
improvements in average speed and travel time have specific
thresholds of interest, i.e., 60% penetration at the medium

traffic volume, and 50% at the high traffic volume. The best
penetration rate for HDVs is 60%.

It is expected that CAVs will gradually penetrate the
market, interact with HDVs, and contend with vehicle-
to-vehicle and vehicle-to-infrastructure communication
limitations, e.g., bandwidth, dropouts, errors and/or delays.
However, as we observed in this study, different penetration
rates of CAVs can significantly alter transportation efficiency
and safety. Ongoing work aims at optimally controlling
the CAVs to indirectly control the HDVs and form
platoons [41], [42]. A direction for future research should
synergistically integrate human-driving behavior, control
theory, and learning in an effort to develop a framework
to address a fundamental gab on current methods for safe
co-existence of CAVs with HDVs. The framework will
aim CAVs at coordinating with HDVs safely at any traffic
scenario, e.g., crossing signal-free intersections, merging
at roadways and roundabouts, cruising in congested traffic,
passing through speed reduction zones, and lane- merging
or passing maneuvers. Ongoing.
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