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ABSTRACT 

Modeling dynamic systems incurring stochastic 
disturbances for deriving a control policy is a ubiquitous task in 
engineering. However, in some instances obtaining a model of 
a system may be impractical or impossible. Alternative 
approaches have been developed using a simulation-based 
stochastic framework, in which the system interacts with its 
environment in real time and obtains information that can be 
processed to produce an optimal control policy. In this context, 
the problem of developing a policy for controlling the system’s 
behavior is formulated as a sequential decision-making 
problem under uncertainty. This paper considers real-time 
sequential decision-making under uncertainty modeled as a 
Markov Decision Process (MDP). A state-space representation 
model is constructed through a learning mechanism and is used 
to improve system performance over time. The model allows 
decision making based on gradually enhanced knowledge of 
system response as it transitions from one state to another, in 
conjunction with actions taken at each state. A learning 
algorithm is implemented realizing in real time the optimal 
control policy associated with the state transitions. The 
proposed method is demonstrated on the single cart-pole 
balancing problem and a vehicle cruise control problem.  
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1. INTRODUCTION 

Deriving a control policy for dynamic systems is an off-
line process in which various methods from control theory are 
utilized iteratively. These methods aim to determine the policy 

that satisfies the system’s physical constraints while optimizing 
specific performance criteria. A challenging task in this process 
is to derive a mathematical model of the system’s dynamics that 
can adequately predict the response of the physical system to 
all anticipated inputs. Exact modeling of complex engineering 
systems, however, may be infeasible or expensive. Viable 
alternative methods have been developed enabling the real-time 
implementation of control policies for systems when an 
accurate model is not available. In this framework, the system 
interacts with its environment, and obtains information 
enabling it to improve its future performance by means of 
rewards associated with control actions taken. This interaction 
portrays the learning process conveyed by the progressive 
enhancement of the system’s “knowledge” regarding the course 
of action (control policy) that maximizes the accumulated 
rewards with respect to the system’s operating point (state). 
The environment is assumed to be non-deterministic; namely, 
taking the same action in the same state on two different stages, 
the system may transit to a different state and receive a 
dissimilar reward in the subsequent stage. Consequently, the 
problem of developing a policy for controlling the system’s 
behavior is formulated as a sequential decision-making 
problem under uncertainty. 

Dynamic programming (DP) has been widely employed as 
the principal method for analysis of sequential decision-making 
problems [1]. Algorithms, such as value iteration, and policy 
iteration, have been extensively utilized in solving 
deterministic and stochastic optimal control problems, Markov 
and semi-Markov decision problems, min-max control 
problems, and sequential games. However, the computational 
complexity of these algorithms in some occasions may be 
prohibitive and can grow intractably with the size of the 
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problem and its related data, referred to as the DP “curse of 
dimensionality” [2]. In addition, DP algorithms require the 
realization of the conditional probabilities of state transitions 
and the associated rewards, implying a priori knowledge of the 
system dynamics.  

Alternative approaches for solving sequential decision-
making problems under uncertainty have been primarily 
developed in the field of Reinforcement Learning (RL) [3, 4]. 
RL has aimed to provide simulation-based algorithms, founded 
on DP, for learning control policies of complex systems, where 
exact modeling is infeasible or expensive [5]. A major 
influence on research leading to current RL algorithms has 
been Samuel’s method [6, 7], used to modify a heuristic 
evaluation function for deriving optimal board positions in the 
game of checkers. In this algorithm, Samuel represented the 
evaluation function as a weighted sum of numerical features 
and adjusted the weights based on an error derived from 
comparing evaluations of current and predicted board positions. 
This approach was refined and extended by Sutton [8, 9] to 
introduce a class of incremental learning algorithms, Temporal 
Difference (TD). TD algorithms are specialized for deriving 
optimal policies for incompletely known systems, using past 
experience to predict their future behavior. Watkins [10, 11] 
extended Sutton’s TD algorithms and developed an algorithm 
for systems to learn how to act optimally in controlled Markov 
domains by explicitly utilizing the theory of DP. A strong 
condition implicit in the convergence of Q-learning to an 
optimal control policy is that the sequence of stages that forms 
the basis of learning must include an infinite number of stages 
for each initial state and action. However, Q-learning is 
considered the most popular and efficient model-free learning 
algorithm in deriving optimal control policies in Markov 
domains [12]. Schwartz [13] explored the potential of adapting 
Q-learning to an average-reward framework with his R-
learning algorithm; Bertsekas and Tsitsiklis [3] presented a 
similar to Q-learning average-reward algorithm. Mahadevan 
[14] surveyed reinforcement-learning average-reward 
algorithms and showed that these algorithms do not always 
produce bias-optimal control policies.  

Although many of these algorithms are eventually 
guaranteed to find optimal policies in sequential decision-
making problems under uncertainty, their use of the 
accumulated data acquired over the learning process is 
inefficient, and they require a significant amount of experience 
to achieve good performance [12]. This requirement arises due 
to the formation of these algorithms in deriving optimal 
policies without learning the system models en route. 
Algorithms for computing optimal policies by learning the 
models are especially important in applications in which real-
world experience is considered expensive. Sutton’s Dyna 
architecture [15, 16] exploits strategies which simultaneously 
utilize experience in building the model and adjust the derived 
policy. Prioritized sweeping [17] and Queue-Dyna [18] are 
similar methods concentrating on the interesting subspaces of 
the state-action space. Barto et al. [19] developed another 

method, called Real-Time Dynamic Programming (RTDP), 
referring to the cases in which concurrently executing DP and 
control processes influence one another. RTDP focuses the 
computational effort on the state-subspace that the system is 
most likely to occupy. This method is specific to problems in 
which the system needs to achieve particular goal states and the 
initial cost of every goal state is zero. 

This paper considers the problem of deriving optimal 
policies in real-time sequential decision-making under 
uncertainty that can be modeled as a Markov Decision Process 
(MDP). A state-space representation model is constructed 
through a learning mechanism and is used to improve system 
performance over time. The model accumulates gradually 
enhanced knowledge of system response as it transitions from 
one state to another, in conjunction with actions taken at each 
state. A learning algorithm is implemented realizing in real time 
the optimal course of action (control policy) associated with the 
state transitions. The major difference between the proposed 
method and the existing RL algorithms is that the latter consists 
of evaluation functions attempting to successively approximate 
the Bellman equation [20]. The proposed real-time learning 
method, on the contrary, utilizes an evaluation function which 
considers the expected reward that can be achieved by state 
transitions forward in time. This approach is especially 
appealing to learning engineering systems in which the initial 
state is not fixed, and recursive updates of the evaluation 
functions to approximate the Bellman equation would demand 
significant amount of experience to achieve the desired system 
performance. 

In the following section the mathematical framework for 
modeling sequential decision-making problems under 
uncertainty is presented and the predictive optimal decision-
making learning method is introduced. The performance of the 
proposed method is demonstrated on the single cart-pole 
balancing problem, in Section 3 and, on a vehicle cruise-
control problem, in Section 4. Conclusions are presented in 
Section 5. 

 
2. PROBLEM FORMULATION  

A large class of sequential decision-making problems 
under uncertainty can be modeled as a Markov Decision 
Process (MDP). MDP, extensively covered by Puterman [21], 
provides the mathematical framework for modeling decision-
making in situations where outcomes are partly random and 
partly under the control of the decision maker. Decisions are 
made at points of time referred to as decision epochs, and the 
time domain can be either discrete or continuous. The focus of 
this paper is on discrete-time decision-making problems.  

The Markov decision process model consists of five 
elements: (a) decision epochs; (b) states; (c) actions; (d) the 
transition probability matrix; and (e) the transition reward 
matrix. In this framework, the decision maker is faced with the 
problem of influencing system behavior as it evolves over time, 
by making decisions (choosing actions). The objective of the 
decision maker is to select the course of action (control policy) 
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which causes the system to perform optimally with respect to 
some predetermined optimization criterion. Decisions must 
anticipate rewards (or costs) associated with future system 
states-actions.  

At each decision epoch, the system occupies a state is  from 
the finite set of all possible system states S 

 { | 1,2,..., },  .is i N N= = ∈S N     (1) 
In this state is ∈S , the decision maker has available a set of 
allowable actions, ( ),  ( )i iA s A sα ∈ ⊆A , where A is the finite 
action space 

( ).
i is A s∈= SA ∪        (2) 

The decision-making process occurs at each of a sequence 
of decision epochs 0,1,2,..., ,  M M= ∈T N . At each epoch, 
the decision maker observes a system’s state is ∈S , and 
executes an action ( )iA sα ∈ , from the feasible set of actions 

( )iA s ⊆A  at this state. At the next epoch, the system transits to 
the state js ∈S  imposed by the conditional 
probabilities ( | , )j ip s s α , designated by the transition 
probability matrix P(⋅,⋅). The conditional probabilities of 
P(⋅,⋅), : [0,1]p × →S A , satisfy the constraint  

1
( | , ) 1.

N

j i
j

p s s α
=

=∑        (3) 

Following this state transition, the decision maker receives a 
reward associated with the action α, ( | , ), :j iR s s Rα × →RS A  
as imposed by the transition reward matrix R(⋅,⋅). The states of 
an MDP possess the Markov property, stating that the 
conditional probability distribution of future states of the 
process depends only upon the current state and not on any past 
states, i.e., it is conditionally independent of the past states (the 
path of the process) given the present state. Mathematically, the 
Markov property states that 

1 1 1 0 0

1

( | , ,..., )

( | ).
n j n i n i

n j n i

p X s X s X s X s

p X s X s
+ − −

+

= = = = =

= = =
 (4) 

2.1 Optimal Policies and Performance Criteria 
The solution to an MDP can be expressed as an admissible 

control policy such that a given performance criterion is 
optimized over all admissible policies Π. An admissible policy 
consists of a sequence of functions 

0 1{ , ,..., },Mπ µ µ µ=       (5) 
where µT  maps states is  into actions ( )isα µ= T  and is such 
that ( ) ( ), .i i is A s sµ ∈ ∀ ∈T S  

Consequently, given an initial state at decision epoch T = 0, 
,is  and an admissible policy 0 1{ , ,..., },Mπ µ µ µ=  the expected 

accumulated undiscounted value of the rewards of the decision 
maker is given by the Bellman optimality equation 

 

1

1 1
0

( ) { ( | , ( )) ( | , ( ))},
M

i N N N T j i i
T

V s E R s s s V s s sµ µ
−

− −
=

= + ∑   (6) 

                                  , ,  , 1, 2,..., ,  .i js s i j N N∀ ∈ = ∈S N   
In the finite-horizon context the decision maker should 
maximize the accumulated value for the next M epochs. An 
optimal policy *π ∈Π  is one that maximizes the overall 
expected accumulated value of the rewards  

( ) max ( ).i iV s V sππ π
∗

∈
=

Π
      (7) 

Consequently, the optimal policy 0 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗=  for the 
M-decision epoch sequence is 

arg max ( ).iV s
π

π
π ∗

∗

∈
=

Π
      (8) 

The finite-horizon model is appropriate when the decision-
maker’s “lifetime” is known, namely, the terminal epoch of the 
decision-making sequence. For problems with a very large 
number of decision epochs, however, the infinite-horizon 
model is more appropriate. In this context, the overall expected 
undiscounted reward is: 

* ( ) lim  max ( ).i iM
V s V sπ ππ→∞ ∈

=
Π

                      (9) 

This relation is valuable computationally and analytically, and 
it holds under certain conditions [22].  

2.2 Predictive Optimal Decision-Making State-Space 
Representation 

The predictive optimal decision-making (POD) learning 
method consists of a new state-space system representation and 
a learning algorithm. The state-space representation 
accumulates gradually enhanced knowledge of the system’s 
transition from each state to another in conjunction with actions 
taken for each state. This knowledge is expressed in terms of an 
expected evaluation function associated with each state. While 
the model’s knowledge is advanced, the learning algorithm 
realizes, at each decision epoch, the course of action that 
guarantees at least a minimum value of the overall reward for 
both the current state and the subsequent states.  

The major difference between the proposed learning 
method and the existing RL methods is that the latter consists 
of evaluation functions attempting to successively approximate 
the Bellman equation, Eq. (6). These evaluation functions 
assign to each state the total reward expected to accumulate 
over time starting from a given state when a policy π is 
employed. The proposed real-time learning method, on the 
contrary, utilizes an evaluation function which considers the 
expected reward that can be achieved by state transitions 
forward in time. This approach is especially appealing to 
learning engineering systems in which the initial state is not 
fixed [23, 24], and recursive updates of the evaluation 
functions to approximate Eq.(6) would demand a huge number 
of iterations to achieve the desired system performance.  

The new state-space representation defines the POD 
domain �S . It is implemented by a mapping H from the 
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Cartesian product of the finite state space and action space of 
the MDP: 

( ) ( ) ,× × × → �H : S A S A S      (10) 
where { | 1,2,..., },  is i N N= = ∈NS  denotes the Markov state 
space, and  ( ),

i i is A s s∈= ∀ ∈SA S∪ stands for a finite action 
space. This mapping generates an indexed family of 
subsets,

is
�S , for each state is ∈S , defined as Predictive 

Representation Nodes (PRNs). Each PRN is constituted by a 
set of POD states,

i

i
m ss ∈ �� S , 

{ | , 1,2,..., ,  | | }
i

i
ms s i m N N= = = ∈N� �S S ,   (11) 

Each POD state i
ms ∈S�� essentially represents a Markov state 

transition from is ∈S  to ms ∈S . PRNs partition the POD 
domain insofar as the POD underlying structure captures the 
state transitions in the Markov domain. Consequently, a PRN is 
defined as  

( ) ( ) 1
{ | , ( | , ( )) 1, | |},

i i
i

N
i i
m m i m m i is A s m

s s s s s p s s s N
µ

µ
∈ =

= ≡ → = =∑� � �S S  

, ,  ( ) ( ),i m i is s s A sµ∀ ∈ ∀ ∈S     (12) 
the union of which defines the POD domain 

, with
isi

m sis ∈
= ��
� �∪ SS S           (13) 

.
isi

m sis ∈
= ∅��

�∩ S S       (14) 

Each PRN,
is
�S , corresponds to a Markov state, is ∈S , and 

portrays all possible transitions occurring from this state si to 
the other states ms ∈S . PRNs, constituting the fundamental 
aspect of the POD state representation, provide an assessment 
of the Markov state transitions along with the actions executed 
at each state. This assessment aims to establish a necessary 
embedded property of the new state representation so as to 
consider the potential transitions that can occur in subsequent 
decision epochs. The assessment is expressed by means of the 
PRN value, ( | ( ))

i

i
s m iR s sµ� , which accounts for the maximum 

average expected reward that can be achieved by transitions 
occurring inside a PRN. Consequently, the PRN value is 
defined as 

1

( )

( | , ( )) ( | , ( ))
( | ( )) max ,

i
i

N

m i i m i i
i m

s m i s

p s s s R s s s
R s s

Nµ

µ µ
µ =

∈

⎛ ⎞⋅⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
�

A

       , , , ( ) ( ),and | | .i
m i m i is s s s A s Nµ∀ ∈ ∀ ∈ ∀ ∈ =S S S��  (15) 

The PRN value is exploited by POD state representation as 
an evaluation metric to estimate the subsequent Markov state 
transitions. The estimation property is founded on the 
assessment of POD states by means of an expected evaluation 
function, ( , ( ))i i

PRN m iR s sµ� , defined as 

{
}

( , ( )) ( | , ( )) ( | , ( ))

                                                 ( | ( )) ,
m

i i
PRN m i m i i m i i

m
s j m

R s s p s s s R s s s

R s s

µ µ µ

µ

= ⋅ +

+

�

�
    (16) 

     , , , , ( ) ( ), ( ) ( ).i m
m j i m i i m ms s s s s A s s A sµ µ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈S S�� �   

Consequently, employing the POD evaluation function through 
Eq. (16), each POD state,

i

i
m ss ∈ �� S , is comprised of an overall 

reward corresponding to: (a) the expected reward of transiting 
from state si to sm (implying also the transition from the PRN 

is
�S to

ms
�S ); and (b) the maximum average expected reward 

when transiting from sm to any other Markov state (transition 
occurring into 

ms
�S ).  

While the system interacts with its environment, the POD 
model learns the system dynamics in terms of the Markov state 
transitions. The POD state representation attempts to provide a 
process in realizing the sequences of state transitions that 
occurred in the Markov domain, as infused in PRNs. The 
different sequences of the Markov state transitions are captured 
by the POD states and evaluated through the expected 
evaluation functions given in Eq. (16). Consequently, the 
highest value of the expected evaluation function at each POD 
state essentially estimates the subsequent Markov state 
transitions with respect to the actions taken.  As the process is 
stochastic, however, it is still necessary for the real-time 
learning method to build a decision-making mechanism of how 
to select actions.  

The learning performance is closely related to the 
exploration-exploitation strategy of the action space. More 
precisely, the decision maker has to exploit what is already 
known regarding the correlation involving the admissible state-
action pairs that maximize the rewards, and also to explore 
those actions that have not yet been tried for these pairs to 
assess whether these actions may result in higher rewards. A 
balance between an exhaustive exploration of the environment 
and the exploitation of the learned policy is fundamental to 
reach nearly optimal solutions in few decision epochs and, 
thus, enhancing the learning performance. This exploration-
exploitation dilemma has been extensively reported in the 
literature. Iwata et al. [25] proposed a model-based learning 
method extending Q-learning and introducing two separated 
functions based on statistics and on information by applying 
exploration  and exploitation strategies. Ishii et al. [26] 
developed a model-based reinforcement learning method 
utilizing a balance parameter, controlled through variation of 
action rewards and perception of environmental change. Chan-
Geon et al. [27] proposed an exploration-exploitation policy in 
Q-learning consisting of an auxiliary Markov process and the 
original Markov process. Miyazaki et al. [28] developed a 
unified learning system realizing the tradeoff between 
exploration and exploitation. Hernandez-Aguirre et al. [29] 
analyzed the problem of exploration-exploitation in the context 
of the probably approximately correct framework  and studied 
whether it is possible to give bounds on the complexity of the 
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exploration needed to achieve a fixed approximation error over 
the action value function with a given probability. 

An exhaustive exploration of the environment is necessary 
to evade prematurely convergence on a sub-optimal solution 
even if this may result in both scarifying the system’s 
performance in the short run and increasing the learning time. 
In our case it is assumed that, for any state is ∈S , all actions 
of the feasible action set ( ) ( )i is A sµ ∈  are selected by the 
decision maker at least once. At the early decision epochs and 
until full exploration of the action set ( ),i iA s s∀ ∈S  occurs, 
the mapping from the states to probabilities of selecting the 
actions is constant; namely, the actions for each state are 
selected randomly with the same probability 

1( ( ) | ) , ( ) ( ), .
( )i i i i i

i

p s s s A s s
A s

µ µ= ∀ ∈ ∀ ∈S   (17) 

When the exploration phase is complete, the POD learning 
algorithm is utilized to build up the decision-making 
mechanism.  

2.3 The Predictive Optimal Decision-Making Learning 
Algorithm 

The POD state representation attempts to provide an 
efficient process in realizing the state transitions that occurred 
in the Markov domain. The different sequences of the state 
transitions are captured by the POD states and evaluated 
through the expected evaluation functions given in Eq. (16). 
Consequently, the highest value of the expected evaluation 
function at each PRN essentially predicts the Markov state 
transition that will occur in the future. As the process is 
stochastic, however, it is still necessary for the decision maker 
to build a decision-making mechanism of how to make 
decisions (select actions). The POD learning algorithm aims to 
provide this mechanism. 

The principle of the POD learning algorithm is founded on 
the theory of stochastic control problems with unknown 
disturbance distribution- also known as games against nature. 
The decision-making mechanism is modeled as a zero-sum 
stochastic game between the decision maker (controller) and an 
“opponent” (environment). The solution of this game is derived 
utilizing the mini-max theorem. Each POD state,

i

i
m ss ∈ �� S , 

corresponds to a completed game that started at the Markov 
state is ∈S  and ended up at ms ∈S . At the state si, the 
decision maker has a set of strategies (actions) ( ) ( )i is A sµ ∈  
available to play. Similarly, the environment’s set of strategies 
are the Markov states { | 1, 2,..., },  is i N N= = ∈NS . During 
the learning process, this game has been played insofar as the 
decision maker forms a belief about the environment’s behavior 
by fully exploring all available strategies, ( ) ( )i is A sµ ∈ . 
Consequently, at the state si, the decision maker is able to 
predict the subsequent states to be selected by the environment 
by means of the PRN expected evaluation functions, 

( , ( ))i i
PRN m iR s sµ� .  However, to handle the uncertainty of this 

prediction, the decision maker selects his/her strategy by means 
of maximizing the minimum expected accumulated reward 
related to both immediate state transition and subsequent 
transitions, namely, 

( ){ }*

( ) ( )
( ) arg max min ( , ( )) ,

         , , ( ) ( ).

mi i

i i
i PRN m iss A s

i
m i i i

s R s s

s s s A s
µ

π µ

µ

∈∈
=

∀ ∈ ∀ ∈ ∀ ∈

S

S S

�

��
         (18)  

Consequently, the decision maker seeks for the max-min 
policy *π ∈Π , which guarantees the best performance in the 
worst possible situation. 

 
3. CASE STUDY ONE 

3.1 The Single Cart-Pole Balancing Problem 
The overall performance of the POD real-time learning 

model is evaluated on the basis of its application to the inverted 
pendulum balancing problem. The inverted pendulum involves 
a pendulum hinged to the top of a wheeled cart as illustrated in 
Figure 1. The objective of POD is to balance the pendulum 
having no prior knowledge about the system dynamics utilizing 
only real-time measurements.  

Realizing the balance control policy of a single inverted 
pendulum without a priori knowledge of the system’s model 
has been extensively reported in the literature for the evaluation 
of learning algorithms. Anderson [30] implemented a neural 
network reinforcement-learning method to generate successful 
action sequences. Two neural networks having a similar 
structure were employed to learn two functions: (a) an action 
function mapping the current state into control actions, and (b) 
an evaluation action mapping the current state into an 
evaluation of that state.  These two networks were trained 
utilizing reinforcement learning by evaluating the performance 
of the network and compared to real-time measurements. 
Williams et al. [31] proposed a learning architecture for 
training a neural network controller to provide the appropriate 
control force to balance the inverted pendulum. One network 
for the identification of the plant dynamics and one for the 
controller  were  employed. Zhidong  et al. [32] implemented a 
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Figure 1. The inverted pendulum. 
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 “neural-fuzzy BOXES” control system by neural networks and 
utilized reinforcement learning for the training. Jeen-Shing et 
al. [33] proposed a defuzzification method incorporating a 
genetic algorithm to learn the defuzzification factors. Mustapha 
et al. [34] developed an actor-critic reinforcement learning 
algorithm represented by two adaptive neural-fuzzy systems. Si 
et al. [35] proposed a generic on-line learning control system 
similar to Anderson’s utilizing neural networks and evaluated it 
through its application to both a single and double cart-pole 
balancing problem. The system utilizes two neural networks, 
and employs the action- dependent heuristic dynamic 
programming to adapt the weights of the networks.  

In the implementation of the POD on the single inverted 
pendulum presented here, two major variations are considered: 
(a) a single look-up table-based representation is employed for 
the controller to develop the mapping from the system’s 
Markov states to optimal actions, and (b) two system’s state 
variables are selected to represent the Markov state. The latter 
introduces uncertainty and thus a conditional probability 
distribution associating the state transitions with respect to the 
actions taken. Consequently, the POD method is evaluated in 
deriving the optimal policy (balance control policy) in a 
sequential decision making problem under uncertainty. 

The governing equations, derived from the free body 
diagram of the system, shown in Figure 2, are: 

2( ) cos sin ,M m x bx mL mL Uϕ ϕ ϕ ϕ+ + + − =�� ��� �   (19) 
2cos ( ) sin 0,mLx I mL mgLϕ ϕ ϕ+ + + =����     (20) 

2
2

N secwhere  0.5 kg,  0.2 kg,  0.1 
m

m           0.006 kg m ,  9.81 ,and  0.3 m.
sec

M m b

I g L

= = =

= = =
 

The goal of the learning controller is to realize in real time 
the force, U, of a fixed magnitude to be applied either to the 
right or the left direction so that the pendulum stands balanced 
when released from any angle, φ, between 3° and -3°. The 
system is simulated by numerically solving the nonlinear 
differential equations (19) and (20) employing the explicit 
Runge-Kutta method with a time step of τ =0.02 sec. The 
simulation is conducted by observing the system’s states and 
executing actions (control force U) with a sample rate T =0.02 
sec (50 Hz). This sample rate defines a sequence of decision-
making epochs, 0,1,2,..., ,  M M= ∈T N . 
The system is fully specified by four state variables: (a) the 
position of the cart on the track, ( )x t ; (b) the cart velocity, 

( )x t� ; (c) the  pendulum’s  angle  with  respect  to  the vertical 
position, ( )tϕ ; and (d) the angular velocity, ( )tϕ� . However, to 
incorporate uncertainty, the Markov states are selected to be 
only the pair of the pendulum’s angle and angular velocity, 
namely, the finite state space S, in Eq. (1) is defined as 

{ | ( , )}.i is s ϕ ϕ= = �S      (21) 
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Figure 2. Free body diagram of the system. 

 
Consequently, at state  is ∈S   and executing a control force 
value, U(si), the system will end up at state js ∈S with a 
conditional probably ( | , ( ))j i ip s s U s . The control force, U(si), 

selects values from the finite set A, defined as 
( ) [ 3 ,3 ],  where 1, 2,..., ,  | | .iA s N N i N N= = − = =A S  (22) 

The decision-making process occurs at each of a sequence of 
epochs 0,1,2,..., ,  M M= ∈T N . At each decision epoch, the 
learning controller observes the system’s state is ∈S , and 
executes a control force value ( ) ( )i iU s A s∈ . At the next 
decision epoch, the system transits to another state 

js ∈S imposed by the conditional probabilities 
( | , ( ))j i ip s s U s , and receives a numerical reward (the 

pendulum’s angle φ).  
The inverted pendulum is simulated repeatedly for 

different initial angles, φ, between 3° and -3° utilizing the POD 
learning method. The simulation lasts for 50 sec and each 
complete simulation defines one iteration. If at any instant 
during the simulation, the pendulum’s angle, φ, becomes 
greater than 3° or less than -3°, this constitutes a failure, 
denoted by stating that there was one iteration associated with a 
failure. If, however, no failure occurs during the simulation, 
this is denoted by stating that there was one iteration associated 
with no failure. 

3.2 Simulation Results 
After completing the learning process, the controller employing 
the POD learning method realizes the balance control policy of 
the pendulum, as illustrated in Figure 3. In some instances, 
however, the system’s response demonstrates some overshoots 
or delays during the transient period, shown in Figure 4. This 
can be handled by a denser parameterization of the state-space 
or adding a penalty in long transient responses. The efficiency 
of the POD learning method in deriving the optimal balance 
control policy that stabilizes the system is illustrated in Figure 
5. It is noted that after POD realizes the optimal policy in 749 
failures and, afterwards, as the number of iterations continues 
no further failures occur. 
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Figure 3. Simulation of the system after learning the balance 

control policy with POD for different initial conditions. 
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Figure 4. Simulation of the system after learning the balance 
control policy with POD for different initial conditions (zoom 

in). 
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Figure 5. Number of failures until POD derives the balance 

control policy. 

4. CASE STUDY TWO 

4.1 Vehicle Cruise Control 
The POD real-time learning method introduced in the 

previous sections is now applied to a vehicle cruise-control 
problem. Cruise control automatically regulates the vehicle’s 
longitudinal velocity by suitably adjusting the gas pedal 
position. A vehicle cruise-control system is activated by the 
driver who desires to maintain a constant speed in long 
highway driving. The driver activates the cruise controller 
while driving at a particular speed, which is then recorded as 
the desired or set-point speed to be maintained by the 
controller. The main goal in designing a cruise control 
algorithm is to maintain vehicle speed smoothly but accurately, 
even under large variation of plant parameters (e.g., the 
vehicle’s varying mass in terms of the number of passengers) 
and road grade. In the case of passenger cars, however, vehicle 
mass may change noticeably but is within a small range. 
Therefore, powertrain behavior might not vary significantly.  

The objective of the POD learning cruise controller is to 
realize in real time the control policy (gas pedal position) that 
maintains the vehicle speed as set by the driver under a great 
range of different road grades. Implementing learning vehicle 
cruise controllers has been addressed previously employing 
learning and active control approaches. Zhang et al. [36] 
implemented learning control based on pattern recognition to 
regulate in real time the parameters of an PID cruise controller. 
Shahdi et al. [37] proposed an active learning method to extract 
the driver's behavior and to derive control rules for a cruise 
control system. However, no attempt has been reported in 
implementing a learning automotive vehicle cruise controller 
utilizing the principle of reinforcement learning, i.e., enabling 
the controller to improve its performance over time by learning 
from its own failures through a reinforcement signal from the 
external environment, and thus, attempting to improve future 
performance. 

The software package enDYNA by TESIS [38], suitable for 
real-time simulation of internal combustion engines, is used to 
evaluate the performance of the POD learning cruise controller. 
The software simulates the longitudinal vehicle dynamics with 
a highly variable drive train including the modules of starter, 
brake, clutch, converter, and transmission. In the driving mode 
the engine is operated by means of the usual vehicle control 
elements just as a driver would do. In addition, a mechanical 
parking lock and the uphill grade can be set. The driver model 
is designed to operate the vehicle at given speed profiles 
(driving cycles). It actuates the starter, accelerator, clutch and 
brake pedals according to the profile specification, and also 
shifts gears. In this example, an existing vehicle model is 
selected representing a midsize passenger car carrying an 1.9L 
turbocharged diesel engine. 

When activated, the learning cruise controller bypasses the 
driver model and takes over the vehicle’s cruising. The Markov 
states are defined to be the pair of the transmission gear and the 
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difference between the desired and actual vehicle speed, ∆V, 
namely, 

{ | ( , )}.i is s gear V= = ∆S      (23) 
The actions, α, correspond to the gas pedal position and 

can take values from the feasible set A, defined as 
( ) [0,0.7],  where 1, 2,..., ,  | | .iA s i N N= = = =A S  (24) 

To incorporate uncertainty the vehicle is simulated in a 
great range of different road grades from 0° to 10°. 
Consequently, at state is ∈S  and executing a control action 
(gas pedal position), the system transits to another state 

js ∈S with a conditional probably ( | , ( ))j i ip s s sα , since the 
acceleration capability of a vehicle varies at different road 
grades. As a consequence of this state transition the system 
receives a numerical reward (difference between the desired 
and actual vehicle speed). 

4.2 Simulation Results 
After completing four simulations of each road grade, the POD 
cruise controller realizes the control policy (gas pedal position) 
to maintain the vehicle’s speed at the desired set point. The 
vehicle model was initiated from zero speed. The driver model, 
following the driving cycle, accelerated the vehicle up to 
40mph and at 10sec activated the POD cruise controller. The 
desired and actual vehicle speeds for three different road grades 
as well as the gas pedal rates of the POD controller are 
illustrated in Figure 6. The small discrepancy between the 
desired and actual vehicle speed before the cruise controller 
activation is due to the steady-state error of the driver’s model. 
However, since the desired driving cycle set the vehicle’s speed 
to be at 40mph, when the POD cruise controller is activated 
helps to correct this error and, afterwards, maintains the 
vehicle’s actual speed at the set point. The accelerator pedal 
position is at different values because in the case of road grades 
2º and 6º the selected transmission gear is 2, shown in Figure 7, 
while in case of road grade 10º the selected transmission gear is 
1. So, at different selected gears, the accelerator pedal varies to 
maintain constant vehicle’s speed. In Figure 8, the performance 
of POD cruise controller is evaluated in a severe driving 
scenario where the road grade changes from 0° to 10°, while 
the POD cruise controller is active. In this scenario, the POD is 
activated again at 10sec when the road grade is 0°, and at 14 
sec the road grade becomes 10°. The engine speed and the 
selected transmission gear for this scenario are shown in Figure 
9. While the vehicle is cruising at constant speed and the road 
grade changes from 0º to 10º, the vehicle’s speed starts 
decreasing after some time. Once this occurs, the self-learning 
cruise controller senses the discrepancy between the desired 
and actual vehicle speed and commands the accelerator pedal 
so as to correct the error. Consequently, there is a small time 
delay in the acceleration pedal command, illustrated in Figure 
8, which depends on vehicle inertia. 
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Figure 6. Vehicle speed and accelerator pedal rate for different 

road grades by self-learning cruise control with POD. 
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Figure 7. Engine speed and transmission gear selection for 

different road grades by self-learning cruise control with POD. 
 

0 5 10 15 20
0

10

20

30

40

Cruise Control with POD
At 14 sec the road grade increases from 0o to 10o

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

0 5 10 15 20
0

0.5

1

A
cc

el
er

at
or

 P
ed

al

Time [sec]

Driving Cycle
Vehicle Speed

 
Figure 8. Vehicle speed and accelerator pedal rate for a road 

grade increase from 0° to 10°. 
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road grade increase from 0° to 10°. 
 
5. CONCLUDING REMARKS 

This paper has presented a real-time learning method, 
consisting of a new state-space representation model and a 
learning algorithm, suited to solve sequential decision-making 
problems under uncertainty in real time. The method aims to 
build autonomous engineering systems that can learn to 
improve their performance over time in stochastic 
environments. Such systems must be able to sense their 
environments, estimate the consequences of their actions, and 
learn in real time the course of action (control policy) that 
optimizes a specified objective. The major difference between 
the POD learning method presented in this paper and the 
existing reinforcement learning methods is that the first 
employs an evaluation function which does not require 
recursive iterations to approximate the Bellman equation. This 
approach has been shown to be especially appealing to systems 
in which the initial state is not fixed, and recursive updates of 
the evaluation functions to approximate the Bellman equation 
would demand significant amount of experience to achieve the 
desired system performance. 

The overall performance of the POD method in deriving an 
optimal control policy was evaluated by its application to two 
examples: (a) the cart-pole balancing problem, and (b) a real-
time vehicle cruise-controller development. In the first 
problem, POD realized the balancing control policy for an 
inverted pendulum when the pendulum was released from any 
angle between 3° and -3°. In implementing the real-time cruise 
controller, the POD was able to maintain the desired vehicle’s 
speed at any road grade between 0° and 10°. Future research 
should investigate the potential of advancing the POD method 
to accommodate more than one decision maker in sequential 
decision-making problems under uncertainty, known as multi-
agent systems [39]. These problems are found in systems in 
which many intelligent decision makers (agents) interact with 
each other. The agents are considered to be autonomous 
entities. Their interactions can be either cooperative or selfish, 
i.e., the agents can share a common goal, e.g., control of 

vehicles operating in platoons to improve throughput on 
congested highways by allowing groups of vehicles to travel 
together in a tightly spaced platoon at high speeds. 
Alternatively, the agents can pursue their own interests. 
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