
 1 Copyright © 2007 by ASME

Proceedings of IMECE07
2007 ASME International Mechanical Engineering Congress and Exposition

November 11-15, 2007, Seattle, Washington, USA

IMECE2007-41258

A STATE-SPACE REPRESENTATION MODEL AND LEARNING ALGORITHM FOR
REAL-TIME DECISION-MAKING UNDER UNCERTAINTY

Andreas A. Malikopoulos Panos Y. Papalambros
Department of Mechanical Engineering Department of Mechanical Engineering

University of Michigan University of Michigan
Ann Arbor, Michigan 48109, U.S.A Ann Arbor, Michigan 48109, U.S.A

amaliko@umich.edu pyp@umich.edu
Dennis N. Assanis

Department of Mechanical Engineering
University of Michigan

Ann Arbor, Michigan 48109, U.S.A
assanis@umich.edu

ABSTRACT

Modeling dynamic systems incurring stochastic
disturbances for deriving a control policy is a ubiquitous task in
engineering. However, in some instances obtaining a model of
a system may be impractical or impossible. Alternative
approaches have been developed using a simulation-based
stochastic framework, in which the system interacts with its
environment in real time and obtains information that can be
processed to produce an optimal control policy. In this context,
the problem of developing a policy for controlling the system’s
behavior is formulated as a sequential decision-making
problem under uncertainty. This paper considers real-time
sequential decision-making under uncertainty modeled as a
Markov Decision Process (MDP). A state-space representation
model is constructed through a learning mechanism and is used
to improve system performance over time. The model allows
decision making based on gradually enhanced knowledge of
system response as it transitions from one state to another, in
conjunction with actions taken at each state. A learning
algorithm is implemented realizing in real time the optimal
control policy associated with the state transitions. The
proposed method is demonstrated on the single cart-pole
balancing problem and a vehicle cruise control problem.

Keywords: sequential decision-making under uncertainty,
Markov Decision Process (MDP), reinforcement learning,
learning algorithms, inverted pendulum, vehicle cruise control

1. INTRODUCTION

Deriving a control policy for dynamic systems is an off-
line process in which various methods from control theory are
utilized iteratively. These methods aim to determine the policy

that satisfies the system’s physical constraints while optimizing
specific performance criteria. A challenging task in this process
is to derive a mathematical model of the system’s dynamics that
can adequately predict the response of the physical system to
all anticipated inputs. Exact modeling of complex engineering
systems, however, may be infeasible or expensive. Viable
alternative methods have been developed enabling the real-time
implementation of control policies for systems when an
accurate model is not available. In this framework, the system
interacts with its environment, and obtains information
enabling it to improve its future performance by means of
rewards associated with control actions taken. This interaction
portrays the learning process conveyed by the progressive
enhancement of the system’s “knowledge” regarding the course
of action (control policy) that maximizes the accumulated
rewards with respect to the system’s operating point (state).
The environment is assumed to be non-deterministic; namely,
taking the same action in the same state on two different stages,
the system may transit to a different state and receive a
dissimilar reward in the subsequent stage. Consequently, the
problem of developing a policy for controlling the system’s
behavior is formulated as a sequential decision-making
problem under uncertainty.

Dynamic programming (DP) has been widely employed as
the principal method for analysis of sequential decision-making
problems [1]. Algorithms, such as value iteration, and policy
iteration, have been extensively utilized in solving
deterministic and stochastic optimal control problems, Markov
and semi-Markov decision problems, min-max control
problems, and sequential games. However, the computational
complexity of these algorithms in some occasions may be
prohibitive and can grow intractably with the size of the

 2 Copyright © 2007 by ASME

problem and its related data, referred to as the DP “curse of
dimensionality” [2]. In addition, DP algorithms require the
realization of the conditional probabilities of state transitions
and the associated rewards, implying a priori knowledge of the
system dynamics.

Alternative approaches for solving sequential decision-
making problems under uncertainty have been primarily
developed in the field of Reinforcement Learning (RL) [3, 4].
RL has aimed to provide simulation-based algorithms, founded
on DP, for learning control policies of complex systems, where
exact modeling is infeasible or expensive [5]. A major
influence on research leading to current RL algorithms has
been Samuel’s method [6, 7], used to modify a heuristic
evaluation function for deriving optimal board positions in the
game of checkers. In this algorithm, Samuel represented the
evaluation function as a weighted sum of numerical features
and adjusted the weights based on an error derived from
comparing evaluations of current and predicted board positions.
This approach was refined and extended by Sutton [8, 9] to
introduce a class of incremental learning algorithms, Temporal
Difference (TD). TD algorithms are specialized for deriving
optimal policies for incompletely known systems, using past
experience to predict their future behavior. Watkins [10, 11]
extended Sutton’s TD algorithms and developed an algorithm
for systems to learn how to act optimally in controlled Markov
domains by explicitly utilizing the theory of DP. A strong
condition implicit in the convergence of Q-learning to an
optimal control policy is that the sequence of stages that forms
the basis of learning must include an infinite number of stages
for each initial state and action. However, Q-learning is
considered the most popular and efficient model-free learning
algorithm in deriving optimal control policies in Markov
domains [12]. Schwartz [13] explored the potential of adapting
Q-learning to an average-reward framework with his R-
learning algorithm; Bertsekas and Tsitsiklis [3] presented a
similar to Q-learning average-reward algorithm. Mahadevan
[14] surveyed reinforcement-learning average-reward
algorithms and showed that these algorithms do not always
produce bias-optimal control policies.

Although many of these algorithms are eventually
guaranteed to find optimal policies in sequential decision-
making problems under uncertainty, their use of the
accumulated data acquired over the learning process is
inefficient, and they require a significant amount of experience
to achieve good performance [12]. This requirement arises due
to the formation of these algorithms in deriving optimal
policies without learning the system models en route.
Algorithms for computing optimal policies by learning the
models are especially important in applications in which real-
world experience is considered expensive. Sutton’s Dyna
architecture [15, 16] exploits strategies which simultaneously
utilize experience in building the model and adjust the derived
policy. Prioritized sweeping [17] and Queue-Dyna [18] are
similar methods concentrating on the interesting subspaces of
the state-action space. Barto et al. [19] developed another

method, called Real-Time Dynamic Programming (RTDP),
referring to the cases in which concurrently executing DP and
control processes influence one another. RTDP focuses the
computational effort on the state-subspace that the system is
most likely to occupy. This method is specific to problems in
which the system needs to achieve particular goal states and the
initial cost of every goal state is zero.

This paper considers the problem of deriving optimal
policies in real-time sequential decision-making under
uncertainty that can be modeled as a Markov Decision Process
(MDP). A state-space representation model is constructed
through a learning mechanism and is used to improve system
performance over time. The model accumulates gradually
enhanced knowledge of system response as it transitions from
one state to another, in conjunction with actions taken at each
state. A learning algorithm is implemented realizing in real time
the optimal course of action (control policy) associated with the
state transitions. The major difference between the proposed
method and the existing RL algorithms is that the latter consists
of evaluation functions attempting to successively approximate
the Bellman equation [20]. The proposed real-time learning
method, on the contrary, utilizes an evaluation function which
considers the expected reward that can be achieved by state
transitions forward in time. This approach is especially
appealing to learning engineering systems in which the initial
state is not fixed, and recursive updates of the evaluation
functions to approximate the Bellman equation would demand
significant amount of experience to achieve the desired system
performance.

In the following section the mathematical framework for
modeling sequential decision-making problems under
uncertainty is presented and the predictive optimal decision-
making learning method is introduced. The performance of the
proposed method is demonstrated on the single cart-pole
balancing problem, in Section 3 and, on a vehicle cruise-
control problem, in Section 4. Conclusions are presented in
Section 5.

2. PROBLEM FORMULATION

A large class of sequential decision-making problems
under uncertainty can be modeled as a Markov Decision
Process (MDP). MDP, extensively covered by Puterman [21],
provides the mathematical framework for modeling decision-
making in situations where outcomes are partly random and
partly under the control of the decision maker. Decisions are
made at points of time referred to as decision epochs, and the
time domain can be either discrete or continuous. The focus of
this paper is on discrete-time decision-making problems.

The Markov decision process model consists of five
elements: (a) decision epochs; (b) states; (c) actions; (d) the
transition probability matrix; and (e) the transition reward
matrix. In this framework, the decision maker is faced with the
problem of influencing system behavior as it evolves over time,
by making decisions (choosing actions). The objective of the
decision maker is to select the course of action (control policy)

 3 Copyright © 2007 by ASME

which causes the system to perform optimally with respect to
some predetermined optimization criterion. Decisions must
anticipate rewards (or costs) associated with future system
states-actions.

At each decision epoch, the system occupies a state is from
the finite set of all possible system states S

 { | 1,2,..., }, .is i N N= = ∈S N (1)
In this state is ∈S , the decision maker has available a set of
allowable actions, (), ()i iA s A sα ∈ ⊆A , where A is the finite
action space

().
i is A s∈= SA ∪ (2)

The decision-making process occurs at each of a sequence
of decision epochs 0,1,2,..., , M M= ∈T N . At each epoch,
the decision maker observes a system’s state is ∈S , and
executes an action ()iA sα ∈ , from the feasible set of actions

()iA s ⊆A at this state. At the next epoch, the system transits to
the state js ∈S imposed by the conditional
probabilities (| ,)j ip s s α , designated by the transition
probability matrix P(⋅,⋅). The conditional probabilities of
P(⋅,⋅), : [0,1]p × →S A , satisfy the constraint

1
(| ,) 1.

N

j i
j

p s s α
=

=∑ (3)

Following this state transition, the decision maker receives a
reward associated with the action α, (| ,), :j iR s s Rα × →RS A
as imposed by the transition reward matrix R(⋅,⋅). The states of
an MDP possess the Markov property, stating that the
conditional probability distribution of future states of the
process depends only upon the current state and not on any past
states, i.e., it is conditionally independent of the past states (the
path of the process) given the present state. Mathematically, the
Markov property states that

1 1 1 0 0

1

(| , ,...,)

(|).
n j n i n i

n j n i

p X s X s X s X s

p X s X s
+ − −

+

= = = = =

= = =
 (4)

2.1 Optimal Policies and Performance Criteria
The solution to an MDP can be expressed as an admissible

control policy such that a given performance criterion is
optimized over all admissible policies Π. An admissible policy
consists of a sequence of functions

0 1{ , ,..., },Mπ µ µ µ= (5)
where µT maps states is into actions ()isα µ= T and is such
that () (), .i i is A s sµ ∈ ∀ ∈T S

Consequently, given an initial state at decision epoch T = 0,
,is and an admissible policy 0 1{ , ,..., },Mπ µ µ µ= the expected

accumulated undiscounted value of the rewards of the decision
maker is given by the Bellman optimality equation

1

1 1
0

() { (| , ()) (| , ())},
M

i N N N T j i i
T

V s E R s s s V s s sµ µ
−

− −
=

= + ∑ (6)

 , , , 1, 2,..., , .i js s i j N N∀ ∈ = ∈S N
In the finite-horizon context the decision maker should
maximize the accumulated value for the next M epochs. An
optimal policy *π ∈Π is one that maximizes the overall
expected accumulated value of the rewards

() max ().i iV s V sππ π
∗

∈
=

Π
 (7)

Consequently, the optimal policy 0 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗= for the
M-decision epoch sequence is

arg max ().iV s
π

π
π ∗

∗

∈
=

Π
 (8)

The finite-horizon model is appropriate when the decision-
maker’s “lifetime” is known, namely, the terminal epoch of the
decision-making sequence. For problems with a very large
number of decision epochs, however, the infinite-horizon
model is more appropriate. In this context, the overall expected
undiscounted reward is:

* () lim max ().i iM
V s V sπ ππ→∞ ∈

=
Π

 (9)

This relation is valuable computationally and analytically, and
it holds under certain conditions [22].

2.2 Predictive Optimal Decision-Making State-Space
Representation

The predictive optimal decision-making (POD) learning
method consists of a new state-space system representation and
a learning algorithm. The state-space representation
accumulates gradually enhanced knowledge of the system’s
transition from each state to another in conjunction with actions
taken for each state. This knowledge is expressed in terms of an
expected evaluation function associated with each state. While
the model’s knowledge is advanced, the learning algorithm
realizes, at each decision epoch, the course of action that
guarantees at least a minimum value of the overall reward for
both the current state and the subsequent states.

The major difference between the proposed learning
method and the existing RL methods is that the latter consists
of evaluation functions attempting to successively approximate
the Bellman equation, Eq. (6). These evaluation functions
assign to each state the total reward expected to accumulate
over time starting from a given state when a policy π is
employed. The proposed real-time learning method, on the
contrary, utilizes an evaluation function which considers the
expected reward that can be achieved by state transitions
forward in time. This approach is especially appealing to
learning engineering systems in which the initial state is not
fixed [23, 24], and recursive updates of the evaluation
functions to approximate Eq.(6) would demand a huge number
of iterations to achieve the desired system performance.

The new state-space representation defines the POD
domain �S . It is implemented by a mapping H from the

 4 Copyright © 2007 by ASME

Cartesian product of the finite state space and action space of
the MDP:

() () ,× × × → �H : S A S A S (10)
where { | 1,2,..., }, is i N N= = ∈NS denotes the Markov state
space, and (),

i i is A s s∈= ∀ ∈SA S∪ stands for a finite action
space. This mapping generates an indexed family of
subsets,

is
�S , for each state is ∈S , defined as Predictive

Representation Nodes (PRNs). Each PRN is constituted by a
set of POD states,

i

i
m ss ∈ �� S ,

{ | , 1,2,..., , | | }
i

i
ms s i m N N= = = ∈N� �S S , (11)

Each POD state i
ms ∈S�� essentially represents a Markov state

transition from is ∈S to ms ∈S . PRNs partition the POD
domain insofar as the POD underlying structure captures the
state transitions in the Markov domain. Consequently, a PRN is
defined as

() () 1
{ | , (| , ()) 1, | |},

i i
i

N
i i
m m i m m i is A s m

s s s s s p s s s N
µ

µ
∈ =

= ≡ → = =∑� � �S S

, , () (),i m i is s s A sµ∀ ∈ ∀ ∈S (12)
the union of which defines the POD domain

, with
isi

m sis ∈
= ��
� �∪ SS S (13)

.
isi

m sis ∈
= ∅��

�∩ S S (14)

Each PRN,
is
�S , corresponds to a Markov state, is ∈S , and

portrays all possible transitions occurring from this state si to
the other states ms ∈S . PRNs, constituting the fundamental
aspect of the POD state representation, provide an assessment
of the Markov state transitions along with the actions executed
at each state. This assessment aims to establish a necessary
embedded property of the new state representation so as to
consider the potential transitions that can occur in subsequent
decision epochs. The assessment is expressed by means of the
PRN value, (| ())

i

i
s m iR s sµ� , which accounts for the maximum

average expected reward that can be achieved by transitions
occurring inside a PRN. Consequently, the PRN value is
defined as

1

()

(| , ()) (| , ())
(| ()) max ,

i
i

N

m i i m i i
i m

s m i s

p s s s R s s s
R s s

Nµ

µ µ
µ =

∈

⎛ ⎞⋅⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
�

A

 , , , () (),and | | .i
m i m i is s s s A s Nµ∀ ∈ ∀ ∈ ∀ ∈ =S S S�� (15)

The PRN value is exploited by POD state representation as
an evaluation metric to estimate the subsequent Markov state
transitions. The estimation property is founded on the
assessment of POD states by means of an expected evaluation
function, (, ())i i

PRN m iR s sµ� , defined as

{
}

(, ()) (| , ()) (| , ())

 (| ()) ,
m

i i
PRN m i m i i m i i

m
s j m

R s s p s s s R s s s

R s s

µ µ µ

µ

= ⋅ +

+

�

�
 (16)

 , , , , () (), () ().i m
m j i m i i m ms s s s s A s s A sµ µ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈S S�� �

Consequently, employing the POD evaluation function through
Eq. (16), each POD state,

i

i
m ss ∈ �� S , is comprised of an overall

reward corresponding to: (a) the expected reward of transiting
from state si to sm (implying also the transition from the PRN

is
�S to

ms
�S); and (b) the maximum average expected reward

when transiting from sm to any other Markov state (transition
occurring into

ms
�S).

While the system interacts with its environment, the POD
model learns the system dynamics in terms of the Markov state
transitions. The POD state representation attempts to provide a
process in realizing the sequences of state transitions that
occurred in the Markov domain, as infused in PRNs. The
different sequences of the Markov state transitions are captured
by the POD states and evaluated through the expected
evaluation functions given in Eq. (16). Consequently, the
highest value of the expected evaluation function at each POD
state essentially estimates the subsequent Markov state
transitions with respect to the actions taken. As the process is
stochastic, however, it is still necessary for the real-time
learning method to build a decision-making mechanism of how
to select actions.

The learning performance is closely related to the
exploration-exploitation strategy of the action space. More
precisely, the decision maker has to exploit what is already
known regarding the correlation involving the admissible state-
action pairs that maximize the rewards, and also to explore
those actions that have not yet been tried for these pairs to
assess whether these actions may result in higher rewards. A
balance between an exhaustive exploration of the environment
and the exploitation of the learned policy is fundamental to
reach nearly optimal solutions in few decision epochs and,
thus, enhancing the learning performance. This exploration-
exploitation dilemma has been extensively reported in the
literature. Iwata et al. [25] proposed a model-based learning
method extending Q-learning and introducing two separated
functions based on statistics and on information by applying
exploration and exploitation strategies. Ishii et al. [26]
developed a model-based reinforcement learning method
utilizing a balance parameter, controlled through variation of
action rewards and perception of environmental change. Chan-
Geon et al. [27] proposed an exploration-exploitation policy in
Q-learning consisting of an auxiliary Markov process and the
original Markov process. Miyazaki et al. [28] developed a
unified learning system realizing the tradeoff between
exploration and exploitation. Hernandez-Aguirre et al. [29]
analyzed the problem of exploration-exploitation in the context
of the probably approximately correct framework and studied
whether it is possible to give bounds on the complexity of the

 5 Copyright © 2007 by ASME

exploration needed to achieve a fixed approximation error over
the action value function with a given probability.

An exhaustive exploration of the environment is necessary
to evade prematurely convergence on a sub-optimal solution
even if this may result in both scarifying the system’s
performance in the short run and increasing the learning time.
In our case it is assumed that, for any state is ∈S , all actions
of the feasible action set () ()i is A sµ ∈ are selected by the
decision maker at least once. At the early decision epochs and
until full exploration of the action set (),i iA s s∀ ∈S occurs,
the mapping from the states to probabilities of selecting the
actions is constant; namely, the actions for each state are
selected randomly with the same probability

1(() |) , () (), .
()i i i i i

i

p s s s A s s
A s

µ µ= ∀ ∈ ∀ ∈S (17)

When the exploration phase is complete, the POD learning
algorithm is utilized to build up the decision-making
mechanism.

2.3 The Predictive Optimal Decision-Making Learning
Algorithm

The POD state representation attempts to provide an
efficient process in realizing the state transitions that occurred
in the Markov domain. The different sequences of the state
transitions are captured by the POD states and evaluated
through the expected evaluation functions given in Eq. (16).
Consequently, the highest value of the expected evaluation
function at each PRN essentially predicts the Markov state
transition that will occur in the future. As the process is
stochastic, however, it is still necessary for the decision maker
to build a decision-making mechanism of how to make
decisions (select actions). The POD learning algorithm aims to
provide this mechanism.

The principle of the POD learning algorithm is founded on
the theory of stochastic control problems with unknown
disturbance distribution- also known as games against nature.
The decision-making mechanism is modeled as a zero-sum
stochastic game between the decision maker (controller) and an
“opponent” (environment). The solution of this game is derived
utilizing the mini-max theorem. Each POD state,

i

i
m ss ∈ �� S ,

corresponds to a completed game that started at the Markov
state is ∈S and ended up at ms ∈S . At the state si, the
decision maker has a set of strategies (actions) () ()i is A sµ ∈
available to play. Similarly, the environment’s set of strategies
are the Markov states { | 1, 2,..., }, is i N N= = ∈NS . During
the learning process, this game has been played insofar as the
decision maker forms a belief about the environment’s behavior
by fully exploring all available strategies, () ()i is A sµ ∈ .
Consequently, at the state si, the decision maker is able to
predict the subsequent states to be selected by the environment
by means of the PRN expected evaluation functions,

(, ())i i
PRN m iR s sµ� . However, to handle the uncertainty of this

prediction, the decision maker selects his/her strategy by means
of maximizing the minimum expected accumulated reward
related to both immediate state transition and subsequent
transitions, namely,

(){ }*

() ()
() arg max min (, ()) ,

 , , () ().

mi i

i i
i PRN m iss A s

i
m i i i

s R s s

s s s A s
µ

π µ

µ

∈∈
=

∀ ∈ ∀ ∈ ∀ ∈

S

S S

�

��
 (18)

Consequently, the decision maker seeks for the max-min
policy *π ∈Π , which guarantees the best performance in the
worst possible situation.

3. CASE STUDY ONE

3.1 The Single Cart-Pole Balancing Problem
The overall performance of the POD real-time learning

model is evaluated on the basis of its application to the inverted
pendulum balancing problem. The inverted pendulum involves
a pendulum hinged to the top of a wheeled cart as illustrated in
Figure 1. The objective of POD is to balance the pendulum
having no prior knowledge about the system dynamics utilizing
only real-time measurements.

Realizing the balance control policy of a single inverted
pendulum without a priori knowledge of the system’s model
has been extensively reported in the literature for the evaluation
of learning algorithms. Anderson [30] implemented a neural
network reinforcement-learning method to generate successful
action sequences. Two neural networks having a similar
structure were employed to learn two functions: (a) an action
function mapping the current state into control actions, and (b)
an evaluation action mapping the current state into an
evaluation of that state. These two networks were trained
utilizing reinforcement learning by evaluating the performance
of the network and compared to real-time measurements.
Williams et al. [31] proposed a learning architecture for
training a neural network controller to provide the appropriate
control force to balance the inverted pendulum. One network
for the identification of the plant dynamics and one for the
controller were employed. Zhidong et al. [32] implemented a

MM

x

ϕ

,m I

U MM

x

ϕ

,m I

U

Figure 1. The inverted pendulum.

 6 Copyright © 2007 by ASME

 “neural-fuzzy BOXES” control system by neural networks and
utilized reinforcement learning for the training. Jeen-Shing et
al. [33] proposed a defuzzification method incorporating a
genetic algorithm to learn the defuzzification factors. Mustapha
et al. [34] developed an actor-critic reinforcement learning
algorithm represented by two adaptive neural-fuzzy systems. Si
et al. [35] proposed a generic on-line learning control system
similar to Anderson’s utilizing neural networks and evaluated it
through its application to both a single and double cart-pole
balancing problem. The system utilizes two neural networks,
and employs the action- dependent heuristic dynamic
programming to adapt the weights of the networks.

In the implementation of the POD on the single inverted
pendulum presented here, two major variations are considered:
(a) a single look-up table-based representation is employed for
the controller to develop the mapping from the system’s
Markov states to optimal actions, and (b) two system’s state
variables are selected to represent the Markov state. The latter
introduces uncertainty and thus a conditional probability
distribution associating the state transitions with respect to the
actions taken. Consequently, the POD method is evaluated in
deriving the optimal policy (balance control policy) in a
sequential decision making problem under uncertainty.

The governing equations, derived from the free body
diagram of the system, shown in Figure 2, are:

2() cos sin ,M m x bx mL mL Uϕ ϕ ϕ ϕ+ + + − =�� ��� � (19)
2cos () sin 0,mLx I mL mgLϕ ϕ ϕ+ + + =���� (20)

2
2

N secwhere 0.5 kg, 0.2 kg, 0.1
m

m 0.006 kg m , 9.81 ,and 0.3 m.
sec

M m b

I g L

= = =

= = =

The goal of the learning controller is to realize in real time
the force, U, of a fixed magnitude to be applied either to the
right or the left direction so that the pendulum stands balanced
when released from any angle, φ, between 3° and -3°. The
system is simulated by numerically solving the nonlinear
differential equations (19) and (20) employing the explicit
Runge-Kutta method with a time step of τ =0.02 sec. The
simulation is conducted by observing the system’s states and
executing actions (control force U) with a sample rate T =0.02
sec (50 Hz). This sample rate defines a sequence of decision-
making epochs, 0,1,2,..., , M M= ∈T N .
The system is fully specified by four state variables: (a) the
position of the cart on the track, ()x t ; (b) the cart velocity,

()x t� ; (c) the pendulum’s angle with respect to the vertical
position, ()tϕ ; and (d) the angular velocity, ()tϕ� . However, to
incorporate uncertainty, the Markov states are selected to be
only the pair of the pendulum’s angle and angular velocity,
namely, the finite state space S, in Eq. (1) is defined as

{ | (,)}.i is s ϕ ϕ= = �S (21)

MM

x

L

,m I
U

VN

HN

�bx

x��
VNHN

ϕ��I

2ϕ�I

ϕ

mg

��x

MM

x

L

,m I
U

VN

HN

�bx

x��
VNHN

ϕ��I

2ϕ�I

ϕ

mg

��x

Figure 2. Free body diagram of the system.

Consequently, at state is ∈S and executing a control force
value, U(si), the system will end up at state js ∈S with a
conditional probably (| , ())j i ip s s U s . The control force, U(si),

selects values from the finite set A, defined as
() [3 ,3], where 1, 2,..., , | | .iA s N N i N N= = − = =A S (22)

The decision-making process occurs at each of a sequence of
epochs 0,1,2,..., , M M= ∈T N . At each decision epoch, the
learning controller observes the system’s state is ∈S , and
executes a control force value () ()i iU s A s∈ . At the next
decision epoch, the system transits to another state

js ∈S imposed by the conditional probabilities
(| , ())j i ip s s U s , and receives a numerical reward (the

pendulum’s angle φ).
The inverted pendulum is simulated repeatedly for

different initial angles, φ, between 3° and -3° utilizing the POD
learning method. The simulation lasts for 50 sec and each
complete simulation defines one iteration. If at any instant
during the simulation, the pendulum’s angle, φ, becomes
greater than 3° or less than -3°, this constitutes a failure,
denoted by stating that there was one iteration associated with a
failure. If, however, no failure occurs during the simulation,
this is denoted by stating that there was one iteration associated
with no failure.

3.2 Simulation Results
After completing the learning process, the controller employing
the POD learning method realizes the balance control policy of
the pendulum, as illustrated in Figure 3. In some instances,
however, the system’s response demonstrates some overshoots
or delays during the transient period, shown in Figure 4. This
can be handled by a denser parameterization of the state-space
or adding a penalty in long transient responses. The efficiency
of the POD learning method in deriving the optimal balance
control policy that stabilizes the system is illustrated in Figure
5. It is noted that after POD realizes the optimal policy in 749
failures and, afterwards, as the number of iterations continues
no further failures occur.

 7 Copyright © 2007 by ASME

0 10 20 30 40 50
-4

-3

-2

-1

0

1

2

3

4

time [sec]

P
hi

 [d
eg

]
Simulation of the Controlled Pendulum with POD

Figure 3. Simulation of the system after learning the balance

control policy with POD for different initial conditions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3

-2

-1

0

1

2

3

time [sec]

P
hi

 [d
eg

]

Simulation of the Controlled Pendulum with POD

Figure 4. Simulation of the system after learning the balance
control policy with POD for different initial conditions (zoom

in).

0 0.5 1 1.5 2

x 10
4

0

100

200

300

400

500

600

700

800

Fa
ilu

re
s

Iterations

Number of Failures of POD in deriving
 the balance control policy

Figure 5. Number of failures until POD derives the balance

control policy.

4. CASE STUDY TWO

4.1 Vehicle Cruise Control
The POD real-time learning method introduced in the

previous sections is now applied to a vehicle cruise-control
problem. Cruise control automatically regulates the vehicle’s
longitudinal velocity by suitably adjusting the gas pedal
position. A vehicle cruise-control system is activated by the
driver who desires to maintain a constant speed in long
highway driving. The driver activates the cruise controller
while driving at a particular speed, which is then recorded as
the desired or set-point speed to be maintained by the
controller. The main goal in designing a cruise control
algorithm is to maintain vehicle speed smoothly but accurately,
even under large variation of plant parameters (e.g., the
vehicle’s varying mass in terms of the number of passengers)
and road grade. In the case of passenger cars, however, vehicle
mass may change noticeably but is within a small range.
Therefore, powertrain behavior might not vary significantly.

The objective of the POD learning cruise controller is to
realize in real time the control policy (gas pedal position) that
maintains the vehicle speed as set by the driver under a great
range of different road grades. Implementing learning vehicle
cruise controllers has been addressed previously employing
learning and active control approaches. Zhang et al. [36]
implemented learning control based on pattern recognition to
regulate in real time the parameters of an PID cruise controller.
Shahdi et al. [37] proposed an active learning method to extract
the driver's behavior and to derive control rules for a cruise
control system. However, no attempt has been reported in
implementing a learning automotive vehicle cruise controller
utilizing the principle of reinforcement learning, i.e., enabling
the controller to improve its performance over time by learning
from its own failures through a reinforcement signal from the
external environment, and thus, attempting to improve future
performance.

The software package enDYNA by TESIS [38], suitable for
real-time simulation of internal combustion engines, is used to
evaluate the performance of the POD learning cruise controller.
The software simulates the longitudinal vehicle dynamics with
a highly variable drive train including the modules of starter,
brake, clutch, converter, and transmission. In the driving mode
the engine is operated by means of the usual vehicle control
elements just as a driver would do. In addition, a mechanical
parking lock and the uphill grade can be set. The driver model
is designed to operate the vehicle at given speed profiles
(driving cycles). It actuates the starter, accelerator, clutch and
brake pedals according to the profile specification, and also
shifts gears. In this example, an existing vehicle model is
selected representing a midsize passenger car carrying an 1.9L
turbocharged diesel engine.

When activated, the learning cruise controller bypasses the
driver model and takes over the vehicle’s cruising. The Markov
states are defined to be the pair of the transmission gear and the

 8 Copyright © 2007 by ASME

difference between the desired and actual vehicle speed, ∆V,
namely,

{ | (,)}.i is s gear V= = ∆S (23)
The actions, α, correspond to the gas pedal position and

can take values from the feasible set A, defined as
() [0,0.7], where 1, 2,..., , | | .iA s i N N= = = =A S (24)

To incorporate uncertainty the vehicle is simulated in a
great range of different road grades from 0° to 10°.
Consequently, at state is ∈S and executing a control action
(gas pedal position), the system transits to another state

js ∈S with a conditional probably (| , ())j i ip s s sα , since the
acceleration capability of a vehicle varies at different road
grades. As a consequence of this state transition the system
receives a numerical reward (difference between the desired
and actual vehicle speed).

4.2 Simulation Results
After completing four simulations of each road grade, the POD
cruise controller realizes the control policy (gas pedal position)
to maintain the vehicle’s speed at the desired set point. The
vehicle model was initiated from zero speed. The driver model,
following the driving cycle, accelerated the vehicle up to
40mph and at 10sec activated the POD cruise controller. The
desired and actual vehicle speeds for three different road grades
as well as the gas pedal rates of the POD controller are
illustrated in Figure 6. The small discrepancy between the
desired and actual vehicle speed before the cruise controller
activation is due to the steady-state error of the driver’s model.
However, since the desired driving cycle set the vehicle’s speed
to be at 40mph, when the POD cruise controller is activated
helps to correct this error and, afterwards, maintains the
vehicle’s actual speed at the set point. The accelerator pedal
position is at different values because in the case of road grades
2º and 6º the selected transmission gear is 2, shown in Figure 7,
while in case of road grade 10º the selected transmission gear is
1. So, at different selected gears, the accelerator pedal varies to
maintain constant vehicle’s speed. In Figure 8, the performance
of POD cruise controller is evaluated in a severe driving
scenario where the road grade changes from 0° to 10°, while
the POD cruise controller is active. In this scenario, the POD is
activated again at 10sec when the road grade is 0°, and at 14
sec the road grade becomes 10°. The engine speed and the
selected transmission gear for this scenario are shown in Figure
9. While the vehicle is cruising at constant speed and the road
grade changes from 0º to 10º, the vehicle’s speed starts
decreasing after some time. Once this occurs, the self-learning
cruise controller senses the discrepancy between the desired
and actual vehicle speed and commands the accelerator pedal
so as to correct the error. Consequently, there is a small time
delay in the acceleration pedal command, illustrated in Figure
8, which depends on vehicle inertia.

0 5 10 15 20
0

10

20

30

40

Cruise Control with POD

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

0 5 10 15 20
0

0.5

1

A
cc

el
er

at
or

 P
ed

al

Time [sec]

Driving Cycle
Grade 2o

Grade 6o

Grade 10o

Figure 6. Vehicle speed and accelerator pedal rate for different

road grades by self-learning cruise control with POD.

0 5 10 15 20
0

1000

2000

3000

Cruise Control with POD

E
ng

in
e

S
pe

ed
 [R

P
M

]

0 5 10 15 20
0

1

2

3

Tr
an

sm
is

si
on

 G
ea

r

Time [sec]

Grade 2o

Grade 6o

Grade 10o

Figure 7. Engine speed and transmission gear selection for

different road grades by self-learning cruise control with POD.

0 5 10 15 20
0

10

20

30

40

Cruise Control with POD
At 14 sec the road grade increases from 0o to 10o

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

0 5 10 15 20
0

0.5

1

A
cc

el
er

at
or

 P
ed

al

Time [sec]

Driving Cycle
Vehicle Speed

Figure 8. Vehicle speed and accelerator pedal rate for a road

grade increase from 0° to 10°.

 9 Copyright © 2007 by ASME

0 5 10 15 20
0

1000

2000

3000

Cruise Control with POD
At 14 sec the road grade increases from 0o to 10o

E
ng

in
e

S
pe

ed
 [R

P
M

]

0 5 10 15 20
0

1

2

3

Tr
an

sm
is

si
on

 G
ea

r

Time [sec]
Figure 9. Engine speed and transmission gear selection for a

road grade increase from 0° to 10°.

5. CONCLUDING REMARKS

This paper has presented a real-time learning method,
consisting of a new state-space representation model and a
learning algorithm, suited to solve sequential decision-making
problems under uncertainty in real time. The method aims to
build autonomous engineering systems that can learn to
improve their performance over time in stochastic
environments. Such systems must be able to sense their
environments, estimate the consequences of their actions, and
learn in real time the course of action (control policy) that
optimizes a specified objective. The major difference between
the POD learning method presented in this paper and the
existing reinforcement learning methods is that the first
employs an evaluation function which does not require
recursive iterations to approximate the Bellman equation. This
approach has been shown to be especially appealing to systems
in which the initial state is not fixed, and recursive updates of
the evaluation functions to approximate the Bellman equation
would demand significant amount of experience to achieve the
desired system performance.

The overall performance of the POD method in deriving an
optimal control policy was evaluated by its application to two
examples: (a) the cart-pole balancing problem, and (b) a real-
time vehicle cruise-controller development. In the first
problem, POD realized the balancing control policy for an
inverted pendulum when the pendulum was released from any
angle between 3° and -3°. In implementing the real-time cruise
controller, the POD was able to maintain the desired vehicle’s
speed at any road grade between 0° and 10°. Future research
should investigate the potential of advancing the POD method
to accommodate more than one decision maker in sequential
decision-making problems under uncertainty, known as multi-
agent systems [39]. These problems are found in systems in
which many intelligent decision makers (agents) interact with
each other. The agents are considered to be autonomous
entities. Their interactions can be either cooperative or selfish,
i.e., the agents can share a common goal, e.g., control of

vehicles operating in platoons to improve throughput on
congested highways by allowing groups of vehicles to travel
together in a tightly spaced platoon at high speeds.
Alternatively, the agents can pursue their own interests.

ACKNOWLEDGMENTS
This research was partially supported by the Automotive

Research Center (ARC), a U.S. Army Center of Excellence in
Modeling and Simulation of Ground Vehicles at the University
of Michigan. The engine simulation package enDYNA was
provided by TESIS DYNAware GmbH. This support is
gratefully acknowledged.

REFERENCES
[1] Bertsekas, D. P. and Shreve, S. E., Stochastic Optimal

Control: The Discrete-Time Case, 1st edition, Athena
Scientific, February 2007.

[2] Gosavi, A., "Reinforcement Learning for Long-Run
Average Cost," European Journal of Operational
Research, vol. 155, pp. 654-74, 2004.

[3] Bertsekas, D. P. and Tsitsiklis, J. N., Neuro-Dynamic
Programming (Optimization and Neural Computation
Series, 3), 1st edition, Athena Scientific, May 1996.

[4] Sutton, R. S. and Barto, A. G., Reinforcement Learning:
An Introduction (Adaptive Computation and Machine
Learning), The MIT Press, March 1998.

[5] Borkar, V. S., "A Learning Algorithm for Discrete-Time
Stochastic Control," Probability in the Engineering and
Information Sciences, vol. 14, pp. 243-258, 2000.

[6] Samuel, A. L., "Some Studies in Machine Learning Using
the Game of Checkers," IBM Journal of Research and
Development, vol. 3, pp. 210-229, 1959.

[7] Samuel, A. L., "Some Studies in Machine Learning Using
the Game of Checkers. II -Recent progress," IBM Journal
of Research and Development, vol. 11, pp. 601-617, 1967.

[8] Sutton, R. S., Temporal Credit Assignment in
Reinforcement Learning, PhD Thesis, University of
Massachusetts, Amherst, MA, 1984.

[9] Sutton, R. S., "Learning to Predict by the Methods of
Temporal Difference," Machine Learning, vol. 3, pp. 9-
44, 1988.

[10] Watkins, C. J., Learning from Delayed Rewards, PhD
Thesis, Kings College, Cambridge, England, May 1989.

[11] Watkins, C. J. C. H. and Dayan, P., "Q-learning," Machine
Learning, vol. 8, pp. 279-92, 1992.

[12] Kaelbling, L. P., Littman, M. L., and Moore, A. W.,
"Reinforcement Learning: A Survey," Journal of Artificial
Intelligence Research, vol. 4.

[13] Schwartz, A., "A Reinforcement Learning Method for
Maximizing Undiscounted Rewards," Proceedings of the
Tenth International Conference on Machine Learning, pp.
298-305, Amherst, Massachusetts, 1993,

[14] Mahadevan, S., "Average Reward Reinforcement
Learning: Foundations, Algorithms, and Empirical
Results," Machine Learning, vol. 22, pp. 159-195, 1996.

 10 Copyright © 2007 by ASME

[15] Sutton, R. S., "Integrated Architectures for Learning,
Planning, and Reacting Based on Approximating Dynamic
Programming," Proceedings of the Seventh International
Conference on Machine Learning, pp. 216-224, Austin,
TX, USA, 1990,

[16] Sutton, R. S., "Planning by Incremental Dynamic
Programming," Proceedings of the Eighth International
Workshop on Machine Learning (ML91), pp. 353-357,
Evanston, IL, USA, 1991,

[17] Moore, A. W. and Atkinson, C. G., "Prioritized Sweeping:
Reinforcement Learning with Less Data and Less Time,"
Machine Learning, vol. 13, pp. 103-30, 1993.

[18] Peng, J. and Williams, R. J., "Efficient Learning and
Planning Within the Dyna Framework," Proceedings of
the IEEE International Conference on Neural Networks
(Cat. No.93CH3274-8), pp. 168-74, San Francisco, CA,
USA, 1993,

[19] Barto, A. G., Bradtke, S. J., and Singh, S. P., "Learning to
Act Using Real-Time Dynamic Programming," Artificial
Intelligence, vol. 72, pp. 81-138, 1995.

[20] Bellman, R., Dynamic Programming. Princeton, NJ,
Princeton University Press, 1957.

[21] Puterman, M. L., Markov Decision Processes: Discrete
Stochastic Dynamic Programming, 2nd Rev. edition,
Wiley-Interscience, 2005.

[22] Bertsekas, D. P., Dynamic Programming and Optimal
Control (Volumes 1 and 2), Athena Scientific, September
2001.

[23] Malikopoulos, A. A., Papalambros, P. Y., and Assanis, D.
N., "A Learning Algorithm for Optimal Internal
Combustion Engine Calibration in Real Time," to be
presented in the ASME 2007 International Design
Engineering Technical Conferences Computers and
Information in Engineering Conference, Las Vegas,
Nevada, September 4-7, 2007, DETC2007-34718.

[24] Malikopoulos, A. A., Assanis, D. N., and Papalambros, P.
Y., "Real-Time, Self-Learning Optimization of Diesel
Engine Calibration," to be presented in the 2007 Fall
Technical Conference of the ASME Internal Combustion
Engine Division, Charleston, South Carolina, October 14-
17, 2007, ICEF2007-1603.

[25] Iwata, K., Ito, N., Yamauchi, K., and Ishii, N.,
"Combining Exploitation-Based and Exploration-Based
Approach in Reinforcement Learning," Proceedings of the
Intelligent Data Engineering and Automated - IDEAL
2000, pp. 326-31, Hong Kong, China, 2000,

[26] Ishii, S., Yoshida, W., and Yoshimoto, J., "Control of
Exploitation-Exploration Meta-Parameter in
Reinforcement Learning," Journal of Neural Networks,
vol. 15, pp. 665-87, 2002.

[27] Chan-Geon, P. and Sung-Bong, Y., "Implementation of the
Agent Using Universal On-Line Q-learning by Balancing
Exploration and Exploitation in Reinforcement Learning,"
Journal of KISS: Software and Applications, vol. 30, pp.
672-80, 2003.

[28] Miyazaki, K. and Yamamura, M., "Marco Polo: A
Reinforcement Learning System Considering Tradeoff
Exploitation and Exploration under Markovian
Environments," Journal of Japanese Society for Artificial
Intelligence, vol. 12, pp. 78-89, 1997.

[29] Hernandez-Aguirre, A., Buckles, B. P., and Martinez-
Alcantara, A., "The Probably Approximately Correct
(PAC) Population Size of a Genetic Algorithm,"
Proceedings of the 12th IEEE Internationals Conference
on Tools with Artificial Intelligence, pp. 199-202,
Vancouver, BC, Canada, 2000,

[30] Anderson, C. W., "Learning to Control an Inverted
Pendulum Using Neural Networks," IEEE Control
Systems Magazine, vol. 9, pp. 31-7, 1989.

[31] Williams, V. and Matsuoka, K., "Learning to Balance the
Inverted Pendulum Using Neural Networks," Proceedings
of the 1991 IEEE International Joint Conference on
Neural Networks (Cat. No.91CH3065-0), pp. 214-19,
Singapore, 1991,

[32] Zhidong, D., Zaixing, Z., and Peifa, J., "A Neural-Fuzzy
BOXES Control System with Reinforcement Learning
and its Applications to Inverted Pendulum," Proceedings
of the 1995 IEEE International Conference on Systems,
Man and Cybernetics. Intelligent Systems for the 21st
Century (Cat. No.95CH3576-7), pp. 1250-4, Vancouver,
BC, Canada, 1995,

[33] Jeen-Shing, W. and McLaren, R., "A Modified Defuzzifier
for Control of the Inverted Pendulum Using Learning,"
Proceedings of the 1997 Annual Meeting of the North
American Fuzzy Information Processing Society -
NAFIPS (Cat. No.97TH8297), pp. 118-23, Syracuse, NY,
USA, 1997,

[34] Mustapha, S. M. and Lachiver, G., "A Modified Actor-
Critic Reinforcement Learning Algorithm," Proceedings
of the 2000 Canadian Conference on Electrical and
Computer Engineering, pp. 605-9, Halifax, NS, Canada,
2000,

[35] Si, J. and Wang, Y. T., "On-line Learning Control by
Association and Reinforcement," IEEE Transactions on
Neural Networks, vol. 12, pp. 264-276, 2001.

[36] Zhang, B. S., Leigh, I., and Leigh, J. R., "Learning
Control Based on Pattern Recognition Applied to Vehicle
Cruise Control Systems," Proceedings of the the American
Control Conference, pp. 3101-3105, Seattle, WA, USA,
1995,

[37] Shahdi, S. A. and Shouraki, S. B., "Use of Active
Learning Method to Develop an Intelligent Stop and Go
Cruise Control," Proceedings of the the IASTED
International Conference on Intelligent Systems and
Control, pp. 87-90, Salzburg, Austria, 2003,

[38] TESIS, <http://www.tesis.de/en/>.
[39] Panait, L. and Luke, S., "Cooperative Multi-Agent

Learning: The State of the Art," Autonomous Agents and
Multi-Agent Systems, vol. 11, pp. 387-434, 2005.

