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ABSTRACT 
Compression ignition engine technologies have been 

advanced in the last decade to provide superior fuel economy 
and high performance. These technologies offer increased 
opportunities for optimizing engine calibration. Current engine 
calibration relies on deriving static tabular relationships 
between a set of steady-state operating points and the 
corresponding optimal values of the controllable variables. The 
values of these tabular relationships are interpolated to provide 
values of the controllable variables for each operating point 
while the engine is running. These values are controlled by the 
electronic control unit to achieve desirable engine behavior, for 
example in fuel economy, pollutant emissions, and engine 
acceleration performance. These strategies, however, are less 
effective during transient operation. Use of learning algorithms 
is an alternative approach that treats the engine as an 
“autonomous” system, namely, one capable of learning its 
optimal calibration for both steady-state and transient operating 
points in real time. In this approach, while the engine is 
running the vehicle, it progressively perceives the driver’s 
driving style and eventually learns to operate in a manner that 
optimizes specified performance indices. Major challenges to 
this approach are problem dimensionality and learning time. 
This paper examines real-time, self-learning calibration of a 
diesel engine with respect to two controllable variables, i.e., 
injection timing and VGT vane position, to minimize fuel 
consumption. Some promising simulation-based results are 
included. 

 
Keywords: diesel engine calibration, engine management 
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1. INTRODUCTION 

Advanced compression ignition engine technologies, such 
as fuel injection systems, variable geometry turbocharging 
(VGT), exhaust gas recirculation (EGR), and variable valve 
actuation (VVA), have alleviated the traditional disadvantages 
of diesel engines, and facilitated their use in the passenger 
vehicle market. These technologies provide an increased 
number of engine controllable variables that can be used for 
engine calibration to optimize one or more engine performance 
criteria, e.g., fuel economy, pollutant emissions, or engine 
acceleration performance. Current engine calibration methods 
generate a static tabular relationship between the optimal 
values of the controllable variables and the corresponding 
steady-state engine operating points to achieve optimal 
performance with respect to the specified criteria. This 
relationship is incorporated into the electronic control unit 
(ECU) that aims to maintain performance optimality. While the 
engine is running, values in the tabular correlations are being 
interpolated to provide the values of the controllable variables 
for each operating point.  

Design of Experiments (DoE) techniques [1-4] have been 
widely employed as the baseline method in implementing 
engine calibration. The major objective of DoE is to expedite 
dynamometer tests, using a smaller subset of tests. This subset 
is utilized either in implementing engine calibration 
experimentally [5, 6] or in developing mathematical models for 
evaluating engine output. The latter employs equation-based or 
artificial neural network (ANN) models [7-9]. Using these 
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models, appropriate optimization algorithms [10] can determine 
the relationships between the steady-state operating points and 
the values of the controllable variables [11-15]. These methods, 
however, seldom guarantee optimal engine calibration for the 
entire operating domain, especially during transient operation 
[16]. The latter often constitutes the largest segment of engine 
operation compared to the steady-state one [17, 18]. Fuel 
consumption and emissions during transient operation are 
extremely complicated [18], and are highly dependent on 
engine calibration [19, 20]. Atkinson et al. [16] implemented a 
dynamic model-based calibration system to provide optimal 
calibration for transient engine operation of particular driving 
cycles. Pre-specifying the entire transient engine operation as 
imposed by different driving cycles and deriving the optimal 
values of the controllable variables associated with transient 
operating points is not possible in practice, thus preventing a 
priori optimal calibration. 

As an effort to address these issues, an alternative approach 
was implemented recently, which treats the engine as a 
controlled stochastic system, and engine operation as a Markov 
Decision Process  [21]. Engine calibration is formulated as a 
sequential decision-making problem under uncertainty. A 
learning algorithm was implemented allowing the engine to 
learn the optimal values of the controllable variables in real 
time while running the vehicle. As the engine is running the 
vehicle, it progressively perceives the driver’s driving style and 
eventually learns to operate in a manner that optimizes 
specified performance indices, e.g., fuel economy, emissions, 
or engine performance with respect to the engine controllable 
variables. Consequently, optimal calibration is achieved for 
steady-state and transient engine operating points resulting 
from the driver’s driving style. The engine’s ability to learn its 
optimum calibration is not limited, however, to a particular 
driving style. The engine can learn to operate optimally for 
different drivers if they indicate their identity before starting 
the vehicle. The engine can then adjust its operation to be 
optimal for a particular driver based on what it has learned in 
the past regarding his/her driving style. A major challenge to 
this approach is the increase of the problem’s dimensionality 
when more than one controllable variable is considered.  

This paper introduces a decentralized learning method to 
include two or more controllable variables in real-time, self-
learning optimization of engine calibration. In decentralized 
learning, the learning algorithm no longer considers all 
combinations of values of the controllable variables. Instead, it 
establishes a hierarchy of the variables, and learns the optimal 
values of each variable in parallel. In particular, the algorithm 
is employed to derive the optimal values of one controllable 
variable with respect to the sequence of state transitions 
imposed by the driver’s driving style. At the same time, the 
algorithm is engaged separately to derive the optimal values of 
the second controllable variable with respect to the optimal 
policy as being learned for the first one. In case of more than 
two controllable variables the algorithm is employed to derive 

the optimal values of the third variable with respect to the 
second one and so forth. 

In the following section the mathematical framework of 
considering the engine operation as a Markov Decision Process 
(MDP) is reviewed. The decentralized engine learning process 
is introduced in Section 3. The effectiveness of the method is 
demonstrated in Section 4 through simulation of a diesel engine 
calibration with respect to the injection timing and VGT vane 
position. Results are discussed in Section 5, and conclusions 
are presented in Section 6. 
 
2. MODELING ENGINE OPERATION AS A MARKOV 
DECISION PROCESS 

In implementing self-learning optimization for engine 
calibration in real time, the engine is treated as a controlled 
stochastic system, and engine operation is modeled as a 
Markov Decision Process (MDP) [22]. The engine performance 
indices, e.g., fuel economy, emissions, and engine acceleration 
performance, are considered controlled random functions. The 
objective is to select the optimal control policy (optimum 
values of the controllable variables) for the sequences of engine 
operating point transitions, corresponding to the driver’s 
driving style, that optimize one or more engine performance 
indices (random functions). The problem of engine calibration 
is thus formulated as a sequential decision-making problem 
under uncertainty.  

The MDP provides the mathematical framework for 
modeling such problems [23]. It comprises a decision maker 
(engine), states (engine operating points), actions (controllable 
variables), the transition probability matrix (driver), the 
transition reward matrix (engine performance indices), and 
optimization criteria (e.g., maximizing fuel economy, 
minimizing pollutant emissions, maximizing engine 
performance). In this framework, the engine (decision maker) 
is faced with the problem of influencing the performance 
indices over time by selecting optimal actions (values of the 
controllable variables). The objective of the engine is to select 
the course of action (control policy) which optimizes one or 
more engine performance indices. 

Following the exposition in [21], a discrete-time, 
stochastic controlled MDP is defined as the tuple: 

 
Xn={S, A, P(⋅,⋅), R(⋅,⋅)}           (1) 

 
where { | 1, 2,..., },  is i N N= = ∈S N  denotes a finite state 
space,  ( )

i is A s∈= ∪ SA stands for a finite action space, P(⋅,⋅) is 

the transition probability matrix, and R(⋅,⋅) is the transition 
reward matrix. The decision-making process occurs at each of a 
sequence of stages 0,1, 2,..., ,  M Mκ = ∈N . At each stage, the 
decision maker observes a system’s state is ∈S , and executes 
an action ( )iA sα ∈ , from the feasible set of actions ( )iA s ⊆A  
at this state. At the next stage, the system transits to the state 

js ∈S  imposed by the conditional probabilities ( | , )j ip s s α , 



 3 Copyright © 2007 by ASME 

designated by the transition probability matrix P(⋅,⋅). The 
conditional probabilities of P(⋅,⋅), : [0,1]p × →S A , satisfy the 
constraint  

1
( | , ) 1.

N

j i
j

p s s α
=

=∑        (2) 

 
Following this state transition, the decision maker receives a 
reward associated with the action α, ( | , ), :j iR s s Rα × →S A R  
as imposed by the transition reward matrix R(⋅,⋅). The states of 
an MDP possess the Markov property, stating that the 
conditional probability distribution of future states of the 
process depends only upon the current state and not on any past 
states, i.e., it is conditionally independent of the past states (the 
path of the process) given the present state.  

Mathematically, the Markov property states that 
 

1 1 1 0 0

1

( | , ,..., )

( | ).
n j n i n i

n j n i

p X s X s X s X s

p X s X s
+ − −

+

= = = = =

= = =
 (3) 

 
The solution to an MDP can be expressed as a policy  

0 1{ , ,..., }Mπ µ µ µ= , which provides the action to be executed 
for a given state, regardless of prior history; µκ  is a function 
mapping states si into actions  ( ),isκα µ=  such that 

( ) ( ).i is A sκµ ∈  Such policies are addressed as admissible. 
Consequently, for any initial state at stage κ = 0, 0 ,is  and for 
any finite sequence of stages 0,1,2,..., ,  M Mκ = ∈N , the 
expected accumulated value of the rewards of the decision 
maker is given by the Bellman equation 
 

  0 0 0
0

1

( ) { ( | , ( )) ( ), },
M

M
l j i i jV s E R s s s V s jκ

π π
κ

µ
=

= + ∈∑ N          (4) 

                                                  , , .i j ls s s∀ ∈S  
 

In the finite-horizon context the decision maker should 
maximize the accumulated value for the next M stages; more 
precisely, an optimal policy π* is one that maximizes the overall 
expected accumulated value of the rewards  
 

* ( ) max ( ).M M
l lV s V sπ ππ∈

=
A

                         (5) 

 
Consequently, the optimal policy * * * *

0 1{ , ,..., }Mπ µ µ µ=  for the 
M-stage sequence is 
 

*
*arg max ( ).M

lV sπ
π

π
∈

=
A

                           (6) 

 
The finite-horizon model is appropriate when the decision-
maker’s “lifetime” is known, namely, the terminal stage of the 
decision-making sequence. However, in most real-life problems 
this is not the case; these problems are modeled in the infinite-

horizon context, where the overall expected reward is the limit 
of the corresponding M-stage overall reward as M →∞ : 
 

* ( ) lim  max ( ).M M
l lM

V s V sπ ππ→∞ ∈
=

A
                      (7) 

 
This relation is extremely valuable for various MDP problems, 
where the terminal stage is unknown; Eq. (7) holds under 
certain conditions [24].  

Dynamic programming (DP) has been widely used for 
many years as the principal method for solving Markov 
decision problems [25]. However, DP algorithms require the 
realization of the transition probability matrix, P(⋅,⋅), and the 
transition reward matrix, R(⋅,⋅). For complex systems, e.g., an 
internal combustion engine, with large state space, these 
matrices can be either impractical or impossible to compute. 
Alternative approaches for solving Markov decision problems 
have been developed in the field of reinforcement learning 
(RL) [26, 27]. RL has aimed to provide simulation-based 
algorithms for learning control policies of complex systems, 
where exact modeling is infeasible or expensive [28]. In this 
framework, the system interacts with its environment in real 
time, and obtains information enabling it to improve its future 
performance by means of rewards associated with the control 
actions taken. This interaction allows the system to learn in real 
time the course of action (control policy) that optimizes the 
rewards. The majority of RL algorithms are founded on 
dynamic programming. They utilize evaluation functions 
attempting to successively approximate the Bellman equation, 
Eq. (4). These evaluation functions assign to each state the total 
reward expected to accumulate over time starting from a given 
state when a policy π is employed. However, in learning 
engineering systems in which the initial state is not fixed, 
recursive updates of the evaluation functions to approximate 
Eq.(4) would demand significant amount of time to achieve the 
desired system performance. 

For the engine calibration problem built upon the MDP 
theoretical framework, the predictive optimal stochastic control 
learning algorithm is employed [21]. The algorithm is intended 
to derive the optimal policy (values of the engine controllable 
variables) ,π ∗ ∈A  for any initial state (engine operating point). 
In applying this algorithm to more than one controllable 
variable, limitations arise due to the requirement for the 
algorithm to account for all combinations of the controllable 
variables in a single set of a finite action space A. To overcome 
this problem the decentralized learning method is implemented. 

 
3. DECENTRALIZED LEARNING METHOD FOR TWO 
OR MORE CONTROLLABLE VARIABLES 

While the engine is running the vehicle and interacting 
with the driver, the probability of engine operating point 
transitions designate the elements of the transition probability 
matrix, P(⋅,⋅). The desired engine performance indices, e.g., 
fuel economy, pollutant emissions, etc, are represented by the 
elements  of  the  transition  reward  matrix, R(⋅,⋅). Through this  
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Figure 1. Learning process during the interaction between the 
engine and the driver. 

 
interaction, the driver introduces a state isκ ∈S  (engine 
operating point) to the engine’s electronic control unit (ECU), 
and on that basis the ECU selects an action, ( )iA sκα ∈   
(combination of values of the controllable variables). As a 
consequence of its action, the ECU receives a numerical 
reward, 1Rκ + ∈R , and the engine transits to a new state 

1
jsκ + ∈S , as illustrated in Figure 1. The algorithm aims to 

predict the optimal policy (optimal values of the controllable 
variables) for the sequence of engine operating transitions 
based on the conditional probabilities of the matrix, P(⋅,⋅). 
During this process, however, when two or more controllable 
variables are considered, the combinations of their values can 
grow intractably, resulting in a huge feasible action set 

( )
i is A s∈= ∪ SA . 

The decentralized learning method establishes a learning 
process that enables the derivation of the optimal values of the 
controllable variables to occur in parallel phases. The algorithm 
is employed to derive the optimal policy of the one controllable 
variable with respect to the sequence of state transitions 
imposed by the driver’s driving style. Concurrently, the 
algorithm is also engaged separately to derive the optimal 
policy of the second controllable variable with respect to the 
optimal policy as being learned for the first one. In case of 
more than two controllable variables the algorithm is employed 
in a similar fashion, namely, the third variable with respect to 
the second one and so forth.  

In implementing a diesel engine calibration with respect to 
the injection timing, α, and VGT vane position, β, a feasible set 
of values, A and B, for each controllable variable is defined. 
The decentralized learning enables the engine to implement 
two different mappings in parallel. In the first, injection timing 
is mapped to the states as a result of the correspondence of the 
driver’s driving style to particular engine operating points, i.e., 
× →RS A . In the second, VGT is mapped to the injection 

timing, i.e., × →A B R . The learning algorithm utilizes these 
two mappings to derive the optimal policies, ,απ

∗ ∈A and 

βπ
∗ ∈Β  (optimal values of injection timing and VGT) for the 

driver’s driving style as expressed by the incidence in which 
particular states or particular sequences of states arise. 

The decentralized learning process of the engine transpires 
at each stage κ in conjunction with the injection timing α ∈A  
taken for each state is ∈S , and VGT vane position β ∈B  for 
each α ∈A . At the early stages, and until full exploration of 
the feasible sets, A and B, occurs, the mapping from states to 
probabilities of selecting a particular value of injection 
timingα ∈A , and the mapping from α ∈A  to probabilities of 
selecting VGT β ∈B  are constant; namely, the values of each 
controllable variable are selected randomly with the same 
probability 

 1( | ) , , , andi ip s sα α= ∀ ∈ ∀ ∈A S
A

    (8) 

1( | ) , , ,ip sβ α β= ∀ ∈ ∀ ∈B S
B

          (9) 

1, 2,..., , | | .i N N= = S            
Exploration of the entire feasible set for each variable is 
important to evade sub-optimal solutions. The learning 
algorithm is thus used after the exploration phase to realize the 
optimal policies, απ

∗ , and βπ
∗  by means of the expected 

rewards, ( | , )j iV s s a  and ( | , )m nV α α β , generated by the 
mappings × →RS A , and × →A B R , respectively. The 
expected rewards are defined to be 
 

1

( | , ) ( | , ) ( | , )

( | , ) ( | , )
     max ,

j i j i j i

N

l j l j
l

a

V s s a p s s a R s s a

p s s a R s s a
and

N
=

∈

= ⋅ +

⎛ ⎞⋅⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
A

  (10) 

1

( | , ) ( | , ) ( | , )

( | , ) ( | , )
       max ,

m n m n j

p m p m
p

V p R s

p a a R a a

Nβ

α α β α α β α β

β β
Λ

=

∈

= ⋅

⎛ ⎞⋅⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
B

       (11) 

, 1,2,..., , | |,
, 1, 2,..., , | | .

i j N N and
m n

= =
= Λ Λ =

S
A

      

In deriving the optimal policies of the injection timing and 
VGT in self-learning calibration, which is treated in a 
stochastic framework, all uncertain quantities are described by 
probability distributions. The optimal policies, απ

∗ , and βπ
∗  are 

based on the max-min control approach, whereby the worst 
possible values of the uncertain quantities within the given set 
are assumed to occur. This is a pessimistic point of view that 
essentially assures the optimal policies will result in at least a 
minimum overall reward value. Consequently, being at state 
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,is  the algorithm predicts the optimal policy απ
∗  in terms of the 

values of injection timing α as 
 

( ) arg max min ( | , ) ,

                                    ,

j
i j is

a

i j

s V s s a

s s

απ
∗

∈
∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∀ ∈

S
A

S.

         (12) 

For this optimal policy απ
∗  the algorithm predicts the optimal 

policy βπ
∗  in terms of the values of the VGT vane position β as 

( ) arg max min ( | , ) .m na
Vβ

β

π α α α β∗

∈
∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

A
B

          (13) 

Employing decentralized learning, the derivation of the 
optimal values of more than one controllable variable can be 
achieved while avoiding the problem of dimensionality. 

 
4. EXAMPLE 

The decentralized learning introduced in the previous 
section is now applied to a four-cylinder, 1.9L turbocharged 
diesel engine. The objective is to find the optimal injection 
timing and VGT vane position  while the engine is running the 
vehicle that maximize the engine brake torque. Injection timing 
is an important controllable variable in the combustion process, 
and affects performance and emissions [29]. The major 
objective of injection timing is to initiate the start of the fuel 
injection at the crank angle resulting in the maximum brake 
torque (MBT). It designates the ignition delay defined to be the 
crank angle between the start of injection (SOI) and the start of 
combustion (SOC).  The VGT technology was originally 
considered to increase engine brake torque at tip-ins and reduce 
turbo-lag. VGT has a system of movable guide vanes located 
on the turbine stator. By adjusting the guide vanes, the exhaust 
gas energy to the turbocharger can be regulated, and thus the 
compressor mass airflow and exhaust manifold pressure can be 
controlled. 

The software package enDYNA Themos CRTD by TESIS 
[30] suitable for real-time simulation of diesel engines is 
employed. The software utilizes thermodynamic models of the 
gas path and is well suited for testing and development of 
electronic control unit (ECU). In the example, the existing 
static correlation involving injection timing and VGT is 
bypassed to incorporate the learning method and is used as a 
baseline comparison. The engine models with the baseline and 
self-learning calibration are run repeatedly over the same 
driving style represented by a segment of the FTP-75 driving 
cycle, illustrated in Figure 2. Every run over this driving style 
constitutes one complete simulation. Before initiating the first 
simulation of the engine model, the elements of the transition 
probability and reward matrix are assigned to be zero. That is, 
the engine at the beginning has no knowledge regarding the 
particular driving style and the values of the rewards associated 
with the controllable variables (injection timing and VGT).  
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Figure 2. Segment of the FTP-75 driving cycle. 

 
 
5. SIMULATION RESULTS 

After completing eight simulations with the decentralized 
learning method, the algorithm specified the optimal values of 
the injection timing and VGT vane position. The vehicle with 
the self- learning calibration was able to follow the segment of 
the driving cycle requiring lower gas pedal position rates for 
the same engine speed, as illustrated in Figures 3-5. The 
implication is that the derived policy of injection timing and 
VGT resulted in higher engine torque compared to the baseline 
calibration. The injection timing (before top dead center 
BTDC) for both vehicles is illustrated in Figures 6 and 7. While 
the baseline calibration interpolates values of the injection 
timing of steady-state operating points, the injection timing 
derived by the learning algorithm corresponded to the engine 
operating point transitions imposed by the driver’s driving 
style, and thus, self-learning calibration was able to capture 
transient engine operation. Lower gas pedal position rates 
resulted in reducing the fuel mass injection duration, shown in 
Figure 8, and consequently, less fuel mass was injected into the 
cylinders, as illustrated in Figure 9 (in zoom-in for clarity). In 
the decentralized learning of the engine, the injection timing 
was mapped to the engine operating points (states) while the 
VGT vane position was mapped to the optimal injection timing. 
The derived VGT policy is illustrated in Figures 10 and 11. 
Both injection timing and VGT were derived from the learning 
algorithm to maximize the engine torque during the engine 
operating point transitions.  

Having the engine operate at the maximum brake torque, a 
9.3% overall improvement of fuel economy was accomplished, 
as illustrated in Figure 12, compared to the baseline calibration. 
Figures 13 and 14, show a decrease in the temperature and 
NOx concentration of the exhaust gas; this is due to the earlier 
injection determined for the engine operating transitions of the 
particular driver’s style. 
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Figure 3. Engine speed. 

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Time [sec]

A
cc

el
er

at
or

 P
ed

al
 [%

]

 

 

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

 
Figure 4. Gas-pedal position rate representing  

a driver’s driving style. 
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Figure 5. Gas-pedal position rate representing  

a driver’s driving style (zoom-in). 
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Figure 6. Injection timing. 
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Figure 7. Injection timing (zoom-in). 
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Figure 8. Fuel mass injection duration (zoom-in). 
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Figure 9. Fuel mass injected per cylinder (zoom-in). 
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Figure 10. VGT vane position. 
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Figure 11. VGT vane position (zoom-in). 
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Figure 12. Fuel consumption for the driving cycle. 
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Figure 13. Emission temperature in the exhaust manifold. 
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Figure 14. NOx concentration of emissions (zoom-in). 
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6. CONCLUDING REMARKS 
This paper has presented a decentralized learning method 

suited to cope with the problem of dimensionality emerged in 
real-time, self-learning optimization of engine calibration with 
respect to more than one controllable variable. The method 
establishes a learning process that enables the derivation of the 
optimal values of the controllable variables to occur in parallel 
phases. The derivation of optimal values for more than one 
controllable variable can be achieved while keeping the 
problem’s dimensionality low. The example presented an 
application of this method in real-time, self learning calibration 
of a diesel engine with respect to injection timing and VGT 
vane position. The engine was able to realize the optimal values 
of injection timing and VGT for a driving style represented by 
a segment of the FTP-75 driving cycle, and thus, optimizing 
fuel economy. Future research should validate this method to 
more than two controllable variables and the implications in the 
learning time. 

Pre-specifying the entire transient engine operation as 
imposed by different driving cycles is impractical, and thus, 
optimal calibration for transient engine operation cannot be 
implemented a priori. The proposed method in conjunction 
with the previous developed learning algorithm can guarantee 
optimal calibration for steady-state and transient engine 
operating points resulting from the driver’s driving style. This 
capability can be valuable in engines utilized in hybrid-electric 
powertrain configurations when real-time optimization of the 
power management is considered. 
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