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The increasing complexity of engineering systems has motivated continuing research on
computational learning methods toward making autonomous intelligent systems that can
learn how to improve their performance over time while interacting with their environ-
ment. These systems need not only to sense their environment, but also to integrate
information from the environment into all decision-makings. The evolution of such sys-
tems is modeled as an unknown controlled Markov chain. In a previous research, the
predictive optimal decision-making (POD) model was developed, aiming to learn in real
time the unknown transition probabilities and associated costs over a varying finite time
horizon. In this paper, the convergence of the POD to the stationary distribution of a
Markov chain is proven, thus establishing the POD as a robust model for making au-
tonomous intelligent systems. This paper provides the conditions that the POD can be
valid, and be an interpretation of its underlying structure. �DOI: 10.1115/1.3117202�
Introduction

New technologies in mechatronics and actuators have induced
ignificant enhancement in the complexity of modern engineering
ystems. The exact modeling of complex systems is often infea-
ible or expensive, and thus, deriving an optimal control policy
an be intractable. This challenge has increased the need to de-
elop computational cognitive models that will allow a system to
earn how to improve its performance over time in stochastic en-
ironments. Computational intelligence, or rationality, can be
chieved by modeling a system and the interaction with its envi-
onment through actions, perceptions, and associated costs �or re-
ards�. A widely adopted paradigm for modeling this interaction

s the completely observable Markov decision process.
The problem is formulated as sequential decision-making under

ncertainty in which an intelligent system �decision maker�, e.g.,
obot, automated manufacturing system, etc., is faced with the
ask to select those actions in several time steps �decision epochs�
o achieve long-term goals efficiently. This problem involves two

ajor subproblems: �a� the system identification problem and �b�
he stochastic control problem. The first is exploitation of the in-
ormation acquired from the system output to identify its behavior,
hat is, how a state representation can be built by observing the
ystem’s state transitions. The second is assessment of the system
utput with respect to alternative control policies, and selecting
hose that optimize specified performance criteria.

Reinforcement learning �RL� �1,2� has aimed to provide
imulation-based algorithms, founded on dynamic programming,
or learning control policies of complex systems, where exact
odeling is infeasible �3�, or the analytic computation may be too

igh and an approximation method is necessary. Although many
f these algorithms are eventually guaranteed to find suboptimal
olicies, their use of the accumulated data acquired over the learn-
ng process is inefficient, and they require a significant amount of
xperience to achieve good performance �4�. This requirement
rises due to the formation of these algorithms in deriving control
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policies without learning the system dynamics en route; that is,
they do not solve the system identification problem simulta-
neously.

Stochastic adaptive control provides a systematic treatment in
deriving optimal control policies in systems where exact modeling
is not available a priori. In this context, the evolution of the sys-
tem is modeled as a countable state controlled Markov chain
whose transition probability is specified up to an unknown param-
eter, taking values in a compact metric space; this problem has
been extensively reported in literature. Mandl �5� considered an
adaptive control scheme, providing a minimum contrast estimate
of the unknown model of a system at each decision epoch, and
then applying the optimal feedback control corresponding to this
estimate. If the system satisfies a certain “identifiability condi-
tion,” the sequence of parameter estimates converges almost
surely to the true parameter. Borkar and Varaiya �6� removed this
identifiability condition and showed that when the feasible space
of the unknown parameter is finite, the maximum likelihood esti-
mate of the parameter converges almost surely to a random vari-
able. Borkar and Varaiya �7�, and Kumar �8� examined the perfor-
mance of the adaptive control scheme of Mandl �5� without the
identifiability condition, but under varying degrees of generality
of the state, control, and model spaces, with the attention re-
stricted to the maximum likelihood estimate. Doshi and Shreve �9�
proved that if the set of allowed control laws is generalized to
include the set of randomized controls, then the cost of using this
scheme will almost surely equal to the optimal cost achievable if
the true parameter were known. Kumar and Becker �10� imple-
mented a novel approach to the adaptive control problem when a
set of possible models is given including a new criterion for se-
lecting a parameter estimate. This criterion is obtained by a delib-
erate biasing of the maximum likelihood criterion in favor of pa-
rameters with lower optimal costs. These results were extended by
assuming that a finite set of possible models is not available �11�.
Sato et al. �12–14� proposed a learning controller for Markovian
decision problems with unknown probabilities. The controller was
designed to be asymptotically optimal, considering a conflict be-
tween estimation and control for determination of a control policy
over an infinite time horizon. Kumar �15� and Varaiya �16� pro-
vided comprehensive surveys of the aforementioned research ef-
forts.

Certainty equivalence control �CEC� is a common approach in
addressing stochastic adaptive control problems. The unknown

system parameter is estimated at each decision epoch while as-
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uming that the decision maker selects a control action, as if the
stimated parameter is the true one. The major drawback of this
pproach is that the decision maker may get locked in a false
arameter when there is a conflict between learning and control.
orcing controls, different actions from those imposed by the cer-

ainty equivalence control, at some random decision epochs are
ften utilized to address this issue. The certainty equivalence con-
rol employing a forcing strategy is optimal in stochastic adaptive
ptimization problems with the average-cost-per-unit-time crite-
ion. In these adaptive control schemes, the best possible perfor-
ance depends on the on-line forcing strategy. Agrawal and
eneketzis �17� studied the rate of forcing to assess the perfor-
ance of a certainty equivalence control with forcing for the
ulti-armed bandit problem and the adaptive control of Markov

hains. Although the aforementioned research work has success-
ully led to asymptotically optimal adaptive control schemes when
he dynamics of the system are partly known, their underlying
ramework imposes limitations in implementing such schemes
ver a varying finite time horizon.

The predictive optimal decision-making �POD� learning model
18,19� aimed to address the state estimation and system identifi-
ation problem for a completely unknown system by learning in
eal time the system dynamics over a varying and unknown finite
ime horizon. It is constituted by a state-space representation that
an be used to improve system performance over time in the en-
ire state space. The POD model was employed in various appli-
ations toward making autonomous intelligent systems that can
earn to improve their performance over time in stochastic envi-
onments. In the cart-pole balancing problem �19�, an inverted
endulum was made capable of realizing the balancing control
olicy and turning into a stable system when it was released from
ny angle between 3 deg and �3 deg. In a vehicle cruise control
mplementation �19�, an autonomous cruise controller was devel-
ped to learn to maintain the desired vehicle’s speed at any road
rade between 0 deg and 10 deg. POD has also taken steps toward
evelopment engine calibration that can capture a steady-state and
ransient engine operation designated by the driver’s driving style
20–22�. While the engine runs the vehicle, it progressively per-
eives the driver’s driving style and eventually learns to operate in
manner that optimizes specified performance criteria, e.g., fuel

conomy, emissions, or engine acceleration.
In this paper, the convergence of POD to the stationary distri-

ution of the Markov state transitions is proven, hence, establish-
ng POD as a robust model. The paper provides the conditions
nder which POD can be valid �Assumptions 3.1–3.3�, and an
nterpretation of its underlying structure �Lemmas 4.1 and 4.2�.
his structure, constituting the fundamental aspect of the POD
tate-space representation, aims to reveal embedded properties in
stablishing the POD convergence �Theorem 4.1�.

The remainder of this paper proceeds as follows: Section 2
resents the steps toward modeling a dynamic system incurring
tochastic disturbances as a controlled Markov chain. Section 3
eviews the theory of controlled Markov chains and formulates
he POD model by imposing the conditions under which it is
alid. The embedded properties of the POD state-space represen-
ation and the convergence of the model are proved in Sec. 4.
onclusions are presented in Sec. 5.

Modeling Dynamic Systems as a Controlled Markov
hain
The stochastic system model, illustrated in Fig. 1, establishes

he mathematical framework for the representation of dynamic
ystems that evolve stochastically over time �23,24�, that is, when
ncurring a stochastic disturbance or noise at time k, wk, in their
ortrayal. The one-dimensional model is given by an equation of

he form
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sk+1 = fk�sk,ak,wk�, k = 0,1, . . . �1�

where sk is the system’s state that belongs to some state space S
= �1,2 , . . . ,N� , N�N, fk is a function that describes how the sys-
tem’s state is updated, and ak is the input at time k; ak represents
the control action chosen by the controller from some feasible
action set A�sk�, which is a subset of some control space A,
namely,

A = �sk�SA�sk� �2�

The sequence �wk ,k�0� is treated as a stochastic process, and
the joint probability distribution of the random variables
w0 ,w1 , . . . ,wk is unknown for each k. The system output is repre-
sented by

yk = hk�sk,vk�, k = 0,1, . . . �3�

where yk is the observation or system’s output, hk is a function
that describes how the system output is updated, and vk is the
measurement error or noise. The sequence �vk ,k�0� is also con-
sidered a stochastic process with unknown probability distribu-
tion.

We are interested in deriving a control policy so that a given
performance criterion is optimized over all admissible policies �.
An admissible policy consists of a sequence of functions

� = ��0,�1, . . .� �4�

where �k maps states sk into actions ak=�k�sk�, such that �k�sk�
�A�sk� and ∀sk�S.

The system’s state sk depends on the input sequence a0 ,a1 , . . .
as well as the random variables w0 ,w1 , . . ., Eq. �1�. Consequently,
sk is a random variable; the system output yk=hk�sk ,vk� is a func-
tion of the random variables s0 ,s1 , . . . and v0 ,v1 , . . ., and thus, is
also a random variable. Similarly, the sequence of control actions
ak=��sk� and �ak ,k�0� constitutes a stochastic process.

DEFINITION 2.1. The random variables s0, w0 ,w1 , . . ., and
v0 ,v1 , . . . , are addressed as basic random variables, since the
sequences �sk ,k�0� , �yk ,k�0�, and �ak ,k�0� are constructed
from them �23�.

We explore the conditions under which the stochastic system
model retains a property in imposing a condition directly on the
basic random variables. That is, whether the conditional probabil-
ity distribution of sk+1 given sk and ak are independent of previous
values of states and control actions. Suppose the control policy
�= ��0 ,�1 , . . .� is employed. The corresponding stochastic pro-
cesses �sk

� ,k�0�, �yk
� ,k�0�, and �ak

� ,k�0�, are defined by

sk+1
� = fk�sk

�,ak
�,wk�, s0

� = s0 �5�

yk
� = hk�sk

�,vk� �6�

Fig. 1 Stochastic system model schematic
and
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ak
� = �k�sk

�� �7�

uppose further that the values realized by the random variables
k and ak are known. These values are insufficient to determine the
alue of sk+1 since wk is not known. The value of sk+1 is statisti-
ally determined by the conditional distribution of sk+1, given sk
nd ak, namely,

Psk+1�sk,ak

� �· �sk,ak� �8�

For any occupied state space at time k+1, Sk+1, and from Eq.
5�, we have

Psk+1�sk,ak

� �Sk+1�sk,ak� = Pwk�sk,ak

� �Wk�sk,ak� �9�

here Wkª �w � fk�sk ,ak ,w��Sk� is the disturbance space at time
. The interpretation of Eq. �9� is that the conditional probability
f reaching the state space Sk+1 at time k+1, given sk and ak, is
qual to the probability of being at the disturbance space Wk at
ime k. Suppose that the previous values of the random variables
m and am, m�k−1 are known. Then, the conditional distribution
f sk+1 given these values will be

Psk+1�sk,ak

� �Sk+1�sk, . . . ,s0,ak, . . . ,a0�

= Pwk�sk,ak

� �Wk�sk−1, . . . ,s0,ak−1, . . . ,a0� �10�

The conditional probability distribution of Sk+1, given sk and ak,
an be independent of the previous values of states and control
ctions if it is guaranteed that for every control policy �, Wk is
ndependent of the random variables sm and am, m�k−1. Kumar
nd Varaiya �23� proved that this property is imposed under the
ollowing assumption.

ASSUMPTION 2.1. The basic random variables s0 ,w0 ,w1 , . . . and
0 ,v1 , . . . are all independent.
Assumption 2.1 imposes a condition directly to the basic ran-

om variables, which eventually yields that the state sk+1 depends
nly on sk and ak. Moreover, the conditional probability distribu-
ions do not depend on the control policy �, and thus, the super-
cript � can be dropped

Psk+1�sk,ak
�sk+1�sk, . . . ,s0,ak, . . . ,a0� = Psk+1�sk,ak

�sk+1�sk,ak�

�11�

A stochastic process �sk ,k�0� satisfying the condition of Eq.
11� is called a “Markov process” and the condition is addressed
s a “Markov property.”

DEFINITION 2.2. A Markov process is a random process �sk ,k
0�, with the property that gives the values of the process from

ime zero up to the current time. The conditional probability of the
alue of the process at any future time depends only on its value
t the current time. That is, the future and past are conditionally
ndependent given the present �25�.

DEFINITION 2.3. When the state of a Markov process is discrete,
hen the process is called a Markov chain �26�.

Consequently, under Assumption 2.1, a dynamic system incur-
ing stochastic disturbances can be represented by a controlled

arkov chain. A stochastic system is specified by the state equa-
ion fk, k�0, the observation equation hk, k�0, and the probabil-
ty distribution of the basic random variables s0 ,w0 ,w1 , . . . and
0 ,v1 , . . .. A controlled Markov chain description of a stochastic
ystem is specified by the transition probabilities Psk+1�sk,ak

�· � ·�, the
bservation equation hk, k�0, and the probability distribution of
he independent basic random variables s0 ,v0 ,v1 , . . .. The obser-
ation function and random variables can alternatively be repre-
ented by some cost functions Rk�sk ,ak�, corresponding to a sys-
em’s performance criterion. These functions provide the cost
ssociated with the state being visited by the chain at time k, sk
i�S, when the control action ak is selected.
We consider the problem of deriving an optimal control policy
or a completely unknown dynamic system incurring stochastic

ournal of Dynamic Systems, Measurement, and Control
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disturbances by learning the transition probabilities and cost func-
tions. While the system is evolving over time, the goal is to realize
a control policy that optimizes a specified performance criterion,
assuming the system’s performance can be completely measured.
The problem is formulated as a sequential decision-making prob-
lem under uncertainty. The decision-making process occurs at
each sequence of decision epochs k=0,1 ,2 , . . . ,M, M �N. At
each epoch, the controller observes a system’s state sk= i�S, and
executes an action ak�A�sk�, from the feasible set of actions
A�sk��A at this state. At the next epoch, the system transits to the
state sk+1= j�S imposed by the conditional probabilities P�sk+1
= j �sk= i ,ak�, designated by the transition probability matrix
P�· � ·�. The conditional probabilities of P�· � ·�, P :S�A→ �0,1�,
satisfy the constraint

�
j=1

N

P�sk+1 = j�sk = i,ak� = 1 �12�

Following this state transition, the controller receives a cost asso-
ciated with the action ak, R�sk= i ,ak�, R :S�A→R.

A control policy � determines the probability distribution of the
state process �sk ,k�0� and the control process �ak ,k�0�. Differ-
ent policies will lead to different probability distributions. In op-
timal control problems, the objective is to derive the optimal con-
trol policy that minimizes the accumulated cost incurred at each
state transition per decision epoch. If a policy � is fixed, the cost
incurred by � when the process starts from an initial state s0 and
up to the time horizon M is

J��s0� = �
k=0

M−1

Rk�sk,ak�, ∀ sk � S, ∀ ak � A�sk� �13�

The accumulated cost J��s0� is a random variable since sk and
ak are random variables. Hence the expected accumulated cost of
a control policy is given by

J��s0� = E
sk�S

ak�A�sk�

	�
k=0

M−1

Rk�sk,ak�
 = E
sk�S

�k�A�sk�

	�
k=0

M−1

Rk�sk,�k�sk��

�14�

where the expectation is, with respect to the probability distribu-
tion of �sk ,k�0� and �ak ,k�0�, determined by the policy �.
Consequently, the control policy that minimizes Eq. �14� is de-
fined as the optimal control policy ��.

3 Finite State Controlled Markov Chains

3.1 Classification of States. The evolution of the system is
modeled as a controlled Markov chain with a finite state space S
and control action space A. This evolution �sk ,k�0� can be seen
as the motion of a notional particle, which jumps between the
states i�S of the state space S= �1,2 , . . . ,N�, N�N, at each de-
cision epoch, while a certain cost incurs at each jumping.

DEFINITION 3.1. The chain �sk ,k�0� is called homogeneous
�27� if

Pij�sk+1 = j�sk = i� = Pij�s1 = j�s0 = i�, ∀ k � 0, ∀ i, j � S
�15�

The classification of the states in a Markov chain aims to pro-
vide insight toward modeling appropriately the evolution of a con-
trolled dynamic system �27�.

DEFINITION 3.2. A Markov state i�S is called recurrent �or
persistent�, if

P�sk = i� = 1

for some
P�k � 0�s = i� = 1 �16�
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hat is, the probability of eventually returning to state i, having
tarted from i, is 1 �28�.

The first time the chain �sk ,k�0� visits a state i�S is given by

T1�i� ª min�k � 1:sk = i� �17�

1�i� is called the “first entrance time” or “first passage time” of
tate i. It may happen that sk� i for any k�1. In this case, T1�i�
min �, which is taken to be �. Consequently, if the chain �sk�
ever visits state i for any time k�1, T1�i�=�. Given that the
hain starts in state i, the conditional probability that the chain
eturns to state i in finite time is

f ii ª P�T1�i� � ��s0 = i� �18�

onsequently, for a recurrent state i, f ii=1. Furthermore, if the
xpected time for the chain to return to a recurrent state i is finite,
he state is said to be a positive recurrent; otherwise, the state is
aid to be a null recurrent. The nth entrance time of state i is given
y

Tn�i� ª min�k � Tn−1�i�:sk = i� �19�

DEFINITION 3.3. The mean recurrence time �i of a state i is
efined as �28�

�i ª E�T1�i��s0 = i� �20�

DEFINITION 3.4. The period d�i� of a state i is defined by

d�i� ª gcd�n:Tn�i� 	 0� �21�
hat is, the greatest common divisor of the decision epochs at
hich return is possible. The state i is periodic if d�i�	1 and
periodic if d�i�=1 �28�.

DEFINITION 3.5. A Markov state is called ergodic, if it is a
ositive recurrent and aperiodic �27�.

DEFINITION 3.6. If the chain started from state i and visits state
j, that is, Pij

�n��sn= j �s0= i�	0 for some n	0, it is said that i
ommunicates with j, and it is denoted i→ j. It is said that i and j
ntercommunicate if i→ j and j→ i, and it is denoted i↔ j �28�.

DEFINITION 3.7. A Markov chain is called irreducible if all
tates intercommunicate in a finite number of decision epochs,
hat is, Pij

�n��sn= j �s0= i�	0, ∀i, j�S �26�.
The behavior of a Markov chain after a long time k has elapsed

s described by the stationary distributions and the limit theorem.
he sequence �sk ,k�0� does not converge to some particular
tate i�S since it enjoys the inherent random fluctuation, which
s specified by the transition probability matrix. Subject to certain
onditions, the distribution of �sk ,k�0� settles down to a station-
ry one; that is, the evolution of the Markov chain will be visiting
ach state with a constant probability in long term.

DEFINITION 3.8. The vector � is called a stationary distribution
f the chain if � has entries �
i , i�S� such that �28�

�a� 
i�0 for all i, and �i�S
i=1
�b� �=� ·P, that is, 
i= �

j�S


 j ·P ji, where P ji is the transition

probability P ji�sk+1= i �sk= j�, for all i

If the transition probability matrix of a Markov chain P�· � ·� is
aised to a higher power, the resulting matrix is also a transition
robability matrix, and the elements in any given column start
onverging to the same number �29�. This property can be illus-
rated further in the following simple example. Let us consider a

arkov chain with two states S= �1,2�, and a transition probabil-
ty matrix

P = �0.7 0.3

0.4 0.6
� �22�

This matrix represents the one-step transition probabilities of
he states. Consequently, if the chain is at state 1, there is a prob-

bility of 0.7 that it will remain there and 0.3 that it will transit to

41011-4 / Vol. 131, JULY 2009
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state 2. Similarly, if the chain is at state 2, there is a probability of
0.4 that it will transit to state 1 and 0.6 that it will remain at state
2. If this matrix is raised to the second order, the resulting matrix
yields the two-step transition probabilities

P2 = �0.7 0.3

0.4 0.6
� · �0.7 0.3

0.4 0.6
� = �0.61 0.39

0.52 0.48
� �23�

The elements of the two-step transition probability matrix es-
sentially return the conditional probability that the chain will tran-
sit to a particular state within two decision epochs. Consequently,
the value P12

2 �sk+1=2 �sk=1�=0.39 in the above matrix is the con-
ditional probability that the chain will go from state 1 to state 2 in
two decision epochs. If the one-step transition probability matrix
is raised to the eighth power, it is noticed that the elements in any
given column start converging to 0.57 and 0.43, respectively,
namely,

P8 = �0.5715 0.4285

0.5714 0.4286
� �24�

These numbers constitute the stationary distribution of the chain,
vector �, that is,

� = �
1


2
� = �0.57

0.43
� �25�

The limit theorem states that if a chain is irreducible with posi-
tive recurrent states, the following limit exists:


 j = lim
n→�

Pij
n �sk+1 = j�sk = i� = P�sn = j� �26�

THEOREM 3.1 �“LIMIT THEOREM”�. An irreducible Markov chain
has a stationary distribution � if and only if all the states are
positive recurrent. Furthermore, � is the unique stationary distri-
bution and is given by 
i=�i

−1 for each i�S, where �i is the
mean recurrence time of state i �28�.

Stationary distributions have the following property:

� = � · Pn, ∀ n � 0 �27�

The accumulated cost J��s0�, Eq. �14�, can be readily evaluated
in terms of the stationary probability distributions as follows:

J��s0� = �
k=0

M


i · Rk�sk = i,ak�

∀i � S, ∀ ak � A�sk� �28�

where 
i is the stationary probability of the visiting state i.

3.2 Formulation of the Predictive Optimal Decision-
Making Model. The POD learning model consists of a new state-
space system representation. This representation accumulates
gradually enhanced knowledge of the system’s transition from
each state to another in conjunction with actions taken for each
state. While the system interacts with its environment, the POD
model learns the transition probabilities of the Markov state tran-
sitions and associated cost functions. This realization determines
the stationary distribution of the Markov chain that can then be
used in deriving the optimal control policy through Eq. �28�.

The model considers systems that their evolution can be mod-
eled as a controlled Markov chain under the following
assumptions:

ASSUMPTION 3.1. The Markov chain is homogeneous.
ASSUMPTION 3.2. The Markov chain is ergodic, that is, the

states are positive recurrent and aperiodic.
ASSUMPTION 3.3. The Markov chain is irreducible. Conse-

quently, each state i of the Markov chain intercommunicates with

each other i↔ j, ∀i, and j�S, that is, each system’s state can be
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eached with a positive probability from any other state in finite
ecision epochs.

The new state-space representation defines the POD domain S̃,
hich is implemented by a mapping H from the Cartesian product
f the finite state space and action space of the Markov chain
sk ,k�0�

H:S � A � S → S̃ �29�

here S= �1,2 , . . . ,N�, N�N denotes the Markov state space, and
=�sk�SA�sk�, ∀sk= i�S stands for the finite action space. Each

tate of the POD domain represents a Markov state transition from
k= i�S to sk+1= j�S for all k�0, that is,

S̃ ª	 s̃k+1
ij �s̃k+1

ij 
 sk = i →
��sk��A�sk�

sk+1 = j,�
j=1

N

p�sk+1 = j�sk = i,ak�

= 1,N = �S�

∀i, j � S, ∀ ��sk� � A�sk� �30�

EFINITION 3.9. The mapping H generates an indexed family of

ubsets, S̃i, for each Markov state sk= i�S, defined as predictive
epresentation nodes �PRNs�. Each PRN is constituted by the set

f POD states s̃k+1
ij � S̃i representing the state transitions from the

tate sk= i�S to all other Markov states

S̃i ª �s̃k+1
ij �sk = i →

��sk��A�sk�
sk+1 = j, ∀ j � S� �31�

RNs partition the POD domain insofar as the POD underlying
tructure captures the state transitions in the Markov domain,
amely,

S̃ = �s̃k
ij�S̃i

S̃i �32�

ith

�s̃k
ij�S̃i

S̃i = � . �33�

RNs, constituting the fundamental aspect of the POD state rep-
esentation, provide an assessment of the Markov state transitions
long with the actions executed at each state. This assessment
ims to establish a necessary embedded property of the new state
epresentation so as to consider the stationary distribution in long
erm.

Convergence of POD Model
While the system interacts with its environment, the POD
odel learns the system dynamics in terms of the Markov state

ransitions. The POD state representation attempts to provide a
rocess in realizing the sequences of state transitions that occurred
n the Markov domain, as infused in PRNs. The different se-
uences of the Markov state transitions are captured by the POD
tates. We show that this realization determines the stationary dis-
ribution of the Markov chain.

DEFINITION 4.1. Given a set C�R and a variable x, the indica-
or function, denoted by IC�x�, is defined by

IC�x� ª 	1,x � C

0,x � C

 �34�

LEMMA 4.1. Each PRN is irreducible, that is, S̃i↔S̃ j, ∀i, j
S.
Proof. At the decision epoch k, the state transition from i to j

orresponds to the s̃k
ij inside the PRN Si. The next state transition

ill occur from the state j to any other Markov state. Conse-
uently, by Definition 3.9, the next state transition will occur in

j. By Assumption 3.3, all states intercommunicate with each
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other, that is, i↔ j, ∀i, j�S. So PRNs intercommunicate and thus
they are irreducible. The lemma is proved. �

The number of visits of the chain to the state j�S between two
successive visits to state i�S at the decision epoch k=M, that is,

the number of visits of the POD state s̃M
ij � S̃, is given by

V�s̃M
ij � ª �

k=1

M

I�sk=j���T1�i��k��sk� �35�

where T1�i� is the time of the first return to state i�S.
DEFINITION 4.2. The mean number of visits of the chain to the

state j�S between two successive visits to state i�S is

V̄�s̃M
ij � ª E�V�s̃M

ij ��sk = i�

or

V̄�s̃M
ij � ª �

k=1

M

P�sk = j,T1�i� � k�s0 = i� �36�

DEFINITION 4.3. The mean recurrence time �S̃i
that the chain

spends at the PRN S̃i is

�S̃i
ª �

j�S

V̄�s̃M
ij � = �

j�S
�
k=1

M

P�sk = j,T1�i� � k�s0 = i� �37�

LEMMA 4.2. The mean recurrence time of each PRN S̃i, �S̃i
, is

equal to the mean recurrence time of state i�S, �i.
Proof. It was shown �Lemma 3.1� that each time the Markov

chain transits from one state i�S to a state j�S, there is a cor-
responding transition from the PRN Si to S j. Consequently, the
number of visits of the chain to the state i�S is equal to the
number of visits to the PRN Si. Taken the expectation of this
number yields the mean recurrence time, by Definition 4.3. The
lemma is proved. �

PROPOSITION 4.1. If A, B, and C are some events and

P�A�B � C� = P�A�B� �38�

then

P�A � C�B� = P�A�B� · P�C�B� �39�

Proof.

P�A � C�B� =
P�A � B � C�

P�B�
�40�

using the identity P�A �B� ·P�B�=P�A�B�, Eq. �40� yields

P�A�C � B� · P�C � B�
P�B�

=
P�A�B� · P�C � B�

P�B�

by using Eq. �38�

=
P�A�B� · P�C � B�

P�B�
=

P�A�B� · P�C�B� · P�B�
P�B�

= P�A�B� · P�C�B�

�
It remains to present the main result of the POD learning

model, namely, that the realization of the sequences of state tran-
sitions that occurred in the Markov domain as infused by the
PRNs determines the stationary distribution of the Markov chain.

THEOREM 4.1. The POD state representation generates the sta-
tionary distribution � of the Markov chain. Moreover, the station-
ary probability is given by the mean recurrence time of each PRN

S̃i, 
i=�S̃i

−1
.

Proof. Since the chain is ergodic with irreducible states, it is
guaranteed that the chain has a unique stationary distribution, and
for each state i�S the stationary probability is equal to 
i=�i

−1
�Theorem 3.1�
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i · �i=

=
i · �S̃i

y Lemma 4.2

=�
j�S

�
k=1

M

P�sk = j,T1�i� � k�s0 = i� · P�s0 = i� �41�

=�
j�S

�
k=1

M

P�sk = j,T1�i� � k,s0 = i� �42�

y using the identity P�A �B� ·P�B�=P�A�B�.
For k=1, Eq. �42� yields

�
j�S

P�sk = j,T1�i� � 1,s0 = i� = 1 �43�

or k�2, Eq. �41� yields

�
j�S

�
k=1

M

P�sk = j,T1�i� � k�s0 = i� · P�s0 = i�

=�
j�S

�
k=1

M

P�sk = j,sm � i for 1 � m � k − 1,s0 = i� �44�

Using Proposition 4.1 and since P�sk= j �sm� i for 1�m�k
1,s0= i�=P�sk= j �s0= i�, Eq. �44� becomes

�
j�S

�
k=1

M

P�sk = j�s0 = i� · P�sm � i for 1 � m � k − 1�s0 = i� · P�s0

= i� = �
j�S

�
k=1

M

P�sk = j�s0 = i� · P�sm � i for 1 � m � k

− 1,s0 = i� = �
k=1

M

��
j�S

P�sk = j�s0 = i�� · P�sm

� i for 1 � m � k − 1,s0 = i� = �
k=1

M

P�sm � i for 1

� m � k − 1,s0 = i� �45�

y using the identity P�A�B�=P�A�+P�B�−P�A�B�, Eq. �45�
ecomes

�
k=1

M

P�s0 = i� + P�sm � i for 1 � m � k − 1� − P�sm � i for 0

� m � k − 1�

ince the Markov chain is homogeneous �Assumption 3.1�

=�
k=1

M

�P�s0 = i� + P�s0 � i� + P�sm � i for 0 � m � k − 3� − P�sm

� i for 0 � m � k − 1��

=�
k=1

M

�P�s0 = i� + P�s0 � i�� + lim
k→�

�P�sm � i for 0 � m � k − 3��

− lim
k→�

�P�sm � i for 0 � m � k − 1�� �46�

ince the Markov states are irreducible �Assumption 3.3�

lim
k→�

�P�sm � i for 0 � m � k − 3�� = 0
nd
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lim
k→�

�P�sm � i for 0 � m � k − 1�� = 0

Equation �46� becomes

�
k=1

M

�P�s0 = i� + P�s0 � i�� = �
k=1

M

�1� = 1

We have shown that


i · �i = 
i · �S̃i
= 1

Consequently, the stationary distribution is given by the mean

recurrence time of each PRN S̃i, �S̃i


i =
1

�S̃i

�47�

�

5 Concluding Remarks
The POD model aimed to address the state estimation and sys-

tem identification problem for a completely unknown system by
learning in real time the system dynamics when the system’s per-
formance can be measured. The model possesses a structure that
enables a convergent behavior of the conditional probabilities in-
fused by the POD state-space representation to the stationary dis-
tribution. This behavior is desirable in the effort toward making
autonomous intelligent systems that can learn to improve their
performance over time in stochastic environments. The implemen-
tation of the POD model along with a lookahead control algorithm
in various applications to date cited in the Introduction support
these theoretical results.

The major advantage of the POD model, compared with the
stochastic adaptive control approaches, is that it can solve the
state estimation and system identification problem over a varying
and unknown finite time horizon. This property arises due to the
structure of the POD model in addressing the system identification
problem separately from the stochastic one. Under the assumption
that the basic random variables are all independent, the transition
probabilities do not depend on the control policy. Consequently,
system identification can be independent of the control policy im-
posed by the controller, and be addressed separately.
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