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Abstract—Motivated by the significant role of recharging
in battery-powered vehicles, we study the routing problem for
vehicles with limited energy through a network of charging nodes.
We seek to minimize the total elapsed time for vehicles to reach
their destinations considering both traveling and recharging times
at nodes when the vehicles do not have adequate energy for the
entire journey. We have studied the case of homogeneous charging
nodes in [1] and generalized it to inhomogeneous charging nodes
in [2] by formulating and solving a Mixed Integer Non-Linear
Programming problem (MINLP) for a single-vehicle. In this
paper, we solve the same problem using Dynamic Programming
(DP), resulting in optimal solutions with lower computational
complexity compared to [2]. For a multi-vehicle problem, where
traffic congestion effects are included, we use a similar approach
by grouping vehicles into “subflows” and propose a DP formula-
tion. Our numerical results show that DP becomes prohibitively
slow as the number of subflows increases. As in [1] and [2] we
resort to an alternative flow optimization formulation leading to
a computationally simpler problem solution with minimal loss of
accuracy.

Keywords - Electric Vehicles, Routing, Optimal Recharging
Policy, Optimal Control, Dynamic Programming

I. INTRODUCTION

The increasing presence of Battery-Powered Vehicles
(BPVs), such as Electric Vehicles (EVs) or mobile robots and
sensors, has given rise to novel issues in classical network
routing problems [3]. There are four BPV characteristics which
are crucial in routing problems: limited cruising range, long
charge times, sparse coverage of charging stations, and the
BPV energy recuperation ability [4] which can be exploited. In
recent years, the vehicle routing literature has been enriched by
work aiming to accommodate these BPV characteristics. For
example, by incorporating the recuperation ability of EVs, ex-
tensions to general shortest-path algorithms are proposed in [4]
that address the energy-optimal routing problem, with further
extensions in [5]. Charging times are incorporated into a multi-
constrained optimal path planning problem in [6], which aims
to minimize the length of an EV’s route and meet constraints
on total traveling time, total time delay due to signals, total
recharging time and total recharging cost. In [7], algorithms
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for several routing problems are proposed, including a single-
vehicle routing problem with inhomogeneously priced refuel-
ing stations for which a dynamic programming based algorithm
is proposed to find a least cost path from source to destination.
More recently, an EV Routing Problem with Time Windows
and recharging stations (E-VRPTW) was proposed in [8],
where controlling recharging times is circumvented by simply
forcing vehicles to be always fully recharged.

In [2], we studied the vehicle total traveling time min-
imization problem in a network containing inhomogeneous
charging nodes, i.e., charging rates at different nodes are not
identical. In fact, depending on an outlet’s voltage and current,
charging an EV battery could take anywhere from minutes to
hours. For the single EV routing problem, formulated as a
MINLP, we proved certain optimality properties allowing us
to reduce the dimensionality of the original problem. Further,
by adopting a locally optimal charging policy, we derived a
Linear Programming (LP) formulation through which near-
optimal solutions are obtained. For a multi-vehicle problem,
where traffic congestion effects are included and a system-
wide objective is considered, a similar approach was used by
grouping vehicles into “subflows”. Moreover, we provided an
alternative flow-based formulation which reduces the compu-
tational complexity of the original MINLP problem by orders
of magnitude with numerical results showing little loss in
optimality. Despite the properties of the problem that we have
exploited, its solution remains computationally demanding for
real-time applications. This motivates the study of alternative
solution techniques.

Thus, in this paper we formulate the single EV routing
problem as a Dynamic Programming (DP) problem by dis-
cretizing vehicle residual energy at each node. This model is
identical for both homogeneous and inhomogeneous charging
nodes and allows us to find an optimal routing and charging
policy for both cases in CPU time which is about two orders
of magnitude lower compared to [2]. We then study the much
more challenging multi-EV routing problem, where a traffic
flow model is used to incorporate congestion effects. Similar
to [1] and [2], by grouping vehicles into “subflows” we are able
to reduce the complexity of the original problem and provide a
DP-based algorithm to determine optimal routing and charging
policies at the EV subflow level. In this case, the problem size
significantly increases with the number of subflows and the DP
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algorithm is eventually outperformed by our earlier MINLP
approach as the number of subflows increases.

The structure of the paper is as follows. In Section II, we
address the single-EV routing problem in a network with inho-
mogeneous charging nodes and formulate it as a DP problem.
We then derive an iterative algorithm to solve it recursively. In
Section III, the multi-EV routing problem is also formulated
as a DP. Simulation examples are included illustrating our
approach and providing insights on the relationship between
recharging speed and optimal routes. Conclusions and further
research directions are outlined in Section IV.

II. SINGLE VEHICLE ROUTING

We assume, as in [1] and [2], that a network is defined
as a directed graph G = (N ,A) with N = {1, . . . , n} and
|A| = m . Node i ∈ N/{n} represents a charging station and
(i, j) ∈ A is an arc connecting node i to j (we assume for
simplicity that all nodes have a charging capability, although
this is not necessary). We also define I(i) and O(i) to be
the set of start nodes (respectively, end nodes) of arcs that
are incoming to (respectively, outgoing from) node i, that is,
I(i) = {j ∈ N|(j, i) ∈ A} and O(i) = {j ∈ N|(i, j) ∈ A}.

First, we deal with a single-origin-single-destination vehi-
cle routing problem in a network of inhomogeneous charging
stations. Nodes 1 and n respectively are defined to be the
origin and destination. For each arc (i, j) ∈ A, there are two
cost parameters: the required traveling time τij and the energy
consumption eij . Note that τij > 0 (if nodes i and j are
not connected, then τij = ∞), whereas eij is allowed to be
negative due to an EV’s potential energy recuperation effect
[4]. Letting the vehicle’s charge capacity be B, we assume
that eij < B for all (i, j) ∈ A. Since we are considering
a single vehicle’s behavior, we assume that it will not affect
the overall network’s traffic state, therefore, τij and eij are
fixed depending on given traffic conditions at the time the
single-vehicle routing problem is solved. Clearly, this cannot
apply to the multi-vehicle case in the next section, where the
decisions of multiple vehicle routes affect traffic conditions,
thus influencing traveling times and energy consumption. Since
the EV has limited battery energy, it may not be able to reach
the destination without recharging. Thus, recharging amounts
at charging nodes i ∈ N are also decision variables.

First, we briefly review the formulation in [2]. The single
vehicle’s objective is to determine a path from 1 to n, as well
as recharging amounts, so as to minimize the total elapsed time
to reach the destination. We formulate this as a Mixed Integer
Nonlinear Programming (MINLP) problem:

min
xij ,ri, i,j∈N

n∑
i=1

n∑
j=1

τijxij +

n∑
i=1

n∑
j=1

rigixij (1)

s.t.
∑

j∈O(i)

xij −
∑

j∈I(i)

xji = bi, for each i ∈ N (2)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (3)

Ej =
∑

i∈I(j)

(Ei + ri − eij)xij , for j = 2, . . . , n (4)

0 ≤ Ei ≤ B, E1 given, for each i ∈ N (5)

xij ∈ {0, 1}, ri ≥ 0 (6)

where xij ∈ {0, 1}, i, j ∈ N denotes the selection of arc (i, j),
ri ≥ 0, i ∈ N/{n} is for energy recharging amount at node
i, Ei represents the vehicle’s residual battery energy at node
i, and gi is the charging time per unit of energy for charging
node i.

The constraints (2)-(3) stand for flow conservation, which
implies that only one path starting from node i can be selected.
Constraint (4) represents the EV’s energy dynamics. Finally,
(5) indicates that the vehicle cannot run out of energy before
reaching a node or exceed a given capacity B.

A. Dynamic Programming Formulation

Solving problem (1) - (6) is computationally expensive.
In [2] we proceeded by decomposing it into two linear
programming (LP) problems finding a near-optimal solution
(for networks with inhomogeneous charging nodes). Here, we
formulate the same problem in a DP setting and obtain optimal
(not just near-optimal) solutions. The algorithm is based on the
following formulation.

We define Q(i, Ei) to be the minimum elapsed time,
including traveling and recharging times, to the destination
node when starting at node i with Ei units of energy. Our
goal, therefore, is to determine Q(1, E1) where E1 is given.
Assuming the EV maximum charging capacity is B, we have
to consider all possible values of Ei ∈ [0, B]. To do so, we
discretize the range [0, B] and form a set of all possible values
for Ei. Our algorithm is centered on the standard principle of
optimality [9] based on which, Q(i, Ei) is obtained using the
following iterative equation:

Q(i, Ei) =

min
j∈O(i), 0≤Ej≤B

s.t 0≤Ej−Ei+eij≤B

[ Cost to go︷ ︸︸ ︷
Q(j, Ej)+

One step cost︷ ︸︸ ︷
τij + (Ej − Ei + eij)gi

]
(7)

where the state is [i, Ei] and there are two control variables:
the amount to charge at each state, ri, and the next node to
route the EV to, j ∈ O(i), dictated by the graph topology. The
charge amount ri is constrained by the energy dynamics, Ej =
Ei+ri−eij and by 0 ≤ ri ≤ B. This iterative process leads to
the optimal solution because when an optimal policy is found
from state [j, Ej ] to the destination for all feasible values of j
and Ej , then the route from node i to the destination node via
node j will also be optimal. Under proper technical conditions,
the iterative process generated through (7) converges to the
optimal value of Q. The detailed steps of the DP algorithm
for this problem are given next.

Initialization: Based on Lemma 2 in [2], if an EV receives
any positive charge in the optimal path, i.e.

∑
i r
∗
i > 0, the EV

residual energy at the destination is zero, i.e. E∗n = 0. There-
fore, the cost value at the destination node is Q(0)(n, 0) = 0.
Motivated by Dijkstra’s algorithm for the shortest path prob-
lem, we set the initial elapsed time for all other states to
infinity, i.e.,



Q(0)(n,En) =

{
0 if En = 0,

∞ if En > 0.
(8)

Q(0)(i, Ei) =∞ ∀i ∈ N \ n, 0 ≤ Ei ≤ B (9)

Iteration steps: The update of Q values can be carried
out starting from any state. For convenience, we start at the
source node, i.e. [1, E1]. At the kth iteration, the Q values are
updated as follows: Q(k)(n,En) = Q(0)(n,En) and

Q(k)(i, Ei) = min
j∈O{i}, 0≤Ej≤B

s.t 0≤Ej−Ei+eij≤B

[Q(k−1)(j, Ej) + τij+

(Ej − Ei + eij)gi] ∀i ∈ N \ n, 0 ≤ Ei ≤ B (10)

We seek limk→∞Q(k)(i, Ei) = Q∗, therefore, the algorithm
stops when Q(k)(i, Ei) = Q(k−1)(i, Ei) for all i ∈ N ,
0 ≤ Ei ≤ B. The optimal route can then be determined
by choosing the next state, minimizing Q(i, Ei). Without loss
of generality, we re-index nodes so that we may write the
optimal path as P = {1, ...,m}. Then, the optimal charging
amount at each node on the optimal path is calculated through
ri−1 = Ei − Ei−1 + ei−1,i with i = 2, ...,m, and E1 given.

B. Numerical Example

To investigate the effectiveness of the DP algorithm, we
consider a grid graph with 49 nodes and 84 edges as shown in
Fig. 1, where the traveling time, τij , and energy consumption,
eij on each edge are shown in red and blue numbers respec-
tively. Fig. 1 shows the optimal path for the network with
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Fig. 1: A 49-node grid network with inhomogeneous charging
nodes.

homogeneous charging stations (G = [g1, ..., gn−1], gi =
1 ∀ i) and inhomogeneous charging stations G =[ 1 1 1 1
1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 5 1
1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 1 1
1 1 5 5 5] as the green and red routes respectively. For
the network with homogeneous stations, the optimal charging
policy suggests that the EV requires just enough charge at
each node to reach the next node on the optimal path, e.g. if
E1 = 0 then r∗i = ei,i+1, i ∈ P . In contrast, for the network
with inhomogeneous charging nodes with a G vector as above,

the optimal charging amount at each node on the optimal path
is as follows:

r1 = 5 r2 = 5 r3 = 1 r10 = 1 r17 = 2 r24 = 2

r31 = 5 r38 = 0 r39 = 0 r40 = 6 r47 = 0 r48 = 0

The algorithm execution is very fast for this graph and con-
verges to the optimal solution in 13 iterations in less than 10
sec for both homogeneous and inhomogeneous charging nodes.
In contrast, a MINLP solver in [1] and [2] requires more than
1000 sec to find the optimal solution for the same graph with
homogeneous charging nodes.

III. MULTIPLE VEHICLE ROUTING

The results obtained for the single vehicle routing problem
pave the way for the investigation of multi-vehicle routing,
where we seek to optimize a system-wide objective by routing
and charging vehicles through some network topology. This is
a much more challenging problem, the main technical difficulty
being the need to consider the influence of traffic congestion
on both traveling time and energy consumption.

As in [1], we proceed by grouping subsets of vehicles into
N “subflows” where N may be selected to render the problem
manageable. Let all vehicles enter the network at node 1 and
let R denote the rate of vehicles arriving at this node. Viewing
vehicles as defining a flow, we divide them into N subflows
each of which may be selected so as to include the same type
of vehicles (e.g., large vehicles vs smaller ones or vehicles
with the same initial energy). Thus, all vehicles in the same
subflow follow the same routing and recharging decisions so
that we only consider control at the subflow level rather than
individual vehicles. Clearly, not all vehicles in our system are
EVs, therefore, not all of them are part of our optimization
process. These can be treated as uncontrollable interfering
traffic for our purposes and can be readily accommodated in
our analysis, as long as their flow rates are known. However,
for simplicity, we will assume here that every arriving vehicle
is an EV and joins a subflow. Our objective is to determine
optimal routes and energy recharging amounts for each vehicle
subflow so as to minimize the total elapsed time of these flows
from origin to destination.

A. Mixed Integer Non-Linear Programming Formulation

In [2], we formulated this problem as a MINLP as follows:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τkij(xij) + rki gix

k
ij

)
(11)

s.t.
∑

j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N (12)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (13)

Ek
j =

∑
i∈I(j)

(Ek
i + rki − ekij(xij))x

k
ij , j = 2, . . . , n (14)

Ek
1 is given, 0 ≤ Ek

i ≤ Bk, for each i ∈ N (15)
xkij ∈ {0, 1}, 0 ≤ rki ≤ Bk (16)

where the decision variables are xkij ∈ {0, 1} and rki denoting
the arc selection and charging amount at node i respectively,
for all arcs (i, j) and subflows k = 1, . . . , N . Given traf-
fic congestion effects, the time and energy consumption on



each arc depends on the values of xkij and the fraction of
the total flow rate R associated with each subflow k. Let
xij = (x1ij , · · · , xNij )T and ri = (r1i , · · · , rNi )T . Then, the
traveling time and corresponding energy consumption of the
kth vehicle subflow on arc (i, j) are denoted by τkij(xij) and
ekij(xij) respectively. Similar to the single vehicle case, Ek

i
represents the residual energy of subflow k at node i, given by
the aggregated residual energy of all vehicles in the subflow.
If the subflow does not go through node i, then Ek

i = 0.

B. Flow control formulation

Although the MINLP formulation above finds an optimal
routing and charging amount for each subflow, its solution
is computationally expensive to obtain and the number of
decision variables (hence, the solution search space) rapidly
increases with the number of subflows, N . In [2], we proposed
a non-linear programming (NLP) problem which determines
near-optimal routes for all subflows as follows:

min
xij

i,j∈N

N∑
k=1

n∑
i=1

n∑
j=1

[
τkij(xij) + ekij(xij)gi +K(gi − gj)

]
(17)

K =

{
(Bk − ekij(xij))x

k
ij if gi < gj ,

0 otherwise

s.t.
∑

j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xkij ≤ 1

Note that in the above formulation, we relax the binary
variables in (16) by letting 0 ≤ xkij ≤ 1. Thus, we switch our
attention from determining a single path for any subflow k to
several possible paths by treating xkij as the normalized vehicle
flow on arc (i, j) for the kth subflow. Once we find the near-
optimal routes, the values of rki , i = 1, . . . , n, k = 1, . . . , N ,
can then easily be determined by solving an LP problem (for
more details refer to [2]). However, there is no guarantee of
global optimality. This formulation reduces the computational
complexity of the MINLP problem by orders of magnitude
with numerical results showing little loss in optimality.

C. Dynamic Programming Formulation

Our goal here is to develop a DP algorithm to solve the
same problem and compare its computational cost to the so-
lution methods in [2]. Note that the problem size dramatically
increases with the number of subflows, N . Our first step is to
construct a new graph at the subflow level, Gsf = (Nsf ,Asf ),
given a road network G = (N ,A) and the number of subflows,
N . In this graph, each node in Nsf represents a feasible
combination of nodes in G among which all subflows may
be distributed. To make this clear, consider the road network
shown in Fig. 2. In order to map the original graph G into
the subflow-level graph Gsf , we define each of its nodes as
Yi = (yi1..., y

i
N ) where i = 1, 2, . . . indexes these nodes and

yik is the location of the kth subflow in G. Fig. 3 is the subflow-
level graph Gsf constructed from Fig. 2 when the total inflow,
R, is divided into 2 subflows (N = 2). In this case, Gsf

consists of 25 nodes. As an example, in Fig. 3 node 3(2 4)
represents a node with index i = 3 mapping the first and

Fig. 2: A 7-node road network with inhomogeneous charging
nodes.

second subflows to nodes 2 and 4 in G respectively, i.e., it
represents a routing decision at node 1 in G for sublow 1 to
travel from 1 to 2 and for sublow 2 to travel from 1 to 4,
noting that O(1) = {2, 4, 5}. Clearly, Gsf is much larger than
the original road network G, even for N = 2. Table I shows
the number of nodes and edges in the subflow-level graph
for different values of N for the road network in Fig. 2. As

TABLE I: Subflow-level graph size for different number of
subflows for road network shown in Fig. 1

Number of subflows (N) Number of nodes Number of edges
2 25 54
3 91 268
6 4825 31914

we did for the single EV, we need to consider all possible
combinations for the residual energies at each node in the
subflow-level graph. Thus, we define Ei = [Ei

1, ..., E
i
N ]. When

a decision is made at a node in Gsf , we need to calculate its
effect on the travel time and energy consumption over each
edge (i, j) ∈ A resulting from the traffic added to this edge.
This requires information on the number of subflows routed
through (i, j). Recalling that |A| = m, let us index all edges
(i, j) ∈ A as {1, ...,m}. Next, we define an auxiliary vector
for each pair (Yi,Ei) in Gsf denoted by Si = [si1, ..., s

i
m]

where sil is the number of subflows through the lth edge in
G = (N ,A) starting from node Yi ∈ Nsf with residual
energies Ei, i.e. sil ∈ {0, 1, ..., N} and l = 1, ...,m. In
other words, Si is a function of the state variables (Yi,Ei)
and includes the data required to calculate traveling time
and energy consumption amounts on each edge. Specifically,
traveling from node Yi to node Yj in the Gsf , τkyi,yj

and
ekyi,yj

represent the traveling time and energy consumption on
the edge (yik, y

j
k) in the original graph for the kth subflow

respectively and their values depend on the traffic congestion
on the edge which is a function of sil ∈ Si. More precisely,
we define the ”edge indexing operation”, δ(yik, y

j
k), assigning

a single edge index l to a pair of node indices (yik, y
j
k), i.e.,

δ(yik, y
j
k) = l. Note that sil is updated based on the decision

made at node Yi which determines the next node, Yj , and
residual energy Ej . Clearly,

sil = sjl +

N∑
k=1

1[δ(yik, y
j
k) = l] (18)

where 1[.] is the indicator function. Thus, the term∑N
k=1 1[δ(y

i
k, y

j
k) = l] captures the added congestion imposed

by edge (Yi,Yj) ∈ Asf on the lth edge in A. Let S(i, j)
be defined as the m-dimensional vector with the qth element



Fig. 3: Subflow-level graph showing all feasible combination of nodes via which subflows may travel

sq(i, j) =
∑N

k=1 1[δ(y
i
k, y

j
k) = q] and q = 1, ...,m. Therefore,

(18) can be written in vector form as: Si = Sj + S(i, j).
It’s worth to mention that, in contrast with the single-EV
problem where we assume fixed parameters for the traveling
time and energy consumption on each edge, for the multiple-
EV problem these parameters are dependent on the traffic
congestion (routing decision) which makes the problem much
harder.

We define Q(Yi,Ei) to be the minimum total elapsed
time to the destination node in Gsf starting from node
Yi = (yi1, ..., y

i
N ) ∈ Nsf with Ei = (Ei

1, ..., E
i
N ) units

of energy. Our goal then is to determine Q(Y1,E1) where
Y1 = (1, ..., 1) and E1 is a given amount of energy for
the whole inflow (divided among suubflows) to the network.
Let Bk be the maximum charging amount subflow k can
receive based on its vehicle type. Then, we need to consider
all possible feasible values of Ei = (Ei

1, ..., E
i
N ) such that

Ei
j ∈ [0, Bj ], ∀j = 1, .., N and ∀i. To do so we need to

dicretize this range accordingly.

The algorithm works based on the following DP formula-
tion over the subflow-level graph. Similar to (7), Q(Yi,Ei) is
calculated using the iterative equation

Q(Yi,Ei) =

min
Yj∈O{Yi}, 0≤Ej

k≤B
k

s.t 0≤Ej
k−E

i
k+ekyi,yj

(Sj)≤Bk

k=1,...,N

[
Q(Yj ,Ej) +

N∑
k=1

τkyi,yj
(Sj)

+

N∑
k=1

(Ej
k − E

i
k + ekyi,yj

(Sj))gik + C(Yi,Yj ,Sj)
]

(19)

In (19), Q(Yj ,Ej) denotes the minimum cost to go
from node Yj = (yj1, ..., y

j
N ) with residual energies Ej =

(Ej
1, ..., E

j
N ) to the destination node. The one-step cost con-

sists of three parts. First,
∑N

k=1 τ
k
yi,yj

(Sj) is the total elapsed
time to travel from Yi to Yj in Gsf . The second term,∑N

k=1(E
j
k − Ei

k + ekyi,yj
(Sj))gik, shows the total recharg-

ing time, and the third term, C(Yi,Yj ,Sj) is necessary
to evaluate the added edge travel times and energy con-
sumption resulting from the specific routing decision. Note
that τkyi,yj

(Sj) and ekyi,yj
(Sj) are computed based on the

corresponding sil (updated based on a decision at node Yi).
Adding the edge (Yi,Yj) ∈ Asf , may change the travel times
on the arcs previously used in computing Q(Yj ,Ej), and it
should be modified accordingly. To do so, we add the term
C(Yi,Yj ,Sj):

C(Yi,Yj ,Sj) =
∑
l∈Aij

(sjl )[τl(s
i
l)− τl(s

j
l )] (20)

where Aij = {l : sjl > 0 and sl(i, j) > 0} for l = 1, ....,m,
is a set containing the intersection between edges in the route
from node Yj to the destination and edges in (Yi,Yj) ∈ Asf .

Recall that the energy dynamics on the optimal path for
each subflow are Ej

k = Ei
k+r

k
i −ekyi,yj

(Sj), k = 1, ..., N , the
constraint 0 ≤ Ej

k − Ei
k + ekyi,yj

(Sj) ≤ Bk is the feasibility
constraint for amount of charge subflow k may receive at each
node, rki .

We seek limk→∞Q(k)(Yi,Ei) = Q∗. In the sequel, we
describe the detailed steps of the DP algorithm.

Initialization: Based on our analysis in [1] and [2], we
know that if subflow k gets charge on the optimal path, the
optimal residual energy at the destination for that subflow is
zero. Therefore, assuming all subflows will get charge in their
journey, it is obvious that the only option for the cost value
at the destination node is Q(0)(YD,ED = 0) = 0 where
D is the index of the destination node in the subflow-level
graph, e.g. node 25 in Fig. 3. For the other nodes, motivated
by Dijkstra’s algorithm for the shortest path problem, we set
the initial traveling time for all other cases to infinity, i.e.,

Q(0)(YD,ED) =

{
0 if ED = 0,

∞ if ED > 0.
(21)

Q(0)(Yi,Ei) =∞ ∀Yi ∈ Nsf \YD, 0 ≤ Ei
k ≤ Bk

(22)

Iteration Steps: The update of Q values can be carried
out starting from any node. However, we start it at source
node. The Q values are updated as follows: Q(k)(YD,ED) =
Q(0)(YD,ED) and

∀Yi ∈ Nsf \YD, 0 ≤ Ei
k ≤ Bk :

Q(k)(Yi,Ei) =



min
Yj∈O{Yi}, 0≤Ej

k≤B
k

s.t 0≤Ej
k−E

i
k+ekyi,yj

(Sj)≤Bk

k=1,...,N

[
Q(k−1)(Yj ,Ej) +

N∑
k=1

τkyi,yj
(Sj)

+

N∑
k=1

(Ej
k − E

i
k + ekyi,yj

(Sj))gik + C(Yi,Yj ,Sj)
]

(23)

The algorithm stops as soon as
Q(k)(Yi,Ei) = Q(k−1)(Yi,Ei) ∀Yi ∈ Nsf , 0 ≤ Ei

k ≤
Bk k = 1, ..., N .

D. Numerical Examples

Consider the 7-node road network in Fig. 2 where the
distance of each edge is shown. Similar to our previous
work in [1] and [2], in order to model traffic congestion, the
relationship between the speed and density of a vehicle flow
is estimated as

v(k(t)) = vf

(
1−

(
k(t)

kjam

)p)q

(24)

where vf is the reference speed on the road without traffic,
k(t) represents the density of vehicles on the road at time t
and kjam denotes the saturated density for a traffic jam. The
parameters p and q are empirically identified for actual traffic
flows. we assume the energy consumption rates of subflows
on arc (i, j) ∈ A are all identical, proportional to the distance
between nodes i and j in the road network, giving ekyi,yj

=

e · dl ·
R

N
, where (yik, y

j
k) corresponds to the lth edge in A.

For simplicity we divide the total inflow R into N identical
subflows, each of which has R/N vehicles per unit of time.
Fig. 3 shows the subflow-level graph for this example for N =
2. Now in the subflow-level graph, the time subflow k spends
on arc (yik, y

j
k) becomes:

τkyi,yj
=
(
dl ·

R

N

)(
vf (1− (

sil
N

)p)q
)−1

sil determines the number of subflows (density) through this
edge starting from node Yi to the destination node YD.

In order to examine the efficiency of the DP algorithm, we
solve the problem for the network with homogeneous charging
nodes with gi = 1 ∀i ∈ N for different value of N . Table. II
compares the solution and CPU times (computational effort)
for different values of number of subflows. It is obvious from
our results that as number of subflows, N , increases, DP
loses its efficiency and will be computationally more expensive
than MINLP. On the other hand, our analysis and numerical
examples in [1] and [2] show that our proposed flow control
formulation for the same problem results in a reduction of
about 4 orders of magnitude in CPU time with approximately
the same objective function value.

IV. CONCLUSIONS AND FUTURE WORK

We have studied the problem of minimizing the total
elapsed time for energy-constrained vehicles to reach their
destinations, including recharging when there is no adequate
energy for the entire journey. In [1] and [2], we studied the
same problem for networks with homogeneous and inhomo-
geneous charging nodes respectively. Starting with a MINLP

TABLE II: Numerical results for sample problem

MINLP DP
N 2 2

obj 116.67 116.67
routes 1→ 2→ 3→ 7 1→ 2→ 3→ 7

1→ 4→ 7 1→ 4→ 7
CPU time (sec) 1674.2 79.17

N 3 3
obj 99.68 99.68

routes 1→ 2→ 3→ 7 1→ 2→ 3→ 7
1→ 4→ 7 1→ 4→ 7

1→ 5→ 6→ 7 1→ 5→ 6→ 7
CPU time (sec) 1752.5 5534.6

N 6 6
obj 99.68 NA

routes 1→ 2→ 3→ 7(×2)
1→ 4→ 7(×2) NA

1→ 5→ 6→ 7(×2)
CPU time (sec) 2579 NA

formulation, we derived computationally simpler formulations
to solve different versions of the problem. Here, we have for-
mulated it as a DP problem. For a single vehicle, this approach
is very efficient and determines an optimal solution in seconds.
For a multi-vehicle problem, where traffic congestion effects
are considered, we used a similar approach by aggregating
vehicles into subflows and seeking optimal routing decisions
for each such subflow. In this case, our DP algorithm works
well for a small number of subflows but as the number of
subflows increases, it loses its efficiency. In [1] and [2] we
developed an alternative flow-based formulation which yields
approximate solutions with a computational cost reduction of
several orders of magnitude, so this can be used in problems of
large dimensionality. Numerical examples show these solutions
to be near-optimal. For future research, it might be interesting
to investigate the potential of using reinforcement learning
algorithms that would aim the vehicles to learn online how
to minimize the total elapsed time to reach their destinations.
In this context, each vehicle through its daily interaction with
other vehicles and exploration of different feasible routes could
eventually learn the optimal one for a given commute.
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