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Abstract— The increasing urgency to extract additional
efficiency from hybrid propulsion systems has led to the devel-
opment of advanced power management control algorithms.
In this paper, we address the problem of online optimization
of the supervisory power management control in parallel hybrid
electric vehicles (HEVs). We model HEV operation as a controlled
Markov chain and show that the control policy yielding the Pareto
optimal solution minimizes online the long-run expected average
cost per unit time criterion. The effectiveness of the proposed
solution is validated through simulation and compared with the
solution derived with dynamic programming using the average
cost criterion. Both solutions achieved the same cumulative fuel
consumption demonstrating that the online Pareto control policy
is an optimal control policy.

Index Terms— Hybrid electric vehicles (HEVs), multiobjective
optimization, Pareto control policy, power management control,
stochastic optimal control.

I. INTRODUCTION

A. Motivation

THE necessity for environmentally friendly vehicles, in
conjunction with increasing concerns regarding climate

change and U.S. dependency on foreign oil, has led to
significant investment in enhancing the propulsion portfolio
with new technologies. Hybrid electric vehicles (HEVs) have
attracted considerable attention due to their potential to
reduce petroleum consumption and greenhouse gas emissions.
Implementing online a power management control algorithm
to distribute the power demanded by the driver optimally to
the available subsystems, e.g., the internal combustion engine,
motor, generator, and battery, constitutes a challenging control
problem and has been the object of intense study for the last
decade [1].

B. Related Work

In the late 1990s, Kolmanovsky et al. [2] reviewed some
emerging approaches at that time for the energy management
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of advanced powertrain configurations and presented a case
study including a parallel HEV with a turbocharged diesel
engine. The objective was to optimize fuel consumption
and emissions (e.g., NOx , CO, HC, and PM). The resulting
control policy operated the engine at higher speeds and loads
only, where the engine exhibited higher efficiency. Since then,
significant research efforts have focused on optimizing
the power management control in parallel HEVs.
He and Hodgson [3], [4] presented one of the first models for
simulation of parallel HEVs with a specific rule-based control
strategy aimed at increasing battery state-of-charge (SOC)
recovery.

A significant amount of work has been proposed on opti-
mizing the power management control in parallel HEVs using
the deterministic formulation of dynamic programming (DP),
thus deriving an optimal control policy for a given driving
cycle. Lin et al. [5] used DP to compute the optimal control
policy in a parallel HEV to minimize fuel consumption and
selected emission species over a given driving cycle. The
derived control policy was implemented online through the
power split ratio PSR = Peng/Preq, where Peng is the engine
power and Preq is the power demanded from the driver.
Four operating modes were defined: 1) motor-only (PSR = 0);
2) engine-only (PSR = 1); 3) power-assist (0 < PSR < 1);
and 4) recharging modes (PSR > 1).

The deterministic formulation of DP has been used to
benchmark the fuel economy of HEVs by providing the
maximum theoretical efficiency over a given driving cycle.
DP has been extended to the stochastic problem formulation by
considering a family of driving cycles. Lin et al. [6] proposed
a stochastic DP (SDP) approach using the discounted cost
criterion where the one-stage cost was the weighted sum of
fuel consumption, NOx , and particulate matter emissions, with
a penalty for SOC deviation. The optimal control policy was
derived offline using the policy iteration method for seven
different driving cycles. It was shown that SDP achieves
better performance most of the time than the rule-based
implementation of the control policy derived using DP for
each particular driving cycle.

The first attempt to use the shortest path formulation of
the power management control problem using SDP (SP-SDP)
was in [7]. The method was illustrated on a parallel HEV truck
model, and it was shown that there are two advantages of the
SP-SDP compared with the discounted cost criterion.

1) A single tuning parameter is needed to trade off fuel
economy and emissions versus battery SOC deviation,
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as compared with two parameters in the discounted cost
criterion.

2) The policy derived using SP-SDP demonstrates better
fuel and emission minimization while also achieving
better SOC control when the vehicle is turned OFF.

Opila et al. [8] presented a method to account for drivability
metrics in their proposed power management control algo-
rithm also using the SP-SDP formulation. It was shown that
this method yields up to 10% fuel economy improvement
on a representative parallel HEV when compared with a
simpler instantaneous optimization formulation. Subsequently,
Tate et al. [9] used SP-SDP to address minimization of a
weighted sum of fuel consumption and tailpipe emissions
for an HEV equipped with a dual-mode electrically variable
transmission. The unique aspects of this paper included an
electrically variable transmission and catalytic converter and a
state-censoring technique to achieve short computation time.
The optimal solution was derived offline by solving a linear
program demonstrating more than 50% reduced tailpipe emis-
sions compared with a baseline controller.

Although DP can provide the optimal solution in both
the deterministic and stochastic formulations of the power
management control problem, the computational burden asso-
ciated with deriving the optimal control policy prohibits online
derivation in vehicles. To address these issues, research efforts
have been concentrated on developing online algorithms. Such
algorithms consist of an instantaneous optimization problem
that accounts for storage system SOC variation through the
equivalent fuel consumption (EFC). The latter is evaluated
by considering average energy paths leading from the fuel to
the energy storage of the electrical path. Paganelli et al. [10]
introduced the equivalent consumption minimization strat-
egy (ECMS) that optimizes the power split and the gear
ratio while assigning a nonlinear penalty function for
SOC deviation in a parallel HEV. Sciarretta et al. [11]
proposed an ECMS algorithm in which EFC is evaluated
under the assumption that every variation in SOC will be
compensated in the future by the engine running at the current
operating point. The simulation results illustrated that the
proposed algorithm can keep deviations of SOC from the target
value at a low level. Musardo et al. [12] presented an adaptive
ECMS (A-ECMS) algorithm that periodically computes the
equivalence factor and refreshes the control parameters based
on the current driving conditions to maximize fuel economy
in a parallel HEV. Pisu and Rizzoni [13] compared three
algorithms that can be implemented online: a rule-based
algorithm, an A-ECMS, and an H∞ control. The simulation
results showed that A-ECMS promises superior robustness
and drivability, while it achieves better fuel economy results
compared with the rule-based and H∞ control algorithms.

There has also been a significant amount of work using
model predictive control (MPC) to address this problem
but mainly in power split HEVs [14] and series HEVs
(see [15], and the references therein). Other recent efforts
have focused on incorporating external information, e.g., des-
tination route. Johannesson et al. [16] introduced a control
algorithm enhanced with information supplied by the vehicle
navigation system. Ambuhl and Guzzella [17] presented an

ECMS-based algorithm using information received from
a global positioning system. To address variation in
fuel consumption for different driving styles [18], [19],
Huang et al. [20] recently developed a statistical approach
to distinguish automatically driving styles in HEVs.

C. Contribution of This Paper

Although previous research reported in the literature has
aimed at enhancing our understanding of power management
control optimization in parallel HEVs, deriving online an
optimal solution for different driving styles still remains a chal-
lenging control problem. This paper has two main objectives:

1) to provide a rigorous model of the power management
control problem within a stochastic formulation;

2) to develop the theoretical framework that can yield an
optimal solution online for any given driving style that
minimizes the long-run expected average cost criterion.

A preliminary effort was reported in [21] where the potential
of implementing a Pareto control policy was investigated.

The contributions of this paper are as follows:
1) the analytical formulation for modeling HEV operation

as a controlled Markov chain;
2) the development of a multiobjective optimization frame-

work that can be used to derive the optimal control
policy;

3) the implementation of the Pareto control policy that
minimizes the long-run expected average cost criterion
and the conditions under which this policy exists.

D. Comparison With Related Work

We now discuss how the proposed solution is different from
the other solutions reported in the literature. Some of the
previous work has been focused on deriving an optimal control
policy using DP for a given vehicle speed profile [5], [22] with
respect to the total cost criterion. Then, the control policy is
implemented online to account for other vehicle speed profiles
through rules resulting in suboptimal performance. To address
the latter, the stochastic formulation of DP is used to derive
the optimal control policy offline using different optimality
criteria. The discounted cost criterion and policy evaluation
were used in [6] and linear programming in [9]. In all the
cases, the control policy is derived offline and is optimal either
for specific driving cycles or a family of them.

Some online approaches [10]–[13], on the other hand,
address this problem through an instantaneous optimization
problem. The main aspects of these algorithms are concerned
with the self-sustainability of the electrical path, which must
be guaranteed for the entire driving cycle. These algorithms
require some a priori knowledge of the vehicle speed profile.
Using MPC, an optimization problem is formulated to
derive the optimal control policy for a receding horizon.
Wang and Boyd [23] determined that the shortcoming
of MPC is that it can only be used in applications with slow
dynamics, where the sample time is measured in seconds
or minutes and they described a collection of methods for
improving the speed of MPC using online optimization.
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The proposed solution in this paper is different than the
approaches above as follows. The evolution of the HEV state,
rather than the driver’s power demand, is shown to be a
controlled Markov chain. Thus, the driver is considered as
an unknown disturbance to the system, i.e., the future driver
behavior is unknown, and it is assumed that the pedal position,
e.g., acceleration or brake, is a sequence of independent
random variables, which takes values in a given finite set as
discussed in Section III-A. Based on this assumption, it can be
shown [24, Lemma 6.6, p. 18] that the evolution of the system
is a controlled Markov chain. This allows us to describe the
evolution of the state of the system (HEV) by means of the
one-step transition probability, and thus we can perform
the following:

1) use standard results for the analysis of the long-run
average cost criterion (see [25, p. 75]);

2) use DP to solve the stochastic control problem and
compare it with our solution.

The solution of the proposed multiobjective optimization
framework reveals an equilibrium operating point among
the subsystems for all different values of the disturbance,
i.e., for any driver’s driving style, which is Pareto efficient
(Lemma 11). If all the subsystems operate at this equilibrium
point for each realization of the HEV state, then the long-
run expected average cost is minimized (Theorem 12). The
Pareto control policy that reveals the equilibrium operating
point for each subsystem can be implemented online, and it
is an optimal policy with respect to the average cost criterion
for any different driver.

There are still open issues, however, with practical impli-
cations. First, the proposed solution optimizes the efficiency
for any driver using the long-run expected average cost
criterion. Namely, being able to derive the optimal control
policy online for a specific trip (e.g., total cost criterion from
point A to point B) still remains an open issue. Second,
the proposed solution uses the efficiency maps of the engine
and the motor corresponding to their steady-state operation.
Although the supervisory controller in HEVs designates the
nominal set points for each subsystem for the lower level
controllers, the implications of the solution in transient oper-
ation need further investigation. One potential approach to
address this is to learn the transient operation of the system
corresponding to the driver’ driving style and account for it as
discussed in [26]–[28].

Multiobjective optimization has been used in the litera-
ture to address control problems with conflicting objectives.
Logist et al. [29] proposed a generic solution strategy for
multiple objective mixed-integer optimal control problems.
To tackle the multiple objective functions, a scalarization
method, similar to the one used here, was exploited to
transform the original optimization problem into a series of
parametric single objectives. Logist et al. [30] investigated
efficient multiple objective strategies with fast deterministic
approaches for dynamic optimization and exploited techniques
aimed at efficiently and accurately generating the Pareto
efficiency sets. The Pareto efficiency set in the proposed
solution here is generated offline and stored in a lookup
table.

E. Organization of This Paper

The remainder of this paper proceeds as follows.
In Section II, we introduce our notation and formulate the
problem. In Section III, we present the analytical offline
solution to the stochastic optimal control problem, develop
the multiobjective optimization framework, and introduce the
Pareto control policy that minimizes the average cost criterion.
In Section IV, we present the DP simulation-based solution
for the average cost criterion and compare it with the solution
of the Pareto control policy in a parallel HEV for different
driving cycles. Finally, in Section V, we present concluding
remarks.

II. PROBLEM FORMULATION

A. Notation

In our analysis, we denote random variables with upper-
case letters and their space of realizations by script letters.
Subscripts denote time, and subscripts in parentheses denote a
subsystem; for example, Xt (q) denotes the random variable of
the subsystem q at time t . For N subsystems, the shorthand
notation Xt (1:N) denotes the vector (Xt (1), Xt (2), . . . , Xt (N))

T .
P(·) is the transition probability matrix, and E[·] is the

corresponding expectation of a random variable. For a con-
trol policy π, we use Pπ (·), Eπ [·], and βπ to denote that
the transition probability matrix, expectation, and stationary
distribution depend on the choice of the control policy π .

B. Power Management Control Problem

For this paper, we used a parallel HEV with a diesel
engine and automatic transmission. The electric machine
(motor/generator) is coupled to the output shaft of the engine
through a clutch and gear ratio before the transmission
(pretransmission configuration). In this configuration, both the
engine and electric motor can provide the power demanded
by the driver, either separately or in combination. Because
the engine and motor speed depend on the vehicle speed,
the available controllable variables are the engine and motor
torque. The objective of the power management controller is
to guarantee the self-sustainability of the electrical path and
distribute the power demanded by the driver optimally between
the engine and the motor to maximize HEV efficiency. The
controller observes the SOC of the battery, the engine, and
motor speed, and then computes the optimal engine and motor
torque, T ∗

eng and T ∗
mot, based on the power demanded by the

driver, Pdriver.

C. Modeling HEV Operation as a Controlled Markov Chain

We consider the HEV as a system with a finite state space,
S ⊂ Rn , and a finite control space, U ⊂ Rm, n, m ∈ N,
from which the power management controller selects control
actions. In our formulation, the state space is the entire range
of the engine and motor speed, S ⊂ R2, where the engine and
motor speed progress in a compact subset of R. The control
space U is the vector of engine and motor torque, U ⊂ R2;
however, it can be expanded to also include gear selection,
depending on the HEV configuration.
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Fig. 1. One-on-one mapping indicating the maximum allowable charg-
ing power PSOC to be provided to the battery until it reaches the target
SOC (0.7 in this case).

Fig. 2. Control scheme for the power management control of the HEV.

In [5]–[9] and [11] as discussed in the previous section,
the SOC of the battery has been used as a component of
the state. However, this may lead to a significantly large
state space with implications for increasing the computational
burden associated with solving the problem. In our approach,
SOC is correlated to an additional power demand by means of
one-on-one mapping. This mapping corresponds to the max-
imum allowable charging power (Fig. 1) of the battery with
respect to the SOC as designated by the battery specifications.
Thus, based on the current SOC, the mapping indicates the
maximum allowable charging power PSOC to be provided to
the battery until it reaches the target SOC. If the current SOC,
however, is above the target value (0.7 in this case), then
PSOC is assigned to be equal to zero. PSOC is added to the
driver’s power demand Pdriver (only when Pdriver > 0) as
shown in Fig. 2. However, the maximum allowable charging
power will change over the lifecycle of the battery, which will
have an impact on maintaining the SOC close to its target
value. One potential approach to address this issue is to use
related data from the manufacturer that can yield the change
of the maximum allowable charging power with respect to the
lifecycle of the battery and account for it.

The evolution of the state occurs at each of a sequence
of stages t = 0, 1, . . . , and it is portrayed by the sequence
of the random variables Xt (1:2) = (Xt (1), Xt (2)))T =
(Neng, Nmot)T ∈ S and Ut (1:2) = (Ut (1), Ut (2)))T =
(Teng, Tmot)T ∈ U , corresponding to the HEV state

(engine and motor speed) and control action (engine torque
and motor torque), respectively. A state-dependent constraint
is incorporated in our problem formulation, i.e., for each state
Xt (1:2) = i ∈ S, a nonempty set C(i) ⊂ U of admissible
control actions (engine and motor torque) is given. The latter
implies that at each state i ∈ S, the control action set C(i) ⊂ U
should include only the control actions that satisfy the physical
constraints of the engine and the motor.

Definition 1: The set of admissible state/action pairs is
defined as

# : = {(Xt (1:2), Ut (1:2))|Xt (1:2) = i ∈ S and Ut (1:2) ∈ C(i)}
where # is the intersection of a closed subset of R2 ×R2 with
the set S × U , that is, # is closed with respect to the induced
topology on S × U , and thus it is compact. It follows that for
each state i ∈ S, C(i) is compact.

Definition 2: The function µ is defined that maps the state
space to the control action space µ : S → U such that
µ(i) ∈ C(i),∀i ∈ S.

Let $ be the set of all the sequences π = {µ(1),
µ(2), . . . , µ(|S|)}. Each sequence in $ is called a stationary
control policy and operates as follows. Associated with each
state, i ∈ S is the function µ(i) ∈ C(i). If at any time,
the power management controller finds the system in state i ,
then the controller always chooses the action based on the
function µ(i). A stationary policy depends on the history of the
process only through the current state, and thus to implement
a stationary policy, the controller needs only to know the
current state of the system; past states and control actions
are irrelevant. The advantages for the implementation of a
stationary policy are apparent as it uses the storage of less
information than required to implement a general policy.

At each stage t , the controller observes the engine and
motor speed Xt (1:2) = i ∈ S, which is a function of the
vehicle speed, and executes an action Ut (1:2) = µ(Xt (1:2))
(engine and motor torque) from the feasible set of actions
Ut (1:2) ∈ C(i) at that state. At the same stage t , an uncertainty
Wt (1:2) is incorporated in the system consisting of the power
demanded by the driver as designated by the pedal position,
e.g., accelerator or brake. At the next stage t + 1, the system
transits to the state Xt+1(1:2) = j ∈ S and a one-stage
expected cost k(Xt (1:2), Ut (1:2)) is incurred corresponding to
the engine’s fuel consumption and motor’s efficiency.

Assumption 3: The one-stage expected cost,
k(Xt (1:2), Ut (1:2)), is continuous and bounded.

After the transition to the next state, a new action is selected
and the process is repeated. The state transition from one
state to another is imposed by a discrete-time equation that
describes the dynamics of the system (HEV) of the form

Xt+1(1:2) = ft (Xt (1:2), Ut (1:2), Wt (1:2)) (1)

where Wt (1:2) is the disturbance (driver’s pedal position) of
the HEV at time t .

When we drive our vehicle, we press the accelerator or brake
pedal at each time t based on what we wish at time t , which is
conditionally independent on what we desired in the past, and
it depends on what we encounter in the traffic at time t [31].
For example, we might have to accelerate at time t to pass a
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Fig. 3. Driver’s pedal position corresponding to different driving cycles.

vehicle or to brake to avoid collision, which are independent
events of what we encountered at time t − 1. Although
this is a rather intuitive consideration, to justify it further,
we use autocorrelation plots for the driver’s pedal position,
e.g., accelerator or brake. Autocorrelation plots [32, pp. 28–32]
are widely used for evaluating randomness in a data set. This
randomness is ascertained by computing autocorrelations for
data values at different time lags. If the data are a sequence of
independent random values, such autocorrelations should be
near zero for any and all time-lag separations. If nonrandom,
then one or more of the autocorrelations will be significantly
nonzero.

To compute the autocorrelation plot for the driver’s pedal
position, we used various standard dynamometer driving
schedules (DDSs) (or simply driving cycles), which are vehicle
speed profiles established by the U.S. Environmental Protec-
tion Agency (EPA) for testing and measuring fuel economy
and emissions. These driving cycles essentially represent
situations in which the driver requests a particular vehicle
speed profile deemed characteristic of her/his driving style.
The pedal position shown in Fig. 3 corresponds to a combina-
tion of different portions of the federal test procedure (FTP),
the US06, and the urban DDS (UDDS) driving cycles
representing a typical urban and highway commute. Negatives
values of the pedal position indicate brake, and positive values
indicate acceleration. The autocorrelation plots corresponding
to this pedal position are almost zero for all time-lag separa-
tions (Figs. 4 and 5 in zoomed-in view).

The 95% confidence limits in the autocorrelation plots are
equal to −1/N ± 2/

√
N [32], where N is the length of

the series, i.e., pedal position. For the pedal position shown
in Fig. 3, the confidence limits are equal to ±0.02. Thus, the
sequence of the driver’s pedal position is a random series. This
observation leads to our next assumption.

Assumption 4: The driver’s pedal position is a sequence
of independent random variables, independent of the initial
state X0(1:2).

Assumption 4 imposes a condition yielding that the
state Xt+1(1:2) depends only on Xt (1:2) and Ut (1:2)

[24, Lemma 6.6, p. 18]. Namely, the evolution of the state can

Fig. 4. Autocorrelation plot for the driver’s pedal position.

Fig. 5. Autocorrelation plot for the driver’s pedal position (zoomed-in view).

be modeled as a controlled Markov chain and represented by
a conditional probability P(Xt+1(1:2) = j |Xt (1:2) = i, Ut (1:2)).
The completed period of time over which the system is
observed is called the decision-making horizon and is denoted
by T . The horizon can be either finite or infinite; the infinite
decision-making horizon is considered for this problem.
This is because we are concerned with deriving an optimal
control policy π that will optimize the efficiency of the HEV
in the long term and not necessarily for a specific period
of time. The assumption of an infinite number of stages
is never satisfied in practice. However, it is a reasonable
approximation for problems involving a finite but very large
number of stages [33], as for example, in the HEV power
management control problem where we are interested in
optimizing HEV efficiency over the driver’s commute.

III. MULTIOBJECTIVE OPTIMIZATION FRAMEWORK FOR

THE SOLUTION TO THE POWER MANAGEMENT

CONTROL PROBLEM

The power management controller is faced with the task of
selecting control actions (engine and motor torque) in several
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time steps to minimize the long-run expected average cost
per unit time. In our approach, at each stage t , we seek to
identify an equilibrium operating point, defined as HEV equi-
librium operating point, among the subsystems, i.e., engine
and motor, which will minimize the average cost criterion
online.

A. Average Cost Criterion

Infinite horizon problems are interesting as their analysis
is insightful, and the implementation of optimal policies is
straightforward. The optimal policies are typically stationary
as described in the previous section. However, these problems
require a more sophisticated analysis than the finite horizon
problems because we need to analyze limiting behavior as the
horizon tends to infinity. For the power management control
problem formulated here, we select the average cost criterion
as we wish to optimize HEV efficiency (minimize losses) with
respect to any different driver and commute on average. Thus,
we are concerned with deriving a stationary optimal control
policy to minimize the long-run expected average cost per unit
time

Jπ = lim
T →∞

1
T + 1

Eπ

[
T∑

t=0

k(Xt (1:2), Ut (1:2))

]

(2)

where k(Xt (1:2), Ut (1:2)) is the one-stage cost of HEV.
To guarantee that the limit in (2) exists, we impose the
following assumption.

Assumption 5: For each stationary control policy π =
{µ(1), µ(2), . . . , µ(|S|)}, where |S| is the cardinality of the
system’s state space, the Markov chain {Xt (1:2)|t = 1, 2, . . .}
has a single ergodic class.

Namely, for each stationary policy π ∈ $, there is a unique
probability distribution (row vector) βπ = (β1,β2, . . . ,β|S|)
such that βπ = βπ · Pπ , where P is the transition probability
matrix, with

∑
i∈S βi = 1. A proof of this assertion may be

found in [34, p. 227]. Under our assumption, it is known
[35, p. 175] that

lim
T →∞

1
T + 1

T∑

t=0

[Pπ ]t = 1 · βπ (3)

where 1 = (1, 1, . . . , 1)T is the column vector whose elements
are all unity. Substituting (3) into (2) shows that the long-run
average cost Jπ does not depend on the initial state and is
given more simply as

Jπ = βπ · kπ (4)

where kπ = (k(1, µ(1)), k(2, µ(2)), . . . , k(|S|, µ(|S|)))T

is the column vector of the cost function. Consequently,
a stationary control policy is optimal if

J ∗ = inf{Jπ |π ∈ $}. (5)

Since we assume Pπ to be continuous, it follows that
βπ is continuous, and since kπ is also assumed continuous
(Assumption 3), so is Jπ. Hence, by compactness of U , an
optimal stationary control policy exists. Our objective is to
derive a stationary control policy that minimizes the long-run

expected average cost of the HEV. The next result yields the
solution to (5).

Theorem 6 [36]: Suppose that the Markov chain has a single
ergodic class (Assumption 5) and that the column vector of
the entire system’s one-stage expected cost k belongs to the
set of all bounded, continuous, and real-valued functions on S
(Assumption 3). If π ∈ $ is a control policy, then (C, J ) is
the solution to the following:

C + 1 · J = Pπ · C + kπ (6)

where C ∈ R|S| is a column vector of real numbers, J is the
average cost, and |S| is the cardinality of the system’s state
space.

The following theorem yields the analytical solution for the
minimum average cost J ∗ (Bellman equation).

Theorem 7 [37]: Let π ∈ $. If there exist (C, J ∗) such that

C + 1 · J ∗ = min
π∈$

[Pπ · C + kπ ] (7)

then π is the optimal control policy.
Equation (7) consists of |S| linear equations. Various

methods can be used to solve (7) offline and derive the optimal
control policy that minimizes the long-run expected average
cost J . In this paper, we seek the theoretical framework
that will yield the optimal control policy online while the
subsystems interact with each other.

B. HEV Equilibrium Operating Point

In the HEV configuration adopted here, the engine and the
motor are coupled together and their speed is a function of the
vehicle speed depending on the gear ratio of the transmission.
At each stage t , the controller needs to optimally split the
torque demanded by the driver Tdriver between the engine
and motor T ∗

eng and T ∗
mot, respectively, to optimize the HEV

efficiency. Using a myopic approach, namely, operating the
engine at a minimum brake specific fuel consumption (BSFC),
may result in operating the motor at a lower efficiency,
thus wasting energy. Wasting the battery’s energy affects fuel
economy since this energy will be provided back to the battery
from the engine to maintain SOC close to the target value.

Consequently, at each stage t , we seek to identify an equilib-
rium operating point [38] among the subsystems, i.e., engine
and motor, which will ensure maximization of the overall
HEV efficiency. To compute the HEV equilibrium operating
point, we formulate a multiobjective decision-making problem
consisting of the engine’s BSFC fBSFC and the motor’s effi-
ciency ηmot. Given the engine and motor speed Xt (1:2), the
objective is to find the optimal control action Ut (1:2) (engine
and motor torque) that minimizes a multiobjective function
reflecting both the engine’s fuel consumption and the motor’s
efficiency. To avoid dominance of one objective function
over the other, both functions are normalized with respect
to their maximum value. Furthermore, since we formulate a
minimization problem, we consider the inverse of the motor
efficiency.

The BSFC of the engine is a function of the engine speed
Neng and torque Teng. Similarly, the efficiency of the motor
is a function of the motor speed Nmot and torque Tmot.



446 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 24, NO. 2, MARCH 2016

Hence, the normalized BSFC of the engine is
f1(Neng, Teng) = ( fBSFC(Neng, Teng)/∥ fBSFC∥∞), and
the normalized inverse of the motor’s efficiency is
f2(Nmot, Tmot) = ((1/(ηmot(Nmot, Tmot)))/(∥(1/ηmot)∥∞)).

The multiobjective optimization problem is formulated as

min
Ut

k(Xt (1:2), Ut (1:2)) = min
Ut

(α · f1(Xt (1), Ut (1))

+(1 − α) · f2(Xt (2), Ut (2)))

s.t.
2∑

i=1

Ut (i) = Tdriver + TSOC (8)

where α is a scalar that takes values in [0, 1], Xt (1:2) =
(Xt (1), Xt (2)))

T = (Neng, Nmot)T ∈ S, Ut (1:2) =
(Ut (1), Ut (2)))T = (Teng, Tmot)T ∈ U is the vector of engine
and motor torque, and TSOC is the torque corresponding to the
power required by the battery, PSOC, to reach its target value.
Since PSOC is exclusively provided by the engine, TSOC is
computed by dividing PSOC by the engine speed Neng. The
multiobjective optimization problem in (8) yields the Pareto
efficiency set between the engine and the motor by varying α
from 0 to 1 at any given state of the HEV.

C. Pareto Efficient Power Management Control

In a Pareto efficiency allocation among agents, no one can
be made better off without making at least one other agent
worse. The following is a formal definition.

Definition 8 [39]: A solution uo∈ U is called Pareto optimal
if there is no u ∈ U such that k(x, u) ≤ k(x, uo). If uo is Pareto
optimal, k(x, uo) is called Pareto efficient. If u1, u2 ∈ U and
k(x, u1) < k(x, u2), we say u1 dominates u2 and k(x, u1)
dominates k(x, u2). The set of all Pareto optimal solutions
uo∈ U is the Pareto set UPareto. The set of all efficient
points k(x, uo) ∈ Y where uo ∈ UPareto is Yeff the Pareto
efficient set.

The question that arises is under what conditions the Pareto
efficient set in (8) exists. The following result provides the
conditions for its existence.

Proposition 9 [39]: Let # ∈ Rl be a nonempty and compact
set and each component k(Xt (q), Ut (q)) : # → R be lower
semicontinuous for all q = 1, . . . , N, N ∈ N. Then, the Pareto
efficient set is not empty.

In our problem, the set of admissible state/action pairs # is
a nonempty compact space (Definition 1). Furthermore, the
engine’s normalized BSFC f1(Xt (1), Ut (1)) and the inverse
of the motor’s efficiency f2(Xt (2), Ut (2)) are both continuous
functions. Consequently, the Pareto efficient set exists, and
the Pareto optimal solution can yield the HEV equilibrium
operating point between the engine and the motor.

Definition 10: The Pareto control policy πo is defined as
the policy that yields the Pareto efficient one-stage expected
cost for each subsystem at each state i ∈ S of the system.

In the problem considered here, the Pareto control policy is
derived as follows. For each state i ∈ S and for any different
torque demand Tdriver + TSOC, we solve (8) with α taken values
from 0 to 1. The control action uo

(1:2) = µ(i) associated with
the Pareto control policy is the one that yields the minimum
one-stage expected cost in (8) among all values corresponding

to different α, namely

uo
(1:2) = argmin

Ut

{
kα1

(
i, uα1

(1:2)

)
, . . . , kαr

(
i, uαr

(1:2)

)}
, r ∈ N (9)

where uαr
(1:2) is the solution to (8) when the scalar is αr

and kαr (i, uαr
(1:2)) is the corresponding minimum one-stage

expected cost for the state i ∈ S for αr . Thus, for each state
of the HEV and torque demand, we derive the Pareto optimal
solution that minimizes (8) and store it in a table. If there are
multiple solutions, then one of these solutions is randomly
selected since all of them will yield the same one-stage
expected cost. The Pareto control policy is implemented online
using this table as follows. For any combination of vehicle
speed, thus engine and motor speed, and torque demand, the
Pareto control policy interpolates the control values of the table
corresponding to the Pareto optimal solution uo

(1:2) = µ(i) that
minimizes one-stage expected cost (8).

D. Connection Between the Pareto Optimal Solution
and the Average Cost Criterion

In this section, we show that the Pareto control policy is
the optimal control policy that minimizes the average cost
criterion (2).

Lemma 11: The Pareto control policy πo minimizes the
one-stage expected cost in (8).

Proof: For any state at time t , Xt (1:2) = i ∈ S, and let
kπ ′

(i, u(1:2)) and kπo
(i, uo

(1:2)) be the one-stage expected costs
at this state corresponding to any control policy π ′ and the
Pareto control policy πo, respectively. By Definition 10, at
each state, the Pareto control policy πo yields the Pareto opti-
mal solution. By Definition 8 of the Pareto optimal solution,
there is no u(1:2) ∈ U such that kπ ′

(i, u(1:2)) ≤ kπo
(i, uo

(1:2))

for all π ′ ∈ $. Thus, at each realization of the random variable
Xt (1:2), the Pareto control policy πo minimizes the one-stage
expected cost in (8). !

Theorem 12: The Pareto control policy πo is the optimal
control policy π∗ that minimizes the average cost criterion (2).

Proof: Let πo be the Pareto control policy. From
Lemma 11, we have that for each realization of the state
Xt (1:N) = i , kπo

(i, Ut (1:2)) ≤ kπ ′
(i, Ut (1:2)) for any control

policy π ′ ∈ $. Since the system’s one-stage cost is bounded
(Assumption 3), taking the expected average sum from t = 0
up to a finite time T ∈ N is well defined and finite. Thus

1
T + 1

Eπ

[
T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ 1
T + 1

Eπ

[
T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

. (10)

Taking the lim inf as T goes to infinity

lim inf
T →∞

1
T + 1

Eπ

[
T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ lim inf
T →∞

1
T + 1

Eπ

[
T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

. (11)
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Since each stationary control policy has a single ergodic class
(Assumption 5), the limit in (11) is well defined; hence

Jπo = lim
T →∞

1
T + 1

Eπ

[
T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ Jπ ′= lim
T →∞

1
T + 1

Eπ

[ T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

∀π ′∈$.

(12)

!

IV. SUPERVISORY POWER MANAGEMENT CONTROL

USING THE PARETO EFFICIENT SOLUTION

A. Dynamic Programming Simulation-Based Solution
for the Average Cost Criterion

To compare the Pareto control policy with the optimal
control policy of DP from Bellman’s equation (7), we need
to solve |S| linear equations, where |S| is the cardinality of
the state space.

Under Assumption 5, the minimum average cost J ∗ has a
common value for all the initial states [40], denoted by λ∗,
and J ∗(i) = λ∗, i ∈ S. Moreover, λ∗ in conjunction with
a differential cost vector h = (h(1), . . . , h(|S|)) satisfies
Bellman’s equation [40]

h(i) + λ∗ = min
π∈$

|S|∑

j=1

[P( j |i, µ(i)) · h( j) + k(i, µ(i))] .

(13)

To solve (13), we need to know the cost function k(Xt (1:2) = i,
Ut (1:2) = µ(Xt (1:2))) or k(i, µ(i)) for simplicity and the
transition probabilities P(Xt+1(1:2) = j |Xt (1:2) = i, Ut (1:2))
of the HEV which are not available a priori. However, we
can simulate the HEV model because the state space and
control space are known. Thus, at each stage t and for a
given state Xt (1:2) = i ∈ S, the controller can select a control
action Ut (1:2) = µ(i), and based on the uncertainty Wt (1:2),
the system will transit to a new state Xt+1(1:2) = j ∈ S as
imposed by the system’s dynamics (1), and thus generate a
corresponding transition cost k(i, µ(i)). It is then possible to
use repeated simulation to calculate (at least approximately)
the transition probabilities of the system and the expected
one-stage costs by averaging, and then solve the |S| linear
equations (13). However, for large and complex systems,
e.g., HEVs, a more attractive method to derive the optimal
control policy is to learn the optimal control policy rather
than explicitly estimating the transition probabilities and stage
costs using the Q-learning method. This method is analogous
to value iteration and has the advantage that it can be used
directly in the case of multiple policies. Instead of approximat-
ing the cost function of a particular policy, it directly updates
the factors associated with an optimal policy, thereby avoiding
the multiple policy evaluation steps of the policy iteration
method.

It can be observed [41] that the Q-learning method for
solving (13) is the following:
Qt+1(i, µ(i))

=
|S|∑

j=1

P( j |i, µ(i)) ·
(

k(i, µ(i)) + min
µ( j )∈C( j )

Qt ( j, µ( j))
)

−Qt (io, µ(io)) ∀i ∈ S (14)

where io ∈ S is an arbitrary but fixed state. The aim of the
Q-learning algorithm is to learn the Q-factors when the tran-
sition probabilities P(·|·, ·) are not known, but there is access
to a simulation device, e.g., simulating an HEV model over
a given driving cycle, which can generate them by simulating
the system. This can be achieved by simulating the HEV
model over a given driving cycle repeatedly until the Q-factors
converge. Then, the optimal control policy can be extracted
by (14). The resulting solution corresponds to the optimal
control policy that minimizes the long-run expected average
cost criterion [41].

B. Simulation Results

To validate the effectiveness of the power management con-
troller using the Pareto control policy and compare it with DP,
we used Autonomie [42]. Autonomie is a MATLAB/Simulink
simulation package for powertrain and vehicle model devel-
opment developed by the Argonne National Laboratory.
A vehicle model representing a heavy-duty parallel HEV was
used in this paper. The model consists of a diesel engine with
a maximum power of 374 kW, an electric machine with a
continuous power of 200 kW and a peak power of 360 kW,
and a 12 V battery with 40-Ah energy capacity. The gear ratio
between the engine and the output shaft is 3, whereas the gear
ratio between the motor and the output shaft is 6.

The HEV model was simulated over standard driving cycles,
established by the U.S. EPA for testing and measuring fuel
economy and emissions. The following driving cycles were
used: 1) the city–suburban heavy vehicle route (CSHVR);
2) the elementary urban driving cycle; 3) the extra urban
driving cycle; 4) the FTP; 5) the Japanese 10-mode cycle;
6) the Japanese 15-mode cycle; 7) the New York city cycle;
and 8) the UDDS.

To ensure that the Pareto efficiency exists in our study,
we computed the normalized BSFC with respect to the engine
torque for different engine speeds (Fig. 6). Similarly, we
computed the normalized inverse of the motor efficiency with
respect to the motor torque for different motor speeds (Fig. 7).
From these plots, given a vehicle speed, and thus engine and
motor speed, a different combination of engine and motor
torque can yield different values of the normalized BSFC and
inverse motor efficiencies. Applying these values to (8), we
can observe that the Pareto efficiency set exists.

To derive the Pareto control policy, the multiobjective
optimization problem (8) was solved offline for different
combinations of vehicle speeds, e.g., 0–80 km/h (discretized
in 5 km/h), and driver’s torque requests, e.g., 0–18 800 N ·m
(discretized in 100 N ·m). For each vehicle speed–torque
combination, the Pareto optimal solution that minimizes (9)
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Fig. 6. Normalized BSFC for different engine speeds with respect to engine
torque.

Fig. 7. Normalized inverse of the motor efficiency for different motor speeds
with respect to motor torque.

Fig. 8. Pareto sets (on the left) UPareto and the Pareto efficiency sets (on the
right) Yeff corresponding to four different vehicle speed–torque combinations.
(a) and (b) 21 km/h and 6975 N ·m, (c) and (d) 59.4 km/h and 3937 N ·m,
(e) and (f) 48.6 km/h and 5940 N ·m, and (g) and (h) 37.8 km/h and
2925 N ·m. The green arrow indicates the solution selected by the Pareto
control policy and the label the corresponding value of α.

was computed and stored in a table. Fig. 8 shows the
Pareto sets UPareto and the Pareto efficiency sets Yeff cor-
responding to different vehicle speed–torque combinations:

Fig. 9. Trajectory of α over a portion of the CSHVR driving cycle.

Fig. 10. SOC of the battery using DP and the Pareto control policy over the
CSHVR driving cycle.

21 km/h and 6975 N ·m [Fig. 8(a) and (b)], 59.4 km/h
and 3937 N ·m [Fig. 8(c) and (d)], 48.6 km/h and
5940 N ·m [Fig. 8(e) and (f)], and 37.8 km/h and 2925 N ·m
[Fig. 8(g) and (h)]. For each combination of vehicle speed and
torque demand, the Pareto control policy selects the value from
the Pareto set that minimizes (8). The green arrow in Fig. 8
indicates the solution selected by the Pareto control policy and
the label the corresponding value of α.

As the driver drives the vehicle, the Pareto control policy is
implemented by interpolating the values stored in the table.
These values minimize (8) and correspond to different α
derived from (9). Fig. 9 shows the trajectory of α over
a portion of the CSHVR driving cycle, which essentially
demonstrates how the driver’s torque request is distributed
between the engine and the motor. When α = 0, only the
motor powers the vehicle, whereas when α = 1, only the
engine powers the vehicle. For 0 < α < 1, both the engine
and the motor power the vehicle.

The Pareto control policy was evaluated over eight driving
cycles, and the effectiveness of its efficiency was com-
pared with the DP control policy corresponding to the long-
run average cost per unit time optimization criterion (13).
The DP control policy was derived though simulation using



MALIKOPOULOS: MULTIOBJECTIVE OPTIMIZATION FRAMEWORK FOR ONLINE STOCHASTIC OPTIMAL CONTROL IN HEVs 449

Fig. 11. Cumulative fuel consumption using DP and the Pareto control policy
over the CSHVR driving cycle.

TABLE I

DIFFERENT DRIVING CYCLES

Q-learning (14). The HEV model was repeatedly simulated
over the same driving cycle until the Q-factors in (14) con-
vergence. Fig. 10 shows SOC of the HEV battery using the DP
and the Pareto control policies over the CSHVR driving cycle.
For this driving cycle, Q-learning repeatedly ran 58 times
until it convergences. The one-on-one correlation, as shown
in Fig. 1, between SOC and the power added to the driver’s
power demand aimed at maintaining SOC at the target value,
i.e., 70% in this case. Both control policies achieved the same
cumulative fuel consumption (Fig. 11), which illustrates that
the Pareto control policy is an optimal control policy that can
be implemented online. The simulation results corresponding
to the other driving cycles are summarized in Table I.

V. CONCLUSION

In this paper, we developed the analytical formulation
for modeling HEV operation as a controlled Markov chain
and presented the solution of the stochastic optimal control
problem using the long-run expected average cost criterion.
Then, we formulated a multiobjective optimization framework
and showed that the Pareto control policy minimizes the

average cost per unit time criterion. The effectiveness of the
efficiency of the Pareto control policy was validated through
the simulation of an HEV model for different driving cycles,
and it was compared with the DP control policy. Both con-
trol policies achieved the same cumulative fuel consumption,
demonstrating that the Pareto control policy is an optimal
control policy that minimizes the long-run expected average
cost criterion.

This work has been extended [43], [44], and the
proposed multiobjective optimization framework has consid-
ered the battery in the problem formulation in addition to
the engine’s BSFC and motor’s efficiency. The extended
optimization framework aims to enhance our understanding
of the associated tradeoffs among the HEV subsystems,
e.g., the engine, the motor, and the battery, and investigates the
related implications for fuel consumption and battery capacity
and lifetime. Addressing this problem can provide insights on
how to prioritize these objectives based on consumers’ needs
and preferences.
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