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ABSTRACT 

Advanced internal combustion engine technologies have 
increased the number of accessible variables of an engine and 
our ability to control them. The optimal values of these 
variables are designated during engine calibration by means of 
a static correlation between the controllable variables and the 
corresponding steady-state engine operating points. While the 
engine is running, these correlations are being interpolated to 
provide values of the controllable variables for each operating 
point. These values are controlled by the electronic control unit 
to achieve desirable engine performance, for example in fuel 
economy, pollutant emissions, and engine acceleration. The 
state-of-the-art engine calibration cannot guarantee 
continuously optimal engine operation for the entire operating 
domain, especially in transient cases encountered in driving 
styles of different drivers. This paper presents the theoretical 
basis and algorithmic implementation for allowing the engine 
to learn the optimal set values of accessible variables in real 
time while running a vehicle. Through this new approach, the 
engine progressively perceives the driver’s driving style and 
eventually learns to operate in a manner that optimizes 
specified performance indices. The effectiveness of the 
approach is demonstrated through simulation of a spark 
ignition engine, which learns to optimize fuel economy with 
respect to spark ignition timing, while it is running a vehicle. 

 
Keywords: Markov Decision Process (MDP), learning 
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1. INTRODUCTION 
The growing requests for better performance and fuel 

economy, and reduced emissions, have motivated continued 
research in advanced internal combustion engine technologies. 
These technologies, such as fuel injections systems, variable 
geometry turbocharging, variable valve actuation, and exhaust 
gas recirculation, have increased the number of accessible 
engine controllable variables, and our ability to optimize engine 
operation. In particular, the determination of the optimal values 
of these variables, referred to as engine calibration, have been 
shown to be especially critical for achieving high engine 
performance and fuel economy while meeting emission 
standards. Consequently, engine calibration is defined as a 
procedure that optimizes one or more engine performance 
indices, e.g., fuel economy, emissions, or engine performance 
with respect to the engine controllable variables. Engine 
calibration generates a static correlation between the optimal 
values of the controllable variables and the corresponding 
steady-state engine operating points to coordinate optimal 
performance of the specified indices. This correlation is 
incorporated into the electronic control unit (ECU) of the 
engine to control engine operation, so that optimal values of the 
specified indices are maintained. 

Despite the advanced engine technologies, however, 
continuously optimal engine operation has not yet been 
possible. State-of-the-art engine calibration methods rely on 
dynamometer static correlations for steady-state operating 
points accompanied by transient vehicle testing. However, the 
calibration process, its duration, and its cost grow exponentially 
with the number of controllable variables and optimal 
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calibration for the entire feasible engine operating domain 
cannot be guaranteed. Even for engines with simple 
technologies, achievement of the optimal calibrations may 
become impractical [1]. In addition, current calibration 
methods cannot guarantee optimal engine operation in transient 
cases encountered in driving styles of different drivers [2].  

To pre-specify the huge number of transient operations is 
impractical and, thus, calibration cannot generate optimal static 
correlations for all transient cases a priori. Transient operation 
constitutes the largest segment of engine operation over a 
driving cycle compared to the steady-state one [3, 4]. 
Emissions during transient operation are extremely complicated 
[4], vary significantly with each particular driving cycle [5, 6], 
and are highly dependent upon the calibration [6, 7].  Engine 
operating points, during the transient period before their 
steady-state value is reached, are associated with different 
Brake-Specific Fuel Consumption (BSFC) values, depending 
on the directions from which they have been arrived, as 
illustrated qualitatively in Figures 1 and 2. Pollutant emissions 
such as NOx, and particulate matters, demonstrate the same 
qualitative behavior, as shown by Hagena et al. [8]. 

The main objective of calibration methods is to expedite 
dynamometer tests significantly using a smaller subset of tests. 
This subset is utilized either in implementing engine calibration 
experimentally or in developing mathematical models for 
evaluating engine output. Using these models, optimization 
methods can determine the engine calibration static correlations 
between steady-state operating points and the controllable 
engine variables [9]. Design of Experiments (DoE) [10-12] has 
been widely used as the baseline method. Major applications 
include catalyst system optimization [13], optimization of 
variable valve trains for performance and emissions [14-17], 
implementation of dynamic model-based engine calibrations 
[18, 19], and optimization of fuel consumption in a spark 
ignition engine with dual-continuously controlled camshaft 
phasing with respect to valve timing [20].  

DoE-based calibration systems are typically used to reduce 
the scope of the experiments required to derive the optimal 
engine calibration correlation under steady-state operating 
conditions. Dynamic model-based calibration, however, utilizes 
high-fidelity dynamic or transient engine modeling. The data 
required to develop the engine model are obtained by operating 
the engine through a set of transient dynamometer tests while 
the engine calibration is perturbed in real time by a 
reconfigurable rapid prototyping control system. The predictive 
engine model produced in this fashion utilizes a combination of 
equation-based and neural network methods. DoE-experimental 
calibration is well suited only for steady-state engine operation 
over   some   driving   cycle.  In   contrast, dynamic modeling 
produces a transient or   dynamic engine   model capable of 
predicting   engine   operating   cycle. The steady-state optimal 
engine calibration can be produced from the transient engine 
model as a sub-set of the transient engine operation. Rask et al. 
[1] developed  a simulation-based calibration method to rapidly  
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Figure 1. Two trajectories A, and B, of engine operating 

 points ending at the same operating point. 
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Figure 2. BSFC value of the terminal engine operating point 

 as reached from trajectories A, and B. 
 

generate optimized correlations for a V6 engine equipped with 
two-step variable valve actuation and intake cam phasing. 
Guerrier et al. [18] employed DoE and advanced statistical 
modeling to develop empirical models to advance the 
powertrain control module calibration tables. Stuhler et al. [19] 
implemented a standardized and automated calibration 
environment, supporting the complexity of gasoline direct 
injection engines, for an efficient calibration process using an 
online DoE to decrease the calibration cost. These engine 
models can predict engine output over transient operation. 
However, not all the correlations of optimal values of the 
controllable engine variables associated with the transient 
operating points can be quantified explicitly; to pre-specify the 
entire transient engine operation is impractical, and thus, 
engine calibration correlations cannot be optimized for these 
cases a priori. 

Various approaches have been proposed for using artificial 
neural networks (ANN) to promote modeling and calibration of 
engines [21-26]. However, ANNs are application-specific and 
exhibit unpredictable behavior when previously unfamiliar data 
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are presented to them. These difficulties increase if a nonlinear 
dynamic presentation of a system is to be realized, because of
the increasing number of possibilities related to the dynamic
and the interactions between the input signals.  ANNs are 
suited for formulating objective functions, evaluating the
specified engine performance indices with respect to the 
controllable engine variables and, thus, deriving the engine
calibration correlations. They are computationally efficient for 
optimization requiring hundreds of function evaluations.
However, optimal engine calibration for the entire engine 
operating domain seldom is guaranteed even for steady-state
operating points. Moreover, the correlations between optimal 
values of the controllable engine variables and the transient 
operating points, overall, cannot be quantified explicitly
prohibiting a priori optimal engine calibration. 

This paper introduces a method to make the engine an
autonomous system that can learn its optimal calibration for the 
entire engine operating domain in real time while running a
vehicle. Section 2 builds the general theoretical framework of 
considering the engine operation as a stochastic process, and
introduces the predictive optimal stochastic learning algorithm. 
This algorithm predicts the optimal correlation between the 
engine controllable variables and the operating points (both
steady-state and transient) based on observations of the engine 
outputs. The effectiveness of the approach is demonstrated in 
Section 3 through simulation of a Spark Ignition (SI) engine
model; while the SI model is running, it progressively 
perceives the driver’s conventional driving style and learns the 
optimal spark ignition values, as illustrated in Section 4. 
Finally, conclusions are presented in Section 5. 

 
2. PROPOSED METHOD 

Engine operation is described in terms of engine operating 
points and the evaluation of engine performance indices is a 
function of various controllable variables. In our approach, the
engine performance indices are treated as random functions.
Consequently, the engine is treated as a controlled stochastic
system, and engine operation is treated as a stochastic process.
The problem of engine calibration is thus reformulated as a 
sequential decision-making problem under uncertainty. The 
main objective towards the solution in this problem is to select 
the optimum values of the controllable variables for each 
engine operating point in real time that optimize the random 
functions (engine performance indices). The Markov Decision 
Process (MDP), extensively covered by Puterman [27], 
provides the mathematical framework for modeling sequential 
decision-making problems under uncertainty [28]; it is 
comprised of (a) a decision maker (engine), (b) states (engine
operating points), (c) actions (controllable variables), (d)
transition probability matrices (driver), (e) transition reward
matrices (engine performance indices), and (f) optimization
criteria (e.g., maximizing fuel economy, minimizing pollutant
emissions, maximizing engine performance).  
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 

2.1 Markov Decision Process (MDP) 
Formally, MDP is a discrete time stochastic control process 

defined as the tuple:                     
Xn={S, A, P(⋅,⋅), R(⋅,⋅)}     (1) 

 
where { | 1,2,... },is i N N= = ∈S N  denotes a finite state space,  

( )
i is A s∈= SA U stands for a finite action space, P(⋅,⋅) is the 

transition probability matrix, and R(⋅,⋅) is the transition reward 
matrix. The decision-making process occurs at each of a 
sequence of stages 0,1, 2,... ,M Mκ = ∈N . At each stage, the 
decision-maker observes a system’s state is ∈S , and executes 
an action ( )iA sα ∈ , from the feasible set of actions ( )iA s ⊆ A  
at this state. At the next stage, the system transits to the state 

js ∈S  imposed by the conditional probabilities ( | , )j ip s s α , 
designated by the transition probability matrix P(⋅,⋅). These 
conditional probabilities of P(⋅,⋅), : [0,1]p × →S A , satisfy the 
following constraint  

1
( | , ) 1.

N

j i
j

p s s α
=

=∑                                 (2) 

Following this state transition, the decision-maker receives a 
reward associated with the action α, ( | , ), :j iR s s Rα × →S A R  
as imposed by the transition reward matrix R(⋅,⋅). A two-state 
MDP problem with the conditional probabilities and rewards 
corresponding to all possible transitions is illustrated in Figure 
3. The states of an MDP possess the Markov property, stating 
that the conditional probability distribution of future states of 
the process, given the present state and all past states, depends 
only upon the current state and not on any past states, i.e., it is 
conditionally independent of the past states (the path of the 
process) given the present state.  

Mathematically, the Markov property requires that 
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Figure 3. Probability distribution and rewards for all possible 
transitions between the states si and sj at stage κ when action α 

is taken 
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The solution to a MDP can be expressed as a policy  
0 1{ , ,... }Mπ µ µ µ= , which provides the action to be executed 

for a given state, regardless of prior history; µκ  is a function 
mapping states si into actions  ( ),isκα µ=  such that 

( ) ( ).i is A sκµ ∈  Such policies are addressed as admissible. 
Consequently, for any initial state at stage κ = 0, 0 ,is  and for 
any finite sequence of stages 0,1,2,... ,M Mκ = ∈N , the 
expected accumulated value of the rewards of the decision 
maker is  
 

0 0 0
0

1

( ) { ( | , ( )) ( )},
M

M
l j i i jV s E R s s s V sκπ π

κ

µ
=

= +∑    (4) 

                                                  , , .i j ls s s∀ ∈S  
 

In the finite-horizon context the decision maker should 
maximize the accumulated value for the next M stages; more 
precisely, an optimal policy π* is one that maximizes the overall 
expected accumulated value of the rewards  
 

* ( ) max ( ).M M
l lV s V sπ ππ∈

=
A

                         (5) 

 
Consequently, the optimal policy * * * *

0 1{ , ,... }Mπ µ µ µ=  for the 
M-stage sequence is 
 

*
*arg max ( ).M

lV sππ
π

∈
=

A
                           (6) 

 
The finite-horizon model is appropriate when the decision-
maker’s “lifetime” is known, namely, the terminal stage of the 
decision-making sequence. However, in most real-life problems 
this is not the case; these problems are modeled in the infinite-
horizon context, where the overall expected reward is the limit 
of the corresponding M-stage overall reward as M →∞ : 
 

* ( ) lim  max ( ).M M
l lM

V s V sπ ππ→∞ ∈
=

A
                      (7) 

 
This relation is extremely valuable for various MDP problems, 
where the terminal stage is unknown; Eq. (7) holds under 
certain conditions [29].  

A large class of sequential decision-making problems under 
uncertainty is solved by using classical dynamic programming 
algorithms, originally proposed by Bellman [30]. Algorithms, 
such as value iteration, policy iteration, and linear 
programming are employed to find optimal solution of MDPs. 
However, the computational complexity of these algorithms in 
some occasions may be prohibitive and can grow intractably 
with the size of the problem and its related data. In addition, 
dynamic programming algorithms require the realization of the 
transition probability matrix, P(⋅,⋅), and the transition reward 
matrix, R(⋅,⋅). For complex systems with large state space, the 
 

transition probability and reward matrices can be either 
impractical or impossible to compute. 

Viable alternatives for approaching these problems through 
a simulation-based stochastic framework have been primarily 
developed in the field of Reinforcement Learning (RL) [31, 
32]. RL methods aim to provide effective near-optimal 
solutions to complex problems of planning and sequential 
decision-making under uncertainty. Wheeler et al. [33] 
proposed a learning method in sequential stochastic games 
under certain properties; Sutton et al. [34] introduced a class of 
incremental learning procedures specialized for prediction, 
using past experience with an incomplete known system to 
predict its future behavior; Watkins [35] developed an 
algorithm for systems to learn how to act optimally in 
controlled Markovian domains amounting to an incremental 
method for dynamic programming imposing limited 
computational demands. These aforementioned classic RL 
methods and algorithms have been utilized successfully in 
various applications, e.g., robotics, control, operations research, 
games, human-computer interaction, economics/finance, and 
marketing.  

The rigorous mathematical assumptions required by the 
majority of existing RL algorithms to converge to optimal 
solutions impose limitations in efficiently employing these 
algorithms to solve engineering problems. For the engine 
calibration problem built upon the MDP theoretical framework 
described above, a learning process as employed in RL [32] 
and a new predictive optimal stochastic control algorithm 
(POSCA) are developed. The learning process is applied to the 
engine to progressively perceive the conventional driving style 
of a driver designating the transition probability matrix, P(⋅,⋅). 
In addition, during this process the desired engine performance 
indices, e.g., fuel economy, pollutant emissions, engine 
performance, are represented by the elements of the transition 
reward matrix, R(⋅,⋅). The intention of the algorithm is to 
predict the optimal policy (values of the engine controllable 
variables) * ,π ∈A  thus optimizing the expected accumulated 
value of the rewards in the infinite-horizon context.  

2.2 The Learning Process of the Engine 
The learning process transpires while the engine is running 

the vehicle and interacting with the driver. Taken in 
conjunction with assigning values of the controllable variables 
from the feasible action space, A, this interaction portrays the 
progressive enhancement of the engine’s “knowledge” of the 
driver’s driving style with respect to the controllable variables. 
More precisely, at each of a sequence of 
stages 0,1,2,... , as M Mκ = →∞ , the driver introduces a state 

isκ ∈S to the engine, and on that basis the engine selects an 
action, ( )iA sκα ∈ . This state arises as a result of the driver’s 
driving style corresponding to particular engine operating 
points. One stage later, as a consequence of its action, the 
4 Copyright © 2007 by ASME 



engine receives a numerical reward, 1Rκ + ∈R , and transits to a 
new state 1

jsκ + ∈S  as illustrated in Figure 4.  
At each stage, the engine implements a mapping from the 

Cartesian product of the state space and action space to the set 
of real numbers, × →S A R , by means of the rewards that it 
receives. Similarly, another mapping from the Cartesian 
product of the state space and action space to the closed set 
[0,1] is executed, [0,1]× →S A , satisfying Eq. (2). The latter 
essentially perceives the conventional driving style as 
expressed by the incidence in which particular states or 
particular sequences of states arise. The implementation of 
these two mappings aims to disclose the optimal policy π* 
(optimal set values of the controllable variables) of the engine 
designated by the predictive optimal control algorithm. This 
policy is expressed by means of a mapping from states to 
probabilities of selecting the actions, resulting in the highest 
expected accumulated value of the rewards.  

A challenge in the learning process is the trade-off between 
exploration and exploitation of the action space. Specifically, 
the engine has to exploit what is already known regarding the 
correlation involving the driving style and the values of the 
controllable variables that maximize the rewards, and also to 
explore those actions that have not yet been tried for this 
driving style to assess whether these actions may result in 
higher rewards. This exploration-exploitation dilemma has 
been extensively reported in the literature; Iwata et al. [36] 
proposed a model-based learning method extending Q-learning 
and introducing two separated functions based on statistics and 
on information by applying exploration  and exploitation 
strategies; Ishii et al. [37] developed a model-based 
reinforcement learning method utilizing a balance parameter, 
which is controlled based on variation of action rewards and 
perception of environmental change; Chan-Geon et al. [38] 
proposed an exploration-exploitation policy in Q-learning 
consisting of an auxiliary Markov process and the original 
Markov process; Miyazaki et al. [39] developed a unified 
learning system realizing the tradeoff between exploration and 
exploitation.  
The exploration-exploitation dilemma is closely related to the 
type of problem along with the decision-maker’s “lifetime” 
problem [40]: The longer the lifetime, the worse the 
consequences of prematurely converging on a sub-optimal 
solution. This could result from not fully exploring the entire 
feasible action space for each state. In our case, the objective is 
to make the engine learn its optimal calibration for the driver’s 
driving style in the infinite-horizon context. Consequently, the 
engine has to explore the entire action space for any state being 
visited by the particular driving style. In particular, it is 
assumed that for any state is ∈S  corresponding to the driving 
style, all actions of the feasible action set ( )iA sα ∈  are selected 
at least once. This may result in sacrificing the engine 
performance  indices  in  the  short  run; however,  the  ultimate  
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Figure 4. The learning process during the interaction  

between the engine and the driver 
 
goal for the engine is to progressively perceive the driving style 
and learn the optimal policy in the long run. 

2.3 The Predictive Optimal Stochastic Control 
       Algorithm (POSCA) 

The learning process of the engine transpires at each stage κ 
in conjunction with actions ( )iA sα ∈  taken for each state 

is ∈S . At the early stages and until full exploration of the 
action set ( ),i iA s s∀ ∈S  occurs, the mapping from the states to 
probabilities of selecting the actions is constant; namely, the 
actions for each state are selected randomly with the same 
probability 

 1( | ) , ( ), .
( )i i i

i

p s A s s
A s

α α= ∀ ∈ ∀ ∈S               (8) 

Exploration of the entire feasible action set is important to 
evade sub-optimal solutions when the exploration phase is 
done. The predictive optimal stochastic control algorithm 
(POSCA) is thus used after the exploration phase. The main 
objective of POSCA is to realize the action at each stage which 
is optimal not only for the current state, but also for the 
subsequent states over the following stages. The subsequent 
states are predicted by POSCA by means of the conditional 
probabilities ( | , ), : [0,1]j ip s s pα × →S A  of the transition 
probability matrix P(⋅,⋅). The expected accumulated value of 
the rewards for the subsequent states is perceived in terms of 

the magnitude,
~
( )jT s , defined as the maximum average future 

reward. Suppose that the current state is is  and the following 
state given an action ( )iA sα ∈  is js  with 
probability ( | , )j ip s s a . The average future overall reward will 
be 

~
1

( | , ) ( | , )
( ) max ,

                                                 .

N

l j l j
l

j a

j

p s s a R s s a
T s

N

s

=

∈

⎛ ⎞⋅⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∀ ∈

∑
A

S  

       (9) 

The immediate expected reward by transiting from state is to 
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state js  given an action ( )iA sα ∈  is  



 
~
( | , ) ( | , ) ( | , ).j i j i j it s s a p s s a R s s a= ⋅         (10) 

 
For the problem of optimal control of uncertain systems, which 
is treated in a stochastic framework, all uncertain quantities are 
described by probability distributions and the expected value of
the overall reward is maximized. In this context, the optimal 
policy π* realized by POSCA is based on the maxmin control
approach, whereby the worst possible values of the uncertain 
quantities within the given set are assumed to occur. This is a 
pessimistic point of view which essentially assures that the
optimal policy will result in at least a minimum overall reward 
value. Consequently, being at state ,is  POSCA predicts the 
optimal policy π* in terms of the values of the controllable
variables as 
 

~ ~
* ( ) arg max min ( | , ) ( ) ,

                                                         , .

π
∈
∈

⎧ ⎫⎪ ⎪⎛ ⎞= +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∀ ∈

S

S

j
i j i js

a A

i j

s t s s a T s

s s

        (11) 

 
3. EXAMPLE 

An example of real-time, self-learning optimization of the
calibration with respect to spark ignition timing in a spark
ignition engine is presented. In spark ignition engines the fuel
and air mixture is prepared in advance before it is ignited by
the spark discharge. The major objectives for the spark ignition
are to initiate a stable combustion and to ignite the air-fuel
mixture at the crank angle resulting in maximum efficiency,
while fulfilling emissions standards and preventing the engine 
from knocking. Simultaneous achievement of the 
aforementioned objectives is sometimes inconsistent; for
instance, at high engine loads the ignition timing for maximum
efficiency has to be abandoned in favor of prevention of engine
destruction by way of engine knock. Two essential parameters 
are controlled with the spark ignition: ignition energy and
ignition timing. Control of ignition energy is important for 
assuring combustion initiation, but the focus here is on the
spark timing that maximizes engine efficiency. Ignition timing
influences nearly all engine outputs and is essential for 
efficiency, drivability, and emissions. The optimum spark
ignition timing generating the maximum engine brake torque is 
defined as Maximum Brake Torque (MBT) timing [41]. Any
ignition timing that deviates from MBT lowers the engine’s 
output torque as illustrated in Figure 5. A useful parameter for 
evaluating fuel consumption of an engine is the Brake-Specific 
Fuel Consumption (BSFC), defined as the fuel flow rate per
unit power output. This parameter evaluates how efficiently an 
engine is utilizing the fuel supplied to produce work 

 

      
.

( / )( / ) ,
( )

fm g hbsfc g kW h
P kW

⋅ =        (12) 
 

 

 

 

 

 
 
 
 
 
 
 

 
 
 

 

 
 

 

 

 

where 
.

fm is the fuel mass flow rate per unit time and P is 
engine’s power output. Continuous engine operation at MBT 
ensures optimum fuel economy with respect to the spark 
ignition timing.  

For a successful real-time, self-learning optimization of 
engine calibration in terms of spark ignition timing, the engine 
should realize the MBT timing for each engine operating point 
(steady-state and transient) dictated by the driving style of a 
driver. Consequently, by achieving MBT timing for all steady-
state and transient operating points an overall improvement of 
the BSFC is expected. Aspects of preventing knocking are not 
considered in this example; however, they can be easily 
incorporated by defining the spark ignition space to include the 
maximum allowable values. 

The software package enDYNA by TESIS [42] suitable for 
real-time simulation of internal combustion engines is 
employed. The software utilizes thermodynamic models of the 
gas path and is well suited for testing and development of 
electronic engine controllers. In the example, a four-cylinder 
gasoline engine is used from the enDYNA model database. The 
software’s static correlation involving spark ignition timing and 
engine operating points is bypassed to incorporate the POSCA 
algorithm. This correlation is designated by the baseline 
calibration that enDYNA model is accompanied by, and is 
included in, the engine’s ECU. In the context of the MDP 
problem, the states represent the pair of gas-pedal position and 
engine speed, and the actions denote the spark ignition timing; 
the rewards that the decision-maker (engine) receives 
correspond to the engine brake torque. 

The engine model is run repeatedly over the same driving 
style represented by the pedal position. Every run over this 
driving style constitutes one complete simulation. To evaluate 
the efficiency of our approach in both steady-state and transient 
engine operation, the pedal position rate is chosen to represent 
an aggressive acceleration, as illustrated in Figure 6.  
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Figure 5. Effect of spark ignition timing on the engine brake 

 torque at constant engine speed 
6 Copyright © 2007 by ASME 



 
Before initiating the first simulation of the engine model, 

the elements of the transition probability and reward matrix are 
assigned to be zero. That is, the engine at the beginning has no 
knowledge regarding the particular style and the values of the 
rewards associated with the controllable variables.  

 
4. RESULTS 

After completing the fourth simulation, POSCA specified 
the optimal policy in terms of the spark ignition timing, as 
shown in Figure 7, and compared with the spark ignition timing 
designated by the baseline calibration of the enDYNA model. 
The optimal policy resulted in higher engine brake torque 
compared to the baseline calibration as shown in Figures 8 and 
9. This improvement indicates that the engine with self-
learning calibration was able to operate closer to MBT timing. 
Having the engine operate at MBT timing resulted in an overall 
minimization of the BSFC, illustrated in Figure 10. Figure 11 
compares the velocity of the two vehicles, one carrying the 
engine with the baseline calibration and the other with the self-
calibrated one. 

The two vehicles were simulated for the same driving style, 
namely, the same pedal-position rate. The vehicle carrying the 
engine with the self-learning calibration demonstrated higher 
velocity, since the engine produced higher brake torque for the 
same gas-pedal position rate.  

Consequently, if the driver wishes to follow a specific 
vehicle’s speed profile, this can now be achieved by stepping 
on the gas-pedal more lightly than required in the engine with 
the baseline calibration and, therefore, directly enabling in 
additional benefits in fuel economy. 
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Figure 6. Gas-pedal position rate representing  

a driver’s driving style 
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Figure 7. Spark ignition timing over the 

 driving style 
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Figure 8. Engine brake torque 
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Figure 9. Engine brake torque (zoom-in) 
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Figure 10. BSFC comparison between the baseline 

and self-learning calibration 
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Figure 11. Velocity of the two vehicles carrying the 
engine with baseline and self-learning calibration 

 
5. CONCLUDING REMARKS 

The POSCA algorithm allows an internal combustion 
engine to act as an autonomous system that can learn its 
optimal calibration for both steady-state and transient operating 
points in real time while running a vehicle. The engine 
progressively perceives the driver’s driving style and, 
eventually, learns to coordinate optimal performance of several 
specified indices, e.g., fuel economy, pollutant emissions, 
engine performance, for this particular driving style. The longer 
the engine runs with a particular driving style, the better the 
specified indices will be. The engine’s ability to learn its 
optimum calibration is not limited, however, to a particular 
driving style. The engine can learn to operate optimally for 
different drivers by assigning the transition probability P(⋅,⋅), 
and reward matrices R(⋅,⋅) for each driver. The drivers would 
indicate their identities before starting the vehicle to denote the 
pair of these matrices that the engine should employ. The 
engine can then adjust its operation to be optimal for a 
particular driver based on what it has learned in the past 
regarding his/her driving style. 
 

The example presented the real-time, self learning 
calibration of a spark ignition engine with respect to spark 
ignition timing. The engine was able to realize the MBT timing 
for each engine operating point (steady-state and transient) 
designated by a driving style representing an aggressive 
acceleration and, thus, minimizing BSFC. Aspects of 
preventing knocking were not considered in this example; 
however, a potential extension is possible such as defining the 
spark ignition space to include the maximum allowable values 
ensuring engine operation without knocking. POSCA predicted 
efficiently the optimal control policy (spark ignition timing) for 
each state (engine operating point). It is left for future research 
to explore the impact of traffic patterns, and terrain, on the 
general applicability of having the engine learn its optimal 
calibration for an individual driving style. Future research 
should also investigate the potential of advancing POSCA in 
predicting the optimal policy of a number of controllable 
variables associated with different states and, thus, avoiding the 
enhancement of the problem’s dimensionality. Increased 
dimensionality is a major challenge for learning algorithms. 
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