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ABSTRACT
The increasing complexity of engineering systems has 

motivated continuing research on computational learning 
methods towards making autonomous intelligent systems that can 
learn how to improve their performance over time while 
interacting with their environment. These systems need not only to 
be able to sense their environment, but should also integrate 
information from the environment into all decision making. The 
evolution of such systems is modeled as an unknown controlled 
Markov chain. In previous research, the predictive optimal 
decision-making (POD) model was developed that aims to learn 
in real time the unknown transition probabilities and associated 
costs over a varying finite time horizon. In this paper, the 
convergence of POD to the stationary distribution of a Markov 
chain is proven, thus establishing POD as a robust model for 
making autonomous intelligent systems. The paper provides the 
conditions that POD can be valid, and an interpretation of its 
underlying structure. 

1. INTRODUCTION 
New technologies in mechatronics and actuators have 

induced significant enhancement in the complexity of modern 
engineering systems. Exact modeling of complex systems is often 
infeasible or expensive, and thus deriving an optimal control 
policy can be intractable. This challenge has increased the need to 
develop computational cognitive models that will allow a system 
to learn how to improve its performance over time in stochastic 
environments. Computational intelligence, or rationality can be 
achieved by modeling a system and the interaction with its 
environment through actions, perceptions, and associated costs 

(or rewards). A widely adopted paradigm for modeling this 
interaction is the completely observable Markov decision process. 
The problem is formulated as sequential decision-making under 
uncertainly in which an intelligent system (decision maker), e.g., 
robot, automated manufacturing system, etc, is faced with the task 
to select those actions in several time steps (decision epochs) to 
achieve long-term goals efficiently. This problem involves two 
major sub-problems: (a) the system identification problem, and 
(b) the stochastic control problem. The first is exploitation of the 
information acquired from the system output to identify its 
behavior, that is, how a state representation can be built by 
observing the system’s state transitions. The second is assessment 
of the system output with respect to alternative control policies, 
and selecting those that optimize specified performance criteria. 

Reinforcement Learning (RL) [1, 2] has aimed to provide 
simulation-based algorithms, founded on dynamic programming, 
for learning control policies of complex systems, where exact 
modeling is infeasible [3], or the analytic computation may be too 
high and an approximation method is necessary. Although many 
of these algorithms are eventually guaranteed to find sub-optimal 
policies, their use of the accumulated data acquired over the 
learning process is inefficient, and they require a significant 
amount of experience to achieve good performance [4]. This 
requirement arises due to the formation of these algorithms in 
deriving control policies without learning the system dynamics en
route, that is, they do not solve the system identification problem 
simultaneously.  

Stochastic adaptive control provides a systematic treatment in 
deriving optimal control policies in systems where exact modeling 
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is not available a priori. In this context, the evolution of the 
system is modeled as a countable state controlled Markov chain 
whose transition probability is specified up to an unknown 
parameter taking values in a compact metric space; this problem 
has been extensively reported in the literature. Mandl [5] 
considered an adaptive control scheme providing a minimum 
contrast estimate of the unknown model of a system at each 
decision epoch, and then applying the optimal feedback control 
corresponding to this estimate. If the system satisfies a certain 
“identifiability condition,” the sequence of parameter estimates 
converges almost surely to the true parameter. Borkar and Varaiya 
[6] removed this identifiability condition and showed that when 
the feasible space of the unknown parameter is finite, the 
maximum likelihood estimate of the parameter converges almost 
surely to a random variable. Borkar and Varaiya [7], and Kumar 
[8] examined the performance of the adaptive control scheme of 
Mandl without the identifiability condition, but under varying 
degrees of generality of the state, control, and model spaces with 
the attention restricted to the maximum likelihood estimate. Doshi 
and Shreve [9] proved that if the set of allowed control laws is 
generalized to include the set of randomized controls, then the 
cost of using this scheme will almost surely equal to the optimal 
cost achievable if the true parameter were known. Kumar and 
Becker [10] implemented a novel approach to the adaptive control 
problem when a set of possible models is given including a new 
criterion for selecting a parameter estimate. This criterion is 
obtained by a deliberate biasing of the maximum likelihood 
criterion in favor of parameters with lower optimal costs. These 
results were extended by assuming that a finite set of possible 
models is not available [11]. Sato, Abe, and Takeda [12-14] 
proposed a learning controller for Markovian decision problems 
with unknown probabilities. The controller was designed to be 
asymptotically optimal considering a conflict between estimation 
and control for determination of a control policy over an infinite 
time horizon.  Kumar [15], and Varaiya [16] have provided 
comprehensive surveys of the aforementioned research efforts. 

Certainty Equivalence Control (CEC) is a common approach 
in addressing stochastic adaptive control problems. The unknown 
system parameter is estimated at each decision epoch while 
assuming that the decision maker selects a control action as if the 
estimated parameter is the true one. The major drawback of this 
approach is that the decision maker may get locked in a false 
parameter when there is a conflict between learning and control. 
Forcing controls, different actions from those imposed by the 
certainty equivalence control, at some random decision epochs are 
often utilized to address this issue. The certainty equivalence 
control employing a forcing strategy is optimal in stochastic 
adaptive optimization problems with the average-cost-per-unit-
time criterion. In these adaptive control schemes, the best possible 
performance depends on the on-line forcing strategy.  Although 
the aforementioned research work has successfully led to 
asymptotically optimal adaptive control schemes when the 
dynamics of the system are partly known, their underlying 

framework imposes limitations in implementing such schemes 
over a varying finite time horizon.  

The Predictive Optimal Decision-making (POD) learning 
model [17, 18] was aimed to address the state estimation and 
system identification problem for a completely unknown system 
by learning in real time the system dynamics over a varying and 
unknown finite time horizon. It is constituted by a state-space 
representation that can be used to improve system performance 
over time in the entire state space. The POD model has been 
employed in various applications towards making autonomous 
intelligent systems that can learn to improve their performance 
over time in stochastic environments. In the cart-pole balancing 
problem [18], an inverted pendulum was made capable of 
realizing the balancing control policy and turning into a stable 
system when it was released from any angle between 3° and -3°. 
In a vehicle cruise control implementation [18], an autonomous 
cruise controller was developed to learn to maintain the desired 
vehicle’s speed at any road grade between 0° and 10°. POD has 
also taken steps toward development engine calibration that can 
capture steady-state and transient engine operation designated by 
the driver’s driving style [19-21]. While the engine is running the 
vehicle, it progressively perceives the driver’s driving style and 
eventually learns to operate in a manner that optimizes specified 
performance criteria, e.g., fuel economy, emissions, or engine 
acceleration.

In this paper, the convergence of POD to the stationary 
distribution of the Markov state transitions is proven, hence, 
establishing POD as a robust model. The paper provides the 
conditions under which POD can be valid (Assumptions 3.1-3.3), 
and an interpretation of its underlying structure (Lemmas 4.1 and 
4.2). This structure, constituting the fundamental aspect of the 
POD state-space representation, aims to reveal embedded 
properties in establishing the POD convergence (Theorem 4.1).  

The remainder of the paper proceeds as follows: Section 2 
presents the steps towards modeling a dynamic system incurring 
stochastic disturbances as a controlled Markov chain. Section 3 
reviews the theory of controlled Markov chains and formulates 
the POD model by imposing the conditions under which it is 
valid. The embedded properties of POD state-space representation 
and the convergence of the model are proved in Section 4. 
Conclusions are presented in Section 5. 

2. MODELING DYNAMIC SYSTEMS AS A 
CONTROLLED MARKOV CHAIN

The stochastic system model, illustrated in Figure 1, 
establishes the mathematical framework for the representation of 
dynamic systems that evolve stochastically over time [22, 23], 
that is, when incurring a stochastic disturbance or noise at time k,

kw , in their portrayal. The one-dimensional model is given by an 
equation of the form 
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FIGURE 1. STOCHASTIC SYSTEM MODEL SCHEMATIC. 

1 ( , , ),  0,1,...k k k k ks f s a w k                            (1) 

where ks  is system’s state that belongs to some state space 
{1,2,..., },  N NS , kf  is a function that describes how the 

system’s state is updated, and ka  is the input at time k; ka
represents the control action chosen by the controller from some 
feasible action set ( )kA s , which is a subset of some control space 
A , namely, 

( ).
k ks A sSA               (2) 

The sequence { ,kw k  is treated as a stochastic process, 
and the joint probability distribution of the random variables 

0 1, ,..., kw w w  is unknown for each k. The system output is 
represented by  

( , ),  0,1,...k k k ky h s v k               (3) 

where ky  is the observation or system’s output, kh  is a function 
that describes how the system output is updated, and kv  is the 
measurement error or noise. The sequence { ,kv k  is also 
considered a stochastic process with unknown probability 
distribution. We are interested in deriving a control policy so that 
a given performance criterion is optimized over all admissible 
policies . An admissible policy consists of a sequence of 
functions 

0 1{ , ,...},               (4) 

where k  maps states ks  into actions ( )k k ka s  and is such 
that ( ) ( ),k k k ks A s s S .

The system’s state ks  depends upon the input sequence 

0 1, ,...a a  as well as the random variables 0 1, ,...w w , Eq. (1). 
Consequently, ks  is a random variable; the system output 

( , )k k k ky h s v  is a function of the random variables 

0 1 0 1, ,..., , ,...,s s v v  and thus, is also a random variable. Similarly, 
the sequence of control actions ( )k ka s , { ,ka k ,
constitutes a stochastic process. 

Definition 2.1 [22]: The random variables 0 0 1, , ,...,s w w

0 1, ,...,v v  are addressed as basic random variables, since the 
sequences { ,ks k , { ,ky k  and { ,ka k  are constructed 
from them. 

We explore the conditions under which the stochastic system 
model retains a property in imposing a condition directly on the 
basic random variables. That is, whether the conditional 
probability distribution of 1ks  given ks  and ka  is independent of 
previous values of states and control actions. Suppose the control 
policy 0 1{ , ,...}  is employed. The corresponding stochastic 
processes { ,ks k , { ,ky k , and { ,ka k , are defined 
by 

1 0 0( , , ),  ,k k k k ks f s a w s s                            (5) 

( , ),k k k ky h s v  and              (6) 

      ( ).k k ka s                (7) 

Suppose further that the values realized by the random variables 
ks  and ka  are known. These values are insufficient to determine 

the value of 1ks  since kw  is not known. The value of 1ks  is 
statistically determined by the conditional distribution of 1ks
given ks  and ka , namely, 

1| , ( | , ).
k k ks s a k ks a               (8) 

For any occupied state space at time k+1, 1kS , and from Eq. 
(5), we have 

1| , 1 | ,( | , ) ( | , ),
k k k k k ks s a k k k w s a k k ks a s aS W              (9) 

where : { | ( , , ) }k k k k kw f s a wW S  is the disturbance space at 
time k. The interpretation of Eq. (9) is that the conditional 
probability of reaching the state space 1kS  at time k+1, given ks
and ka , is equal to the probability of being at the disturbance 
space kW  at time k. Suppose that the previous values of the 
random variables ms  and ma , 1m k  are known. Then, the 
conditional distribution of 1ks  given these values will be 

1| , 1 0 0

| , 1 0 1 0

( | ,..., , ,..., )

( | ,..., , ,..., ).
k k k

k k k

s s a k k k

w s a k k k

s s a a

s s a a

S
W

           (10) 

The conditional probability distribution of 1ks  given ks  and 

ka  can be independent of the previous values of states and 
control actions, if it is guaranteed that for every control policy ,

kw  is independent of the random variables ms  and ma , 1m k .
Kumar and Varaiya [22] proved that this property is imposed 
under the following assumption. 
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Assumption 2.1:  The basic random variables 0 0 1, , ,...,s w w

0 1, ,...,v v  are all independent. 

Assumption 2.1 imposes a condition directly to the basic 
random variables which eventually yields that the state 1ks
depends only on ks  and ka . Moreover, the conditional 
probability distributions do not depend on the control policy ,
and thus, the superscript  can be dropped 

1

1

| , 1 0 0

| , 1

( | ,..., , ,..., )

( | , ).
k k k

k k k

s s a k k k

s s a k k k

s s s a a

s s a
           (11) 

A stochastic process { ,ks k  satisfying the condition of 
Eq. (11) is called a Markov Process and the condition is addressed 
as a Markov property.

Consequently, under Assumption 2.1, a dynamic system 
incurring stochastic disturbances can be represented by a 
controlled Markov chain. A stochastic system is specified by the 
state equation ,kf k , the observation equation ,kh k , and 
the probability distribution of the basic random variables 

0 0 1 0 1, , ,..., , ,...s w w v v  A controlled Markov chain description of a 
stochastic system is specified by the transition probabilities 

1| , ( | )
k k ks s a , the observation equation ,kh k , and the 

probability distribution of the independent basic random variables 
0 0 1, , ,...s v v  The observation function and random variables can 

alternatively be represented by some cost functions ( , )k k kR s a
corresponding to a system’s performance criterion. These 
functions provide the cost associated with the state being visited 
by the chain at time k, ks i S , when the control action ka  is 
selected.

We consider the problem of deriving an optimal control 
policy for a completely unknown dynamic system incurring 
stochastic disturbances by learning the transition probabilities and 
cost functions. While the system is evolving over time, the goal is 
to realize a control policy that optimizes a specified performance 
criterion, assuming the system’s performance can be completely 
measured. The problem is formulated as a sequential decision-
making problem under uncertainty. The decision-making process 
occurs at each of a sequence of decision epochs 

0,1, 2,..., ,  k M M . At each epoch, the controller observes a 
system’s state ks i S , and executes an action ( )k ka A s ,
from the feasible set of actions ( )kA s A  at this state. At the 
next epoch, the system transits to the state 1ks j S  imposed 
by the conditional probabilities 1( | , )k k ks j s i a , designated 
by the transition probability matrix ( | )P . The conditional 
probabilities of ( | )P , : [0,1]S A , satisfy the constraint 

1
1

( | , ) 1.
N

k k k
j

s j s i a             (12) 

Following this state transition, the controller receives a cost 
associated with the action ka , ( , )k kR s i a , :R S A . A 
control policy  determines the probability distribution of state 
process { ,ks k  and the control process { ,ka k . Different 
policies will lead to different probability distributions. In optimal 
control problems, the objective is to derive the optimal control 
policy that minimizes the accumulated cost incurred at each state 
transition per decision epoch. If a policy  is fixed, the cost 
incurred by  when the process starts from an initial state 0s  and 
up to the time horizon M is 

1

0
0

( ) ( , ),
M

k k k
k

J s R s a , ( ).k k ks a A sS            (13) 

The accumulated cost 0( )J s  is a random variable since ks
and ka  are random variables. Hence the expected accumulated 
cost of a control policy is given by 

1

0    s 0( )

( ) { ( , ( ))},
k

k k

M

k k k k
kA s

J s E R s s
S

           (14) 

where the expectation is with respect to the probability 
distribution of { ,ks k  and { ,ka k  determined by the 
policy . Consequently, the control policy that minimizes 
Eq.(14) is defined as the optimal control policy .

3. FINITE STATE CONTROLLED MARKOV CHAINS

3.1 Classification of States  
The evolution of the system is modeled as a controlled 

Markov chain with a finite state space S  and control action 
space A .  This evolution { , 0}ks k  can be seen as the motion of 
a notional particle which jumps between the states i S  of the 
state space {1,2,..., },  N NS , at each decision epoch, while 
a certain cost incurs at each jumping.  

Definition  3.1 [24]: The chain { , 0}ks k  is called 
homogeneous if 

1 1 0( | ) ( | ),ij k k ijs j s i s j s i 0, , .k i j S     (15) 

The classification of the states in a Markov chain aims to 
provide insight towards modeling appropriately the evolution of a 
controlled dynamic system. 

Definition 3.2 [25]: A Markov state i S  is called recurrent 
(or persistent), if 

0(  for some 0 | ) 1,ks i k s i            (16) 

that is, the probability of eventually return to state i , having 
started from i , is one. 

The first time the chain { , 0}ks k  visits a state i S  is given by 
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1( ) : min{ 1: }.kT i k s i             (17) 

1( )T i  is called the first entrance time or first passage time of state 
i . It may happen that ks i  for any 1k . In this case, 

1( ) minT i , which is taken to be . Consequently, if the chain 
{ }ks  never visits state i  for any time 1k , 1( )T i . Given that 
the chain starts in state i , the conditional probability that the 
chain returns to state i  in finite time is  

1 0: ( ( ) | ).iif T i s i             (18) 

Consequently, for a recurrent state i 1iif . Furthermore, if 
the expected time for the chain to return to a recurrent state i  is 
finite, the state is said to be positive recurrent; otherwise, the state 
is said to be null recurrent. The nth entrance time of state i  is 
given by 

1( ) : min{ ( ) : }.n n kT i k T i s i             (19) 

Definition 3.3 [25]: The mean recurrence time i  of a state i
is defined as 

1 0: { ( ) | }.i E T i s i                          (20) 

The behavior of a Markov chain after a long time k  has 
elapsed is described by the stationary distributions and the limit 
theorem. The sequence { , 0}ks k  does not converge to some 
particular state i S  since it enjoys the inherent random 
fluctuation which is specified by the transition probability matrix. 
Subject to certain conditions, the distribution of { , 0}ks k  settles 
down to a stationary one; that is, the evolution of the Markov 
chain will be visiting each state with a constant probability in long 
term. 

Definition 3.4 [25]: The vector  is called a stationary 
distribution of the chain if  has entries ( , )i i S  such that: 

(a) 0i  for all i , and 1i
i S

,

(b) P , that is i j ji
j S

, where ji  is the 

transition probability 1( | )ji k ks i s j , for all i .

The limit theorem states that if a chain is irreducible with 
positive recurrent states, the following limit exists 

1lim ( | ) ( ).n
j ij k k nn

s j s i s j                  (21) 

Theorem 3.1 (“Limit Theorem”) [25]: An  irreducible  
Markov  chain  has  a stationary distribution  if and only if all 
the states are positive recurrent. Furthermore,  is the unique 
stationary distribution and is given by 1

i i  for each i S ,
where i  is the mean recurrence time of state i .

Stationary distributions have the following property 

, 0n nP                                      (22) 

The accumulated cost 0( )J s ,Eq.(14), can be readily 
evaluated in terms of the stationary probability distributions as 
follows

0
0

( ) ( , ),
M

i k k k
k

J s R s i a , ( ).k ki a A sS     (23) 

where i  is the stationary probability of visiting the state i .

3.2 Formulation of the Predictive Optimal Decision-
Making Model 

The POD learning model [17, 18] consists of a new state-
space system representation. This representation accumulates 
gradually enhanced knowledge of the system’s transition from 
each state to another in conjunction with actions taken for each 
state. While the system interacts with its environment, the POD 
model learns the transition probabilities of the Markov state 
transitions and associated cost functions. This realization 
determines the stationary distribution of the Markov chain than 
can be then used in deriving the optimal control policy through 
Eq. (24). 

The model considers systems that their evolution can be 
modeled as a controlled Markov chain under the following 
assumptions. 

Assumption 3.1: The Markov chain is homogeneous. 

Assumption 3.2: The Markov chain is ergodic, that is, the 
states are positive recurrent and aperiodic. 

Assumption 3.3: The Markov chain is irreducible. 
Consequently, each state i  of the Markov chain 
intercommunicates with each other , ,i j i j S , that is, each 
system’s state can be reached with a positive probability from any 
other state in finite decision epochs. 

The new state-space representation defines the POD domain 
S , which is implemented by a mapping H  from the Cartesian 
product of the finite state space and action space of the Markov 
chain { , 0}ks k

,H : S A S S                                  (24) 

where {1,2,..., },  N NS  denotes the Markov state space, 
and ( ),

k k ks A s s iSA S  stands for the finite action 

space. Each state of the POD domain represents a Markov state 
transition from ks i S  to 1ks j S  for all 0k , that is

1 1 1( ) ( )
: | = ,

k k

ij ij
k k k ks A s

s s s i s jS                   (25) 
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where

1
1

( | , ) 1, | |,
N

k k k
j

p s j s i a N S , ,  ( ) ( ).k ki j s A sS

Definition 3.5:  The mapping H  generates an indexed family 
of subsets, iS , for each Markov state ks i S , defined as 
Predictive Representation Nodes (PRNs). Each PRN is 

constituted by the set of POD states 1
ij
k is S  representing the 

state transitions from the state ks i S  to all other Markov 
states

1 1( ) ( )
: | = , .

k k

ij
k k ks A si s s i s j jS S                  (26) 

PRNs partition the POD domain insofar as the POD 
underlying structure captures the state transitions in the Markov 
domain, namely 

, withiij
iks SS S                                   (27) 

.iij
iks S S                                           (28) 

PRNs, constituting the fundamental aspect of the POD state 
representation, provide an assessment of the Markov state 
transitions along with the actions executed at each state. This 
assessment aims to establish a necessary embedded property of 
the new state representation so as to consider the stationary 
distribution in long term. 

4. CONVERGENCE OF POD MODEL
While the system interacts with its environment, the POD 

model learns the system dynamics in terms of the Markov state 
transitions. The POD state representation attempts to provide a 
process in realizing the sequences of state transitions that 
occurred in the Markov domain, as infused in PRNs. The different 
sequences of the Markov state transitions are captured by the 
POD states. It is shown that this realization determines the 
stationary distribution of the Markov chain. 

Definition 4.1:  Given a set C  and a variable x , the 
indicator function, denoted by ( )CI x , is defined by 

1,
( ) :

0,C

x C
I x

x C
                                    (29) 

Lemma 4.1: Each PRN is irreducible, that is 
, ,i j i jS S S .

Proof: At the decision epoch k , the state transition from i  to 
j  corresponds to the ij

ks  inside the PRN iS . The next state 
transition will occur from the state j  to any other Markov state. 
Consequently, by Definition 3.5, the next state transition will 

occur in jS . By Assumption 3.3, all states intercommunicate with 

each other, that is, , ,i j i j S . So PRNs intercommunicate 
and thus they are irreducible. The lemma is proved. 

The number of visits of the chain to the state j S  between 
two successive visits to state i S  at the decision epoch k M ,
that is, the number of visits of the POD state ij

Ms S , is given by 

1{ } { ( ) }
1

( ) : ( ),
k

M
ij
M s j T i k k

k

V s I s             (30) 

where 1( )T i  is the time of the first return to state i S .

Definition 4.2: The mean number of visits of the chain to the 
state j S  between two successive visits to state i S  is 

1 0
1

( ) : { ( ) | }

( , ( ) | ).

ij ij
M M k

M

k
k

V s E V s s i

s j T i k s i
            (31) 

Definition 4.3: The mean recurrence time time 
iS  that the 

chain spends at the PRN iS  is 

1 0
1

: ( ) ( , ( ) | ).
i

M
ij
M k

j j k

V s s j T i k s iS
S S

       (32) 

Lemma 4.2: The mean recurrence time of each PRN iS ,
iS ,

is equal to the mean recurrence time of state i S , i .

Proof: It was shown (Lemma 3.1) that each time the Markov 
chain transits from one state i S  to a state j S  there is a 

corresponding transition from the PRN iS  to jS . Consequently, 

the number of visits of the chain to the state i S  is equal to the 
number of visits to the PRN iS . Taken the expectation of this 
number yields the mean recurrence time, by Definition 4.3. The 
lemma is proved. 

Proposition 4.1: If A, B, and C are some events and  

( | ) ( | )A B C A B , then             (33) 

( | ) ( | ) ( | )A C B A B C B             (34) 

Proof:

( )( | )
( )

A B C
A C B

B
                         (35) 

using the identity ( | ) ( ) ( )A B B A B , Eq.(35) yields 
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( | ) ( ) ( | ) ( )
( ) ( )

A C B C B A B C B
B B

by using Eq. (33) 

( | ) ( ) ( | ) ( | ) ( )
( ) ( )

A B C B A B C B B
B B

( | ) ( | ).A B C B

It remains to present the main result of the POD learning 
model, namely, that the realization of the sequences of state 
transitions that occurred in the Markov domain as infused by the 
PRNs determines the stationary distribution of the Markov chain. 

Theorem 4.1: The POD state representation generates the 
stationary distribution  of the Markov chain. Moreover, the 
stationary probability is given by the mean recurrence time of 
each PRN iS , 1

ii S .

Proof: Since the chain is ergodic with irreducible states, it is 
guaranteed that the chain has a unique stationary distribution, and 
for each state i S  the stationary probability is equal to 1

i i

(Theorem 3.1). 

i i

Sii  by Lemma 4.2 

1 0 0
S 1

( , ( ) | ) ( )
M

k
j k

s j T i k s i s i            (36) 

1 0
S 1

( , ( ) , )
M

k
j k

s j T i k s i             (37) 

by using the identity ( | ) ( ) ( )A B B A B .

For 1k ,  Eq. (37) yields 

1 0
S

( , ( ) 1, ) 1.k
j

s j T i s i             (38) 

For k , Eq. (36) yields 

0
S 1

( ,  for 1 1, ).
M

k m
j k

s j s i m k s i       (39) 

Using Proposition 4.1 and since 

0 0( |  for 1 1, ) ( | )k m ks j s i m k s i s j s i ,
Eq.(39) becomes 

0 0
1 S

( | ) (  for 1 1, )
M

k m
k j

s j s i s i m k s i

0
1

(  for 1 1, )
M

m
k

s i m k s i             (40) 

by using the identity ( ) ( ) ( ) ( )A B A B A B , Eq. 
(40) becomes 

0
1

( ) (  for 1 1) (  for 0 1)
M

m m
k

s i s i m k s i m k

Since the Markov chain is homogeneous (Assumption 3.1) 

0 0
1

( ) ( ) lim (  for 0 3)
M

mkk

s i s i s i m k

lim (  for 0 1) ,mk
s i m k                                        (41) 

since the Markov states are irreducible (Assumption 3.3) 

lim (  for 0 3) 0mk
s i m k , and 

lim (  for 0 1) 0mk
s i m k , and Eq. (41) becomes 

0 0
1 1

( ) ( ) 1 1.
M M

k k

s i s i

We have shown that 

S 1.
ii i i

Consequently, the stationary distribution is given by the mean 
recurrence time of each PRN iS ,

iS
.

5. CONCUDING REMARKS
The POD model aimed to address the state estimation and 

system identification problem for a completely unknown system 
by learning in real time the system dynamics when the system’s 
performance can be measured. The model possesses a structure 
that enables a convergent behavior of the conditional probabilities 
infused by the POD state-space representation to the stationary 
distribution. This behavior is desirable in the effort towards 
making autonomous intelligent systems that can learn to improve 
their performance over time in stochastic environments. The 
implementation of the POD model along with a lookahead control 
algorithm in various applications to date cited in the introduction 
support these theoretical results. 

The major advantage of the POD model, compared to the 
stochastic adaptive control approaches, is that it can solve the 
state estimation and system identification problem over a varying 
and unknown finite time horizon. This property arises due to the 
structure of the POD model in addressing the system 
identification problem separately from the stochastic one. Under 
the assumption that the basic random variables are all 
independent, the transition probabilities do not depend on the 
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control policy. Consequently, system identification can be 
independent from the control policy imposed by the controller, 
and be addressed separately.  
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