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Abstract— This paper addresses the problem of coordinating 
online connected vehicles at merging roads to achieve a smooth 
traffic flow without stop-and-go driving. We present a 
framework and a closed-form solution that optimize the 
acceleration profile of each vehicle in terms of fuel economy 
while avoiding collision with other vehicles at the merging zone. 
The proposed solution is validated through simulation and it is 
shown that coordination of connected vehicles can reduce 
significantly fuel consumption and travel time at merging roads.  

I. INTRODUCTION 
The increasing demand for travel has generated significant 

challenges related to traffic congestion and accidents. 
Although driver responses to various disturbances can cause 
congestion [1], intersections and merging roadways are the 
primary sources of bottlenecks which further contributing to 
traffic congestion [2]. In the United States, on average 5.5 
billion hours are wasted each year due to vehicular congestion, 
which translates to about $121 billion dollars [3]. In 2012, 
around 1.7 billion metric tons of CO2 were released to the 
environment by vehicles due to congestion [3]. Moreover, 
traffic congestion can produce driver discomfort, distraction, 
and frustration, which may encourage more aggressive driving 
behavior [4] that further slows the process of recovering free 
traffic flow [5].  

Recognition of the necessity for connecting vehicles to their 
surroundings is gaining momentum. It appears that connected 
vehicle technologies can improve both transportation network 
efficiency and safety through the use of control algorithms 
that harmonically coordinate all existing information. 
Likewise, communication with traffic structures, nearby 
buildings, and traffic lights should allow for individual vehicle 
control systems to account for unpredictable changes in local 

infrastructures [6]. A significant research effort has been 
expended on improving traffic flow at intersections using 
connected vehicle technologies. In 2008, Dresner and Stone 
[7] proposed a system to achieve automated vehicle 
intersection control using a reservation approach. Since then, 
numerous approaches have been proposed to achieve safe and 
efficient control of traffic through intersections and merging 
highways using centralized and decentralized control.  

Several research efforts have included a centralized 
controller or intersection manager that coordinates the 
vehicles [8]. Zohdy et al. [9], Yan et al. [10], and Li and 
Wang [11], focus on the formulation of an optimization 
problem in which the objective function involves the arrival 
time at the intersection. The constraints, which are different in 
each work, are formulated with the goal to avoid collisions. 
Dynamic programming was applied in [12] to address this 
problem and a mathematical proof of this approach was 
presented in [13]. Lee and Park [14] proposed a different 
approach based on minimizing the overlap in the position of 
vehicles inside the intersection rather than the arrival time at 
the intersection. This work was later extended to the case of an 
urban corridor [15]. 

Campos et al. [16] used a multiobjective optimization 
framework that includes speed tracking error and acceleration 
in the objective function to find safe trajectories while 
satisfying local constraints. Model predictive control (MPC) 
was used in [17] to solve a multiobjective optimization 
problem that includes a risk factor function and constraints 
related to safe velocity and acceleration values. Zohdy and 
Rakha [18] considered a manager agent and used game theory 
to address this problem, while Hafner et al. [19] took a 
different path by defining a critical set that can potentially lead 
to collisions. A more detailed discussion of this approach was 
presented in [20].  

In decentralized control, each vehicle determines its own 
control policy based on the information received from the 
other vehicles on the road or some coordinator.  Milanes et al. 
[21] used fuzzy logic to design a controller that allows a fully 
automated vehicle to yield to an incoming vehicle in the 
conflicting road or cross, if collision risk is not present. 
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Milanes et al. [22] compared three heuristic intersection 
control schemes implemented in automated cars. The 
following year, Makarem et al. [23] used MPC to solve the 
decentralized problem where each vehicle defines its 
constraints by using some information from other vehicles and 
solves a linear quadratic control problem accordingly. Jin et 
al. [24] considered platoon formations for decentralized 
intersection control, where the intersection controller 
communicates with the platoon leader and the leader with the 
followers.  

In this paper, the objective is to derive a closed-form 
solution for the problem of coordinating online connected 
vehicles at merging roads to achieve a smooth traffic flow 
without stop-and-go driving under the hard constraint of 
collision avoidance. The contribution of this paper is an 
analytical solution using the Pontryagin’s minimum principle 
that can be implemented online. 

The remainder of this paper is organized as follows: in 
Section II we discuss the problem for vehicle coordination at 
merging roads. In Section III we provide the solution to the 
optimal control problem. Finally, we provide simulation 
results in Section IV and concluding remarks in Section V.  

 

II. PROBLEM DESCRIPTION 
Each vehicle i is described by a second order dynamics 

model 

 
   

�xi = vi

�vi = ui ,
 (1) 

where ix  is the position [ ]m , iv  [ / ]m s  is the speed, and iu  
is the acceleration (control input). 

We consider a main and a secondary road merging together 
(Fig. 1). A centralized controller derives the optimal control 
policy (acceleration/deceleration profile) in terms of fuel 
consumption for each vehicle cruising inside a particular 
radius—defined as the control zone—under the hard 
constraint to enable the vehicles to cross the merging zone 
without collision. The implicit assumption here is that each 
vehicle can communicate with the centralized controller and 
can transmit information regarding their locations and 
distances from the merging zone. 

The optimal control policy of the centralized controller for 
each vehicle is communicated to the corresponding vehicle. If 
the vehicles are autonomous, then they will just follow the 
policy imposed by the controller. If there is a driver, however, 
then we assume that the driver will follow the control policy 
precisely—provided as instructions—of the centralized 
controller. Future research should investigate how to 
incentivize, or reinforce, drivers to follow these instructions. 

We seek to optimize fuel consumption while improving the 
traffic flow on a merging point of two roads by coordinating 
the vehicles inside a control zone. We use the polynomial 
metamodel proposed in [25] that yields vehicle fuel 
consumption as a function of the speed and acceleration: 

 �fv = �fcruise + �faccel ,   (2) 

where �fcruise = w0 + w1 ⋅v + w2 ⋅v
2 + w3 ⋅v

3  estimates the fuel 
consumed by a vehicle traveling at a constant speed v , and 
�faccel = a ⋅(r0 + r1 ⋅v + r2 ⋅v

2 )  is the additional fuel 
consumption when the vehicle accelerates with α. The 
polynomial coefficients 

 
wj , j= 0,…,3, and rk , k=0,1,2, are 

calculated from experimental data. For the vehicle parameters 
reported in [25], where the vehicle mass is 1,200vM =  kg, the 
drag coefficient is 0.32DC = , the air density is 1.184aρ =  
km/m3, the frontal area is 2.5fA =  m2, and the rolling 
resistance coefficient is 0.015μ = , the polynomial coefficients 

are equal to: w0 = 0.1569 , w1 = 2.45×10−2 , 

w2 = −7.415×10−4 , w3 = 5.975×10−5 , r0 = 0.07224 , 

r1 = 9.681×10−2 , and r2 = 1.075×10−3 .   
 

 
Fig.  1. Two one-lane merging roads. 

 
 Fig. 2 illustrates the fuel consumption variation with 

respect to the vehicle speed and acceleration. Apparently, 
there is a monotonic relationship between fuel consumption 
and acceleration. Consequently, instead of formulating a fuel 
consumption minimization problem we can formulate the 
problem considering directly vehicle acceleration in the 
objective function. In this context, the objective is to find for 
each vehicle the optimal acceleration profile from the time 
they enter in the control zone until the time the exit the 
merging zone.  

 

III. SOLUTION APPROACH 
To address this problem we consider the following three 

steps: (1) defining a hierarchical vehicle sequence based on 
which vehicle is closer to the merging zone, (2) assigning the 
times for each vehicle to reach and leave the merging zone 
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that guarantee collision avoidance, and (3) finding the closed-
form analytical solution for the optimization problem. 

 

 
Fig.  2. Fuel consumption model. 

1) Defining the hierarchical vehicle sequence  
When a vehicle reaches the control zone it starts 

communicating its position to the centralized controller. Then 
the controller defines a hierarchical vehicle sequence starting 
with the vehicle that is closer to the merging zone (Fig. 3). If 
two vehicles on different roads have the same distance from 
the merging zone, the priority will be given to the vehicle on 
the main road. Note that with such a hierarchy, the problem of 
blocked lanes is avoided because, at each instant of time, only 
the vehicle that is closest to the merging zone will have the 
right-of-way. Furthermore, by imposing such hierarachy the 
problem can be easily extended to merging roads of multiple 
lanes. 

In our analysis, we use a single subscript identifying each 
vehicle on the control zone, starting from the one that is 
closest to the merging zone, i.e., 1i = , to the one which is 
farthest to the merging zone. 

 

 
Fig.  3. Hierarchical crossing sequence. 

2) Assigning the times to enter and exit the merging zone 
Once the hierarchy is defined, the controller assigns to each 

vehicle i in the control zone the time, ti
in , to enter the merging 

zone. To eliminate the chance of lateral collisions we impose 
the condition that only one vehicle at a time can be in the 
merging zone. Thus, the time for each vehicle i, ti

in , to enter 

the merging zone is determined by the time, ti−1
out , that the 

previous vehicle, i-1, in the hierarchy has exited it, as 
illustrated in Fig. 4. For vehicles traveling on the same road, 
this constraint is modified to maintain a minimum safe 
distance, δ , between them, denoted by ti+1

δ as shown in Fig. 5.  
 

 
Fig.  4. Illustration of time calculation for vehicles entering the merging zone 
from different roads. 

 

 
Fig.  5. Illustration of time calculation for vehicles entering the merging zone 
on the same road. 

 
These time slots impose the constraints to avoid either lateral 
or rear end collisions and are assigned at each instant of time 
to allow readjustment according to the traffic conditions. 
Based on the previous two steps, the optimal control problem 
for n vehicles is formulated so as to minimize the L2-norm of 
the control (acceleration/deceleration), namely 

 

 

 

 

2434



 

 2

0
1

1min min
2

f
i

i i

n t

iu u i
J u dt

=

= ∑∫   (3) 

Subject to 
- Vehicle dynamics: 

  

�xi = vi

�vi = ui

 

- Initial conditions:  

  

xi (t i
0 ) = 0

vi (t i
0 ) = vdes

 

- Final conditions: 
xi (ti

f ) = L+ S − xi (t)

vi (ti
f ) = vdes

  

- Safety constraints: 
o Rear end collisions avoidance:  

   ti+1
δ ≥ ti

out  
o Lateral collisions avoidance:  

 1
in out
i it t+ ≥   

where   t i
0  is the time that the vehicle i enters the control zone, 

  xi (t) is the distance at time t that the vehicle i has proceeded 

inside the control zone, and  ti
f  is the time the vehicle i exits 

the merging zone. Thus, the safety constraints have been 
translated to time constraints and will be used to the boundary 
conditions for the analytical solution. Since the initial vehicle 
speed when the vehicle enters the control zone is the driver’s 
desired speed, we designate the final speed, when the vehicle 
exits the merging zone to be equal to the initial speed. 
However, this could be modified appropriately.  

For the analytical solution of problem (3), we apply 
Pontryagin’s minimum principle. We seek to find the optimal 
control   u

*(t)  which drives the system along an optimal 

trayectory   x
*(t) . For each vehicle i, the Hamiltonian function 

of the above optimization problem is 

 
  
Hi (λi

x ,λi
v ,xi ,vi ) =

1
2

ui
2 + λi

xvi + λi
vu i   (4) 

where λi
x  and λi

v  are the co-state components. Applying the 
Hamiltonian minimization condition, the optimal control can 
be given as a function of the co-states 

   ui
* + λi

v = 0.   (5) 
The adjoin equations yield 

 

 
   
�λi

x = − ∂H
∂xi

= 0   (6) 

 �λi
v = − ∂H

∂vi

= −λi
x ,   (7) 

and hence ui
* = −λi

v . From (6) we have λi
x = ai  and from (7) 

implies   λi
v = −(ait + bi ) , where  ai  and  bi  are constants of 

integration corresponding to each vehicle i. Consequently, the 
optimal control input (acceleration/deceleration) as a function 
of time is given by 

 ui
*(t) = ait + bi .   (8) 

Substituting the last equation to the vehicle dynamics 
equations (1) we can find the optimal speed and position for 
each vehicle, namely 

 * 21( )
2i i i iv t a t b t c= + +   (9) 

 xi
*(t) = 1

6
ait

3 + 1
2

bit
2 + cit + di ,   (10) 

where ci  and di  are constants of integration. The constants of 
integration can be computed by the initial and final conditions 
in (3). Hence they are functions of time and state (position), 
i.e., ai (t, xi), bi (t, xi), ci (t, xi), and  di (t, xi). It is important to 
emphasize that this analytical solution can be implemented 
online. To derive online the optimal control for each vehicle, 
we need to update the integration constants at each time t. 
Equations (9) and (10) along with the initial and final 
conditions defined in the optimization problem (3) can be used 
to form a system of four equations  of the form  Tibi = qi . In 
this step, we are already satisfying the initial and final 
conditions, including the safety constraints. 

 

 

  

1
6

(ti
0 )3 1

2
(ti

0 )2 ti
0 1

1
2

(ti
0 )2 ti

0 1 0

1
6

(ti
f )3 1

2
(ti

f )2 ti
f 1

1
2

(ti
f )2 ti

f 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

ai (t,xi )

bi (t,xi )

ci (t,xi )

di (t,xi )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

xi (ti
0 )

vi (ti
0 )

xi (ti
f )

vi (ti
f )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (11) 

 
Hence we have 
 

    bi (t,xi(t)) = (Ti )
-1 ⋅qi(t,xi(t))   (12) 

where    bi (t,xi(t))  is a vector containing the four integration 

constants  ai (t, xi), bi (t, xi), ci (t, xi), and  di (t, xi). Thus (8) can 
be written as 
 

 
ui

*(t,xi ) = ai(t,xi ) ⋅ t + bi(t,xi ).   (13) 
Since (12) can be computed online the controller can yield the 
optimal control online for each vehicle i from (13).  
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IV. SIMULATION RESULTS 
To validate the effectiveness of the efficiency of our 

analytical solution we simulated the merging scenario 
presented in previous section in Matlab/Simulink. In our case 
study, the length of the control zone is 400 m, and the merging 
zone length is 30 m. It is assumed that each vehicle travels at a 
constant speed of 30 mph (13.41 m/s) before entering the 
control zone. As soon as a vehicle reaches the control zone 
then the centralized controller designates the 
acceleration/deceleration profile for each vehicle until it exits 
the merging zone. All vehicles are assumed to have the 
characteristics described in Section II. 

We considered the case of coordinating 30 vehicles, 15 for 
each road. The centralized controller is able to derive online 
the optimal control policy (acceleration/deceleration profile) 
in terms of fuel consumption by avoiding collision in the 
merging zone, while only one vehicle at the time was crossing 
the merging zone, as illustrated in Fig. 6. We note that as the 
number of vehicles on each road in the control zone increases, 
there is an impact on the acceleration profile for each vehicle 
(Fig. 7).  The controller accelerates the vehicles that are closer 
to the merging zone to create more space in the road for the 
vehicles following. However, as the number of vehicles on the 
road increases and reaches its maximum capacity, eventually 
the vehicles entering the control zone will need to decelerate 
or even come to a full stop as imposed by the road capacity 
constraints. As a result, the vehicles ahead in the hierarchy are 
able to cross the control zone in a shorter time than the rest of 
the vehicles.  

  
 

 

 
Fig.  6. Distance of the thirty vehicles traveled in merging coordination (road 
1 corresponds to the main road and road 2 corresponds to the secondary road). 

 
 
The optimal solution for the vehicle coordination was 

compared to a baseline scenario. In the baseline scenario, the 
vehicles on the main road have the right-of-way. Thus all the 
vehicles in the secondary road need to come to a full stop, 
before they enter the merging zone, and wait until the vehicles 

on the main road cross the merging zone. The optimal 
acceleration/deceleration profile imposed by the controller 
resulted in minimizing fuel consumption both at the control 
zone and merging zone as shown in Fig. 8. The fuel 
consumption improvement at the merging zone is due to the 
fact that the vehicles coming from the secondary road do not 
come to a full stop before they enter to the main road, thereby 
conserving momentum and fuel while also improving travel 
time. The overall fuel consumption improvement when the 
vehicles are coordinating compared to the baseline scenario is 
49.8%. Moreover, the coordination of vehicles resulted in 
improving the total travel time by 6.9% compared to the 
baseline (Fig. 9).  

 
 
 

 
Fig.  7. Acceleration profile in merging coordination of thirty vehicles (road 1 
corresponds to the main road and road 2 corresponds to the secondary road). 

 
 

 
Fig.  8. Cumulative fuel consumption comparison. 
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Fig.  9. Total travel time. 

V. CONCLUDING REMARKS 
In this paper, we developed an analytical solution for the 

problem of coordinating online connected vehicles traveling 
over two merging roads. The problem was formulated as a 
constrained optimal control problem that aims to find a safe 
and fuel-efficient crossing schedule, i.e., velocity profile and 
arrival time to the merging zone, for all the vehicles in a 
control zone. Fuel-efficiency was addressed by using 
acceleration as the objective function of the optimal control 
problem. We applied Pontryagin’s minimum principle and 
showed that it is possible to obtain a closed-form solution, 
which allows the implementation of an online optimal control 
policy. The efficiency of the effectiveness of the optimal 
control policy was validated through simulation and compared 
to a baseline scenario, where all the vehicles in the secondary 
road need to come to a full stop, before they enter the merging 
zone, and wait until the vehicles on the main road cross the 
merging zone. 
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