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a b s t r a c t

In this paper, we provide a decentralized theoretical framework for coordination of connected and
automated vehicles (CAVs) at different traffic scenarios. The framework includes: (1) an upper-level
optimization that yields for each CAV its optimal time trajectory and lane to pass through a given
traffic scenario while alleviating congestion; and (2) a low-level optimization that yields for each CAV
its optimal control input (acceleration/deceleration). We provide a complete, analytical solution of
the low-level optimization problem that includes the rear-end, speed-dependent safety constraint.
Furthermore, we provide a problem formulation for the upper-level optimization in which there is no
duality gap. The latter implies that the optimal time trajectory for each CAV does not activate any
of the state, control, and safety constraints of the low-level optimization, thus allowing for online
implementation. Finally, we present a geometric duality framework with hyperplanes to derive the
condition under which the optimal solution of the upper-level optimization always exists. We validate
the effectiveness of the proposed theoretical framework through simulation.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Emerging mobility systems, e.g., connected and automated
ehicles (CAVs), shared mobility, provide the most intriguing op-
ortunity for enabling users to better monitor transportation net-
ork conditions and make better operating decisions to improve
afety and reduce pollution, energy consumption, and travel
elays; see Zhao and Malikopoulos (2019). Emerging mobility
ystems are typical cyber–physical systems where the cyber
omponent (e.g., data and shared information through vehicle-to-
ehicle and vehicle-to-infrastructure communication) can aim at
ptimally controlling the physical entities (e.g., CAVs, non-CAVs);
ee Cassandras (2017). The cyber–physical nature of such systems
s associated with significant control challenges and gives rise to a
ew level of complexity in modeling and control; see Ferrara et al.
2018). As we move to increasingly complex emerging mobility
ystems, new control approaches are needed to optimize the
mpact on system behavior of the interplay between vehicles at
ifferent traffic scenarios.
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Varaiya (1993) provided the key features of an automated
mobility system along with a control system architecture. An au-
tomated mobility system can alleviate congestion, reduce energy
use and emissions, and improve safety by increasing signifi-
cantly traffic flow as a result of closer packing of automatically
controlled vehicles in platoons. Forming platoons of vehicles trav-
eling at high speed was a popular system-level approach to
address traffic congestion that gained momentum in the 1980s
and 1990s; see Rajamani et al. (2000) and Shladover et al. (1991).
Addressing string stability of platoons, see Besselink and Johans-
son (2017), has been a technical challenge before demonstrating
their significant benefit; see Larson et al. (2015) and Alam and
Johansson (2015). Ramp metering has been another common
approach used to regulate the flow of vehicles merging into
freeways to decrease traffic congestion; see Papageorgiou and
Kotsialos (2002). One of the very early efforts in this direction
was proposed by Athans (1969) for safe and efficient coordination
of merging maneuvers with the intention of avoiding conges-
tion. Assuming a given merging sequence, Athans formulated
the merging problem as a linear optimal regulator, proposed
by Levine and Athans (1966), to control a single string of vehicles,
with the aim of minimizing the speed errors that will affect the
desired headway between each consecutive pair of vehicles.

1.1. Related work

In a typical commute, we encounter traffic scenarios that
include merging at roadways and roundabouts, crossing inter-
sections, cruising in congested traffic, passing through speed re-

duction zones, and lane-merging or passing maneuvers. These
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cenarios, along with the driver responses to various distur-
ances, contribute to traffic congestion. Several research efforts
ave been reported in the literature towards developing con-
rol algorithms for coordinating CAVs at such traffic scenarios
o alleviate congestion. Dresner and Stone (2004) proposed the
se of the reservation scheme to control a single intersection
f two roads with vehicles traveling with similar speed on a
ingle direction on each road, i.e., no turns are allowed. In their
pproach, each vehicle is treated as a driver agent who requests
he reservation of the space–time cells to cross the intersection at
particular time interval defined from the estimated arrival time
o the intersection. Since then, numerous approaches have been
eported in the literature to achieve safe and efficient control of
raffic through intersections; see Dresner and Stone (2008) and de
a Fortelle (2010). Some efforts have proposed model predictive
ontrol that allows each vehicle to optimize its movement locally
n a distributed manner; see Kim and Kumar (2014) and Kloock
t al. (2019). Other research efforts have employed scheduling
heory based on which the vehicles can make a decision about the
ppropriate schedule of crossing an intersection; see Alonso et al.
2011) and De Campos et al. (2015). Colombo and Del Vecchio
2015) constructed the invariant set for the control inputs that
nsure lateral collision avoidance. There has been also some work
ocusing on multi-objective optimization problems for intersec-
ion coordination, mostly solved as a receding horizon control
roblem; see Campos et al. (2014), Kamal et al. (2014, 2013),
akarem et al. (2013) and Qian et al. (2015). More recently, a
tudy by Tachet et al. (2016) indicated that transitioning from in-
ersections with traffic lights to autonomous intersections, where
ehicles can coordinate and cross the intersection without the
se of traffic lights, has the potential of doubling capacity and
educing delays.

In prior work, we presented a decentralized optimal con-
rol framework for coordinating online CAVs in different traffic
cenarios, e.g., at merging roadways, intersections, adjacent in-
ersections, speed reduction zones, roundabouts, and corridors;
ee Mahbub et al. (2020, 2019), Malikopoulos et al. (2018, 2019),
ios-Torres and Malikopoulos (2017a) and Rios-Torres and Ma-
ikopoulos (2017b). The framework provides a closed-form ana-
ytical solution that exists under certain conditions, see Mahbub
nd Malikopoulos (2020), and which, based on Hamiltonian anal-
sis, yields for each CAV the optimal acceleration/deceleration at
ny time in the sense of minimizing fuel consumption. The solu-
ion allows the CAVs to coordinate and pass through these traffic
cenarios without creating congestion and under the hard safety
onstraint of collision avoidance. Similar control approaches have
onsidered passengers’ comfort in addition to alleviating con-
estion; see Ntousakis et al. (2016) and Zhang and Cassandras
2019a). A detailed discussion of the research efforts that
ave been reported in the literature to date in this area can be
ound in Guanetti et al. (2018) and Rios-Torres and Malikopoulos
2017a).

.2. Contributions of this paper

In this paper, we provide a decentralized theoretical frame-
ork for coordination of CAVs in different traffic scenarios
hat include merging at roadways and roundabouts, crossing
ntersections, cruising in congested traffic, passing through speed
eduction zones, and lane-merging or passing maneuvers. The
ramework includes a two-level joint optimization: (I) an upper-
evel optimization that yields for each CAV its optimal time
rajectory and appropriate lane, to pass through a traffic
cenario while alleviating congestion, and (II) a low-level op-
imization that yields for each CAV its optimal control input
acceleration/deceleration) subject to the state, control, and safety
onstraints.
2

The contributions of this paper are: (1) a complete, analytical
solution of the low-level optimization problem that includes the
rear-end safety constraint, where the safe distance is a function of
speed; (2) a problem formulation for the upper-level optimization
in which there is no duality gap, implying that the optimal time
trajectory for each CAV does not activate any of the state, control,
and safety constraints of the low-level optimization, thus allow-
ing for online implementation; (3) a geometric duality framework
with hyperplanes to derive the condition under which the so-
lution of the upper-level optimization always exists. A limited-
scope analysis of the low-level optimization was presented in Ma-
likopoulos and Zhao (2019b), where we formulated the problem
with the rear-end, speed-dependent safety constraint without
providing the complete analysis and technical details related to
the different possible activation of the constrained arcs though. A
preliminary formulation of the upper-level optimization was dis-
cussed in Malikopoulos and Zhao (2019a), where we introduced
the idea of deriving the optimal time trajectories of CAVs.

The proposed framework advances the state of the art in the
following ways. First, in contrast to other efforts reported in the
literature, see Mahbub et al. (2019), Malikopoulos et al. (2018,
2019), Ntousakis et al. (2016) and Rios-Torres and Malikopoulos
(2017b), where either the safety constraint was not considered,
or considered using a constant safety distance, see Zhang and
Cassandras (2019a), in our framework, the low-level analytical
solution considers the safety distance between the CAVs to be
a function of speed leading to a complicated, yet very inter-
esting, analysis. Moreover, we augment the double integrator
model representing a CAV with an additional state correspond-
ing to the distance from its preceding CAV, thus we are able
to address the lateral collision constraint in the low-level opti-
mization. Second, in several efforts reported in the literature to
date, the upper-level optimization either (a) was implemented
with centralized approaches; see Alonso et al. (2011), De Cam-
pos et al. (2015), de La Fortelle (2010) and Dresner and Stone
(2008); or (b) was considered known through a given proto-
col Malikopoulos and Zhao (2019b) and Ntousakis et al. (2016);
or (c) was implemented using a strict first-in-first-out queueing
structure; see Azimi et al. (2014), Malikopoulos et al. (2018,
2019), Zhang and Cassandras (2019a) and Rios-Torres and Ma-
likopoulos (2017b). In our proposed framework, the upper-level
optimization yields, in a decentralized fashion, the optimal time
for each CAV to pass a given traffic scenario along with the
appropriate lane that needs to occupy. Finally, in contrast to the
research efforts reported in the literature to date, the solution of
the upper-level optimization allows CAVs to change lanes.

1.3. Organization of this paper

The structure of the paper is organized as follows. In Section 2,
we provide the modeling framework and our assumptions. In
Section 3, we formulate the low-level optimization problem and
derive the analytical solution. In Section 4, we formulate the
upper-level optimization problem and prove that it imposes no
duality gap. In Section 5, we validate the effectiveness of the
proposed theoretical framework through simulation. Finally, we
provide concluding remarks and discuss potential directions for
future research in Section 6.

2. Modeling framework

Although the theoretical framework presented in this paper
can be applied to any traffic scenario, e.g., merging at roadways
and roundabouts, cruising in congested traffic, passing through
speed reduction zones, and lane-merging or passing maneuvers,
we use an intersection as a reference to provide the fundamental
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Fig. 1. A signal-free intersection with connected and automated vehicles.

ideas and results. This is because an intersection has unique
features which makes it technically more challenging compared
to other traffic scenarios. However, our analysis and results can
be applied to other traffic scenarios too.

We consider CAVs at a 100% penetration rate crossing a signal-
ree intersection (Fig. 1). The region at the center of the intersec-
ion, calledmerging zone, is the area of potential lateral collision of
CAVs. The intersection has a control zone inside of which the CAVs
an communicate with each other and with a crossing protocol.
he crossing protocol, defined formally in the next subsection,
tores the CAVs’ time trajectories from the time they enter until
he time they exit the control zone. The distance from the entry
f the control zone until the entry of the merging zone is Sc
nd, although it is not restrictive, we consider to be the same
or all entry points of the control zone. We also consider the
erging zone to be a square of side Sm (Fig. 1). Note that Sc
ould be in the order of hundreds of meters depending on the
AVs’ communication range capability, while Sm is the length
f a typical intersection. The CAVs crossing the intersection can
lso make a right turn of radius Rr , or a left turn of radius Rl
Fig. 1). The aforementioned values of the intersection’s geometry
re not restrictive in our modeling framework, and are used only
o determine the total distance traveled by each CAV inside the
ontrol zone.
Let N (t) = {1, . . . ,N(t)}, N(t) ∈ N, be the set of CAVs

nside the control zone at time t ∈ R+. Let t fi be the time for
AV i to exit the control zone. There is a number of ways to
etermine t fi for each CAV i. For example, we may impose a
trict first-in-first-out queuing structure, see Malikopoulos et al.
2018, 2019), Rios-Torres and Malikopoulos (2017b) and Zhang
nd Cassandras (2019a), where each CAV must enter the merging
one in the same order it entered the control zone. The policy,
hich determines the time t fi that each CAV i exits the control
one, is the result of an upper-level optimization problem which
an aim at maximizing the throughput at the intersection. On
he other hand, deriving the optimal control input (minimum
cceleration/deceleration) for each CAV i ∈ N (t) from the time

t0i it enters the control zone until the target t fi is the result of a
low-level optimization problem that can aim at minimizing the
energy of each individual CAV.

In what follows, we present a two-level, joint optimization
framework: (1) an upper-level optimization that yields for each
3

CAV i ∈ N (t), with a given origin (entry of the control zone) and
desired destination (exit of the control zone), (a) the minimum
time t fi to exit the control zone and (b) optimal path including the
anes that each CAV should be occupying while traveling inside
he control zone; and (2) a low-level optimization that yields, for
AV i ∈ N (t), its optimal control input (acceleration/deceleration)
o achieve the optimal path and t fi derived in (1) subject to the
tate, control, and safety constraints. The two-level optimization
ramework is executed by each CAV i ∈ N (t) as follows. When
CAV i enters the control zone at t0i , it accesses the crossing
rotocol that includes the time trajectories, defined formally in
he next subsection, of each CAV cruising inside the control zone.
f two, or more, CAVs enter the control zone simultaneously,
hen the crossing protocol decides arbitrarily the sequence that
ach of these CAVs will get access to the information. Then, the
AV solves the upper-level optimization problem and derives
he minimum time t fi to exit the control zone along with the
ppropriate lanes that should occupy. The minimum time t fi of
he upper-level optimization problem is the input of the low-level
ptimization problem.
The implications of the proposed optimization framework are

hat CAVs do not have to come to a full stop at the intersection,
hereby conserving momentum and fuel while also improving
ravel time. Moreover, by optimizing each CAV’s acceleration/dec-
leration, we minimize transient engine operation, and thus we
ave additional benefits in fuel consumption. In our analysis, we
onsider that each CAV i ∈ N (t) is governed by the following
ynamics

˙ i(t) = vi(t),

v̇i(t) = ui(t), (1)

ṡi(t) = ξi · (vk(t) − vi(t)), t ∈ [t0i , t
f
i ],

here t0i and t fi correspond to the times that CAV i enters and
xits the control zone, respectively; pi(t) ∈ Pi is the position
f each CAV i from the entry until the exit of the control zone
t t; vi(t) ∈ Vi and ui(t) ∈ Ui are the speed and accelera-
ion/deceleration (control input) of each CAV i inside the control
one at t; si(t) ∈ Si denotes the distance of CAV i from CAV k
hich is physically located ahead of i (e.g., k either cruising on
he same lane as i, or crossing the merging zone and can cause
ateral collision with i – in the latter we have ṡi(t) = −ξi · vi(t)),
nd ξi is a reaction constant of CAV i. The sets Pi,Vi, Ui, and Si,
∈ N (t), are complete and totally bounded subsets of R. Let

i(t) = [pi(t) vi(t) si(t)]T denote the state of each CAV i taking
alues in Xi = Pi × Vi × Si, with initial value xi(t0i ) = x0i =

p0i v0
i s0i

]T , where p0i = pi(t0i ) = 0, v0
i = vi(t0i ), and s0i = si(t0i ) at

he entry of the control zone. The state space Xi for each CAV i is
losed with respect to the induced topology on Pi × Vi × Si and
hus, it is compact.

To ensure that the control input and CAV speed are within a
iven admissible range, we impose the following constraints

i,min ≤ ui(t) ≤ ui,max, and (2)

< vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ], (3)

here ui,min, ui,max are the minimum and maximum control input
or each CAV i ∈ N (t), and vmin, vmax are the minimum and
aximum speed limits, respectively. To ensure the absence of

ear-end collision of two CAVs traveling on the same lane, the
osition of the preceding CAV should be greater than, or equal to
he position of the following CAV plus a minimum safe distance
i(t), which is a function of speed vi(t), i.e., δi(t) = δ̄ + ρi · vi(t),
here δ̄ is the standstill distance and ρ is the minimum headway
i
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hat CAV i maintains while following the preceding CAV. The
rear-end safety constraint is

si(t) = ξi · (pk(t) − pi(t)) ≥ δi(t), t ∈ [t0i , t
f
i ], (4)

where k ∈ N (t) is some CAV which is physically ahead of i.
imilarly, a lateral collision inside the merging zone can occur
etween CAV i and a CAV k ∈ N (t) which crosses the zone from

a different direction than i. In this case, (4) becomes

si(t) = ξi · (pk,i − pi(t)) ≥ δi(t), t ∈ [t0i , t
e
i ], (5)

where pk,i is the (constant) distance of CAV k from the entry point
that CAV i entered the control zone, and tei is the time that CAV i
exits the merging zone.

Definition 1. The set of all lanes within the control zone is
L := {1, . . . ,M},M ∈ N.

Note that the length of each lane θ ∈ L is 2Sc + Sm (Fig. 1).

Definition 2. For each CAV i ∈ N (t), we define the function
li(t) : [t0i , t

f
i ] → L which yields the lane θ ∈ L that i occupies at

time t .

Definition 3. The cardinal points that each CAV i ∈ N (t) enters
and exits the control zone are denoted by oi.

For instance, based on Definition 3, for a CAV i that enters the
control zone from the West entry (Fig. 1) and exits the control
zone from the South, we have oi = (W , S).

Definition 4. For each CAV i ∈ N (t), the set Coi includes the
lanes in L that can be used on a given oi, i.e.,

Coi :=

{
θ ∈ L | oi is feasible, ∀i ∈ N (t)

}
. (6)

Definition 5. The occupancy set, Oθ , of each lane θ ∈ L includes
the time intervals that θ is occupied, i.e.,

Oθ :=

{
[tn1i , tn2i ] ⊂ R≥0, ∀i ∈ N (t), tn1i , tn2i ∈ [t0i , t

f
i ],

n1, n2 ∈ N, n2 > n1 | li(t) = θ, ∀t ∈ [tn1i , tn2i ]

}
. (7)

Definition 6. For each CAV i ∈ N (t), the function tpi
(
pi

)
: Pi →

[t0i , t
f
i ], is the time trajectory of i, which yields the time that i is

at the position pi inside the control zone.

Definition 7. The crossing protocol is denoted by I(t) and
includes the following information

I(t) := {tpi (pi), oi, Coi ,Oθ , t0i , t
f
i },

∀i ∈ N (t), ∀l ∈ L, t ∈ [t0i , t
f
i ]. (8)

Remark 1. The CAVs traveling inside the control zone can
change lanes either (1) in the lateral direction (e.g., move to a
neighbor lane), or (2) when making a right (or a left) turn inside
the merging zone. In the former case, when a CAV changes lane,
it travels along the hypotenuse dy of a triangle created by the
width of the lane and the longitudinal displacement dp if it had
not changed lane. Thus, in this case, the CAV travels an additional
distance which is equal to the difference between the hypotenuse
dy and the longitudinal displacement dp, i.e., dy − dp.

Remark 2. When a CAV is about to make a right turn it must
occupy the right lane of the road before it enters the merging
zone. Similarly, when a CAV is about to make a left turn it must
occupy the left lane before it enters the merging zone.
 2

4

In the modeling framework presented above, we impose the
following assumptions:

Assumption 1. The CAV’s additional distance traveled when it
changes neighbor lanes is neglected.

Assumption 2. Each CAV i ∈ N (t) has proximity sensors and can
communicate with other CAVs and the crossing protocol without
any errors or delays.

Assumption 3. For each CAV i, none of the constraints (3)–(5)
is active at t0i .

The first assumption can be justified by the general obser-
vation that the additional distance traveled by a CAV when it
changes neighbor lanes is very small compared to the total dis-
tance traveled within the control zone. However, by including a
two-dimensional vehicle model in our analysis, this additional
distance could be taken into account, and thus we believe that
this assumption does not provide any restrictions in our exposi-
tion. The second assumption may be strong, but it is relatively
straightforward to relax as long as the noise in the communica-
tion, measurements, and/or delays is bounded. In this case, we
can determine upper bounds on the state uncertainties as a result
of sensing or communication errors and delays, and incorporate
these into more conservative safety constraints. Finally, the last
assumption ensures that the initial state is feasible. This is a
reasonable assumption since CAVs are automated, and so there is
no compelling reason for them to activate any of the constraints
by the time they enter the control zone.

When each CAV i, with a given oi, i.e., a cardinal entry of
the control zone and a desired cardinal destination (exit of the
control zone), enters the control zone, it accesses the crossing
protocol and solves two optimization problems: (1) an upper-
level optimization problem, the solution of which yields its time
trajectory tpi (pi) and the minimum time t fi to exit the control
zone; and (2) a low-level optimization problem the solution of
which yields its optimal control input (acceleration/deceleration)
to achieve the optimal path and t fi derived in (1) subject to the
state, control, and safety constraints.

We start our exposition with the low-level optimization prob-
lem and then we discuss the upper-level problem.

3. Low-level optimization

In this section, we consider that the solution of the upper-
level optimization problem is given, and thus, the minimum time
t fi for each CAV i ∈ N (t) is known. We focus on a low-level
optimization problem that yields for each CAV i the optimal
control input (acceleration/deceleration) to achieve the minimum
time t fi subject to the state, control, and safety constraints.

Problem 1. If t fi is determined, the low-level optimal control
problem for each CAV i ∈ N (t) is to minimize the cost functional
Ji(u(t)), which is the L2-norm of the control input in [t0i , t

f
i ], i.e.,

min
ui(t)∈Ui

Ji(ui(t)) =
1
2

∫ t fi

t0i

u2
i (t) dt, (9)

subject to: (1), (2), (3), (4), (5),

and given t0i , v
0
i , pi(t

0
i ), t

f
i , pi(t

f
i ),

here pi(t0i ) = 0, while pi(t
f
i ) = pfi , depends on oi and, based

n Assumption 1, can take the following values (Fig. 1): (1)
f
i = 2Sc + Sm, if CAV i crosses the merging zone, (2) pfi =

πRr , if CAV i makes a right turn at the merging zone, and
Sc + 2
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3) pfi = 2Sc +
πRl
2 , if CAV i makes a left turn at the merging

zone. By minimizing the L2-norm of the control input (accel-
eration/deceleration), essentially we minimize transient engine,
if the CAV is a conventional vehicle, and thus we have direct
benefits in fuel consumption; see Malikopoulos et al. (2008).

Let Si(t, xi(t)) be the vector of the constraints in Problem 1
which does not explicitly depend on ui(t), see Bryson et al. (1963),
.e.,

i
(
t, xi(t)

)
=

⎡⎣ vi(t) − vmax
vmin − vi(t)

δ̄ + ρi · vi(t) − ξi ·
(
pk(t) − pi(t)

)
⎤⎦ . (10)

We take successive total time derivatives of (10) until we obtain
an expression that is explicitly dependent on ui(t). If n ∈ N
time derivatives are required, then the nth total time derivative
of Si(t, xi(t)) becomes the arc constraint in our analysis in t ∈

[t0i , t
f
i ], while the remaining n − 1 components of Si(t, xi(t))

constitute a boundary condition at the entry (or exit) of the
constrained arc. Since Ṡi(t, xi(t)) is an explicit function of ui(t),
the Hamiltonian for Problem 1 is

Hi
(
t, pi(t), vi(t), si(t), ui(t)

)
=

1
2
ui(t)2 + λ

p
i · vi(t) + λv

i · ui(t) + λs
i · ξi · (vk(t) − vi(t))

+µa
i · (ui(t) − umax) + µb

i · (umin − ui(t)) + µc
i · ui(t)

−µd
i · ui(t) + µs

i ·
(
ρi · ui(t) − ξi

(
vk(t) − vi(t)

))
, (11)

ith Si(t1, xi(t1)) = 0, at the entry t1 ∈ [t0i , t
f
i ] of the constrained

arc; λ
p
i , λv

i , and λs
i are the influence functions, see Bryson et al.

(1963), and µi = [µa
i µb

i µc
i µd

i µs
i ]

T is the vector of the Lagrange
multipliers with

µa
i =

{
> 0, if ui(t) − umax = 0,
= 0, if ui(t) − umax < 0, (12)

µb
i =

{
> 0, if umin − ui(t) = 0,
= 0, if umin − ui(t) < 0, (13)

µc
i =

{
> 0, if ui(t) = 0,
= 0, if ui(t) < 0, (14)

µd
i =

{
> 0, if −ui(t) = 0,
= 0, if −ui(t) < 0, (15)

µs
i =

{
> 0, if ρi · ui(t) − ξi

(
vk(t) − vi(t)

)
= 0,

= 0, if ρi · ui(t) − ξi
(
vk(t) − vi(t)

)
< 0.

(16)

For each i ∈ N (t), the Euler–Lagrange equations are

λ̇
p
i (t) = −

∂Hi

∂pi
= 0, (17)

λ̇v
i (t) = −

∂Hi

∂vi
= −(λp

i − λs
i · ξi + µs

i · ξi), (18)

˙ s
i (t) = −

∂Hi

∂si
= 0, (19)

∂Hi

∂ui
= ui(t) + λv

i + µa
i − µb

i + µc
i − µd

i + µs
iρi = 0, (20)

ith boundary conditions

i(t0i ) = p0i , vi(t0i ) = v0
i , si(t0i ) = s0i ,

i(t
f
i ) = pfi , λv

i (t
f
i ) = 0, λs

i (t
f
i ) = 0, (21)
5

where λv
i (t

f
i ) = λs

i (t
f
i ) = 0 since the states vi(t

f
i ) and si(t

f
i ) are not

rescribed at t fi , see Bryson and Ho (1975). From (17) and (19),
e have λ

p
i (t) = αi and λs

i (t) = βi, where αi and βi are constants
of integration.

To address this problem, constrained and unconstrained arcs
are pieced together to satisfy the Euler–Lagrange equations. The
optimal solution is the result of different combinations of the
following possible arcs.

3.1. State and control constraints are not active

In this case, we have µa
i = µb

i = µc
i = µd

i = µs
i = 0. From

(20), the optimal control is

u∗

i (t) + λv
i = 0, i ∈ N (t). (22)

ince λ
p
i (t) = αi, λs

i (t) = βi, setting ai = αi − βiξi, from (18) we
ave
v
i (t) = −

(
ai · t + ci

)
, (23)

here ci is a constant of integration for each i ∈ N (t). Thus, from
22) the optimal control input (acceleration/deceleration) is given
y
∗

i (t) = ai · t + ci, t ∈ [t0i , t
f
i ]. (24)

ubstituting the last equation into (1), we derive the optimal
peed and position for each i ∈ N (t), namely

∗

i (t) =
1
2
ai · t2 + ci · t + di, t ∈ [t0i , t

f
i ], (25)

p∗

i (t) =
1
6
ai · t3 +

1
2
ci · t2 + di · t + ei, t ∈ [t0i , t

f
i ], (26)

here di and ei are constants of integration. The constants of
ntegration ai, ci, di, and ei can be computed using the boundary
onditions (21).

.2. The state si(t) constraint becomes active

Suppose CAV i ∈ N (t) starts from a feasible state and control
t t = t0i , and at some time t = t1 ≤ t fi , si(t1) = δ(t1), while
min < vi(t1) < vmax and ui,min < ui(t1) < ui,max. In this case,
s
i ̸= 0. Let Ni(t, xi(t)) = δ̄ + ρiv

∗

i (t) − ξip∗

k(t) + ξip∗

i (t). Then, we
ave

i(t1, xi(t1)) = δ̄ + ρiv
∗

i (t1) − ξip∗

k(t1) + ξip∗

i (t1) = 0, (27)

hich represents a tangency constraint for the state si(t) in t ∈

t1, t2], where t2 is the exit point of the constrained arc si(t) −

(t) ≤ 0. Since Ni(t1, xi(t1)) = 0, then Ṅi(t1, xi(t1)) = 0, hence, the
alue of the optimal control at t = t+1 is given by

∗

i (t
+

1 ) =
ξi(v∗

k (t
+

1 ) − v∗

i (t
+

1 ))
ρi

. (28)

From (28), we note that the optimal control input may not be
continuous at t1, hence the junction point at t1 may be a corner;
see Bryson and Ho (1975). The interior boundary conditions at t1
for the influence functions are

λ
p
i (t

−

1 ) = λ
p
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂pi
= λ

p
i (t

+

1 ) + πiξi, (29)

v
i (t

−

1 ) = λv
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂vi
= λv

i (t
+

1 ) + πiρi, (30)

λs
i (t

−

1 ) = λs
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂si
= λs

i (t
+

1 ) − πi. (31)

he Hamiltonian at t1 is

i(t−1 ) = Hi(t+1 ) − πi
∂Ni(t1, xi(t1))

, (32)

∂t1
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r
1
2
u2
i (t

−

1 ) + λ
p
i (t

−

1 )vi(t−1 ) + λv
i (t

−

1 )ui(t−1 )

+λs
i (t

−

1 )ξi(vk(t−1 ) − vi(t−1 )) =
1
2
u2
i (t

+

1 ) + λ
p
i (t

+

1 )vi(t+1 )

+λv
i (t

+

1 )ui(t+1 ) + λs
i (t

+

1 )ξi(vk(t+1 ) − vi(t+1 )) + πiξivk(t1), (33)

where πi is a Lagrange multiplier constant. The influence func-
tions, λT

i (t
+

1 ) = [λ
p
i (t

+

1 ) λv
i (t

+

1 ) λs
i (t

+

1 )]T at t+1 , the time t1, and
the Lagrange multiplier πi constitute 3 + 1 + 1 quantities that
are determined so as to satisfy (27), (29)–(31) and (33). The
unconstrained and constrained arcs are pieced together to deter-
mine the 3 + 1 + 1 quantities above along with the constants of
integration in (24)–(26).

Since (27) holds for all t ∈ [t1, t2], where t2 ≤ t fi is the exit
point of the constrained arc δi(t) − si(t) ≤ 0, the optimal control
of CAV i ∈ N (t) is

u∗

i (t
+) =

ξi(v∗

k (t
−) − v∗

i (t
−))

ρi
, t ∈ [t1, t2]. (34)

emark 3. The exit point t2 of the constrained arc, δi(t)− si(t) ≤

, can either lead to the unconstrained arc or to other constrained
rcs.

If the exit point t2 leads to the unconstrained arc, then for all
∈ [t2, t

f
i ], we have a set of equations as in (24)–(26) for the

ptimal control, speed, and position of CAV i, i.e., u∗

i (t) = a′

i ·t+c ′

i ,
∗

i (t) =
1
2a

′

i · t
2
+ c ′

i · t +d′

i , and p∗

i (t) =
1
6a

′

i · t
3
+

1
2 c

′

i · t
2
+d′

i · t +e′

i ,
here a′

i , c
′

i , d
′

i , and e′

i , are constants of integration that can be
omputed along with t2 from the boundary conditions (21) and
he following interior constraints: v∗

i (t
−

2 ) = v∗

i (t
+

2 ), p∗

i (t
−

2 ) =

∗

i (t
+

2 ), λ
p
i (t

−

2 ) = λ
p
i (t

+

2 ), λv
i (t

−

2 ) = λv
i (t

+

2 ), λs
i (t

−

2 ) = λs
i (t

+

2 ), and
Hi(t−2 ) = Hi(t+2 ).

If the exit point t2 does not lead to the unconstrained arc, then
we have the following three potential cases to consider: (1) the
speed, vk(t), of the preceding CAV k is decreasing, (2) the speed,
vk(t), of the preceding CAV k is either increasing or constant, and
(3) CAV k is cruising on a different road inside the merging zone
and can cause lateral collision with CAV i.

Case 1: The speed, vk(t), of the preceding CAV k is decreasing.

Remark 4. Let CAV i be in the constrained arc δi(t) − si(t) ≤ 0
while the speed, vk(t), of the preceding CAV k is decreasing. Then
he following subcases can occur: (a) u∗

i (t) = ui,min, for all t ∈

t2, t
f
i ], (b) u∗

i (t) = ui,min, for all t ∈ [t2, t3], and v∗

i (t) = vmin

or all t ∈ [t3, t
f
i ], where t3 is another junction point, and (c)

v∗

i (t) = vmin for all t ∈ [t2, t
f
i ].

Subcase (a): u∗

i (t) = ui,min, for all t ∈ [t2, t
f
i ]. By integrating

u∗

i (t) = ui,min, we have v∗

i (t) = ui,min · t + hi and p∗

i (t) = ui,min ·

t2
2 + hit + qi, for all t ∈ [t2, t

f
i ], where hi and qi are constants of

integration. To compute t2 and the constant of integration hi and
qi, we piece together this arc with the prior unconstrained and
constrained arcs with the following additional interior constraints
and boundary conditions: p∗

i (t
−

2 ) = p∗

i (t
+

2 ), v∗

i (t
−

2 ) = v∗

i (t
+

2 ),
s∗i (t

−

2 ) = s∗i (t
+

2 ), and p∗

i (t
f
i ) = pfi , from which we can compute

t2 and the constants of integration hi and qi.

Subcase (b): ui(t) = ui,min, for all t ∈ [t2, t3], and vi(t) = vmin for
all t ∈ [t3, t

f
i ].

In this subcase, at the junction point t3, CAV i exits the con-
strained arc, ui,min −ui(t) ≤ 0, and enters the arc vmin −vi(t) ≤ 0,
then it follows that u∗(t) = 0, for all t ∈ [t , t f ], and the optimal
i 3 i

6

speed and position of i are v∗

i (t) = vmin and p∗

i (t) = vmin t + ri
respectively, where ri is a constant of integration. To compute t3
and the constant of integration ri, we piece together this arc with
the prior unconstrained and constrained arcs with the following
additional interior constraints and boundary conditions: v∗

i (t
−

3 ) =

v∗

i (t
+

3 ), p∗

i (t
−

3 ) = p∗

i (t
+

3 ), and p∗

i (t
f
i ) = pfi .

Subcase (c): vi(t) = vmin for all t ∈ [t2, t
f
i ]. It follows that

u∗

i (t) = 0, for all t ∈ [t2, t
f
i ], and the optimal speed and position

of CAV i are as in subcase (b). The junction point t2 along with
he constants of integration can be computed by the interior
onstraints and boundary condition as presented in subcase (b).

ase 2: The speed, vk(t), of the preceding CAV k is either increas-
ing or constant. Since Ni(t1, xi(t1)) = 0, and hence, Ṅi(t1, x(t1)) =

0, at the corner t1, this implies that vi(t) > vk(t), for t ≥ t1.
herefore, CAV i remains in the constrained arc for as long as k is

ahead of it, and its optimal control input is given by (34).

Case 3: CAV k cruises on a different road from i and in a direction
that might cause lateral collision with i inside the merging zone.
In this case, from (5), pk,i is the constant distance of CAV k from
the entry point that CAV i entered the control zone to its position
inside the merging zone. Hence, vk,i = 0, and thus the analysis is
similar to the subcases (a) and (b) in Case 1.

3.3. State, vi(t), and control, ui(t), constraints become active

Proposition 1. For each CAV i ∈ N (t), the optimal control input
u∗

i (t) in the unconstrained arc can be either increasing or decreasing
for all t ∈ [t0i , t

f
i ].

Proof. Since λv
i (t

f
i ) = 0, from (22) u∗

i (t
f
i ) = 0. Given that a u∗

i (t)
is a linear function of t for all t ∈ [t0i , t

f
i ], the result follows. □

Corollary 1. The optimal control input u∗

i (t) in the unconstrained
arc can be either negative and increasing, or positive and decreasing,
or u∗

i (t) = 0 for all t ∈ [t0i , t
f
i ].

Corollary 2. For each CAV i ∈ N (t), the optimal control input
u∗

i (t) never becomes active in t ∈ [t0i , t
f
i ], given that it is not active

at t0i (Assumption 3), unless the safety constraints (4) or (5) become
active.

Theorem 1. For each CAV i ∈ N (t), if any of the constraints (3)
becomes active, then the exit of the constrained arc can be only at
t fi , unless the safety constraint si(t) − δ(t) ≥ 0 becomes active.

Proof. From Assumption 3, for each i ∈ N (t) none of the
constraints (3) is active at t0i . Suppose that either vi(t)−vmax ≤ 0
or vi(t)−vmin ≥ 0 becomes active at a junction point t1, such that
t0i < t1 ≤ t fi . Then from (1), it follows that u∗

i (t) = 0 for t ≥ t1.
Note that ui(t) is continuous at t1 (see Theorems 2 and 4). Hence,
we have either v∗

i (t) = vmax, or v∗

i (t) = vmin respectively for all
t ∈ [t1, t

f
i ]. □

3.3.1. The state constraint, vi(t) − vmin ≥ 0, becomes active
Suppose the CAV starts from a feasible state and control at

t = t0i and at time t = t1, (25) becomes equal to vmin while
umin < ui(t1) < umax and si(t1) > δ(t). It follows that u∗

i (t1) = 0
for all t ∈ [t1, t

f
i ]. Hence, v∗

i (t) = vmin and p∗

i (t) = vmin t + ri
for all t ∈ [t1, t

f
i ], where ri is a constant of integration. Let

Ni(t, xi(t)) = vmin − v∗

i (t). Then, we have

N (t , x (t )) = v − v∗(t ) = 0, (35)
i 1 i 1 min i 1
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hich represents a tangency constraint for the state v∗

i (t) in t ∈

[t1, t
f
i ]. Since Ni(t1, xi(t1)) = 0, Ṅi(t1, xi(t1)) = −u∗

i (t1) = 0. The
boundary conditions at t1 for the influence functions are

λT
i (t

−

1 ) = λT
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂xi(t1)
, (36)

hich yield

λ
p
i (t

−

1 ) = λ
p
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂pi
= λ

p
i (t

+

1 ), (37)

λv
i (t

−

1 ) = λv
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂vi
= λv

i (t
+

1 ) − πi, (38)

λs
i (t

−

1 ) = λs
i (t

+

1 ) + πi
∂Ni(t1, xi(t1))

∂si
= λs

i (t
+

1 ). (39)

The Hamiltonian at the corner is

Hi(t−1 ) = Hi(t+1 ) − πi
∂Ni(t1, xi(t1))

∂t1
, (40)

r
1
2
u2
i (t

−

1 ) + λ
p
i (t

−

1 )vi(t−1 ) + λv
i (t

−

1 )ui(t−1 )

+λs
i (t

−

1 )ξi(vk(t−1 ) − vi(t−1 )) =
1
2
u2
i (t

+

1 ) + λ
p
i (t

+

1 )vi(t+1 )

+λv
i (t

+

1 )ui(t+1 ) + λs
i (t

+

1 )ξi(vk(t+1 ) − vi(t+1 )), (41)

where πi is a Lagrange multiplier constant. The influence func-
tions, λT

i (t
+

1 ), at t+1 , the entry time t1, and the Lagrange multiplier
πi constitute 3 + 1 + 1 quantities that are determined so as
to satisfy (35), (37)–(39) and (41). Note, the state variables are
continuous at the junction point, t1, i.e., pi(t−1 ) = pi(t+1 ), vi(t−1 ) =

vi(t+1 ), si(t−1 ) = si(t+1 ). The unconstrained and constrained arcs are
pieced together to determine the 3+1+1 quantities above along
with the constants of integration in (24)–(26) and (41).

Theorem 2. For each CAV i ∈ N (t), if the speed constraint
vi(t) − vmin ≥ 0 becomes active at the junction point t1, then the
optimal control input is continuous at t1.

Proof. From (37)–(39), the Hamiltonian at the corner t1, given by
(41), becomes
1
2
(u2

i (t
−

1 ) − u2
i (t

+

1 )) + λv
i (t

+

1 )
(
ui(t−1 ) − ui(t+1 )

)
+

πi
(
ui(t−1 ) − ui(t+1 )

)
= 0. (42)

Since ui(t+1 ) = 0, we have

1
2
u2
i (t

−

1 ) + λv
i (t

+

1 )ui(t−1 ) + πiui(t−1 ) = 0, (43)

implying that either ui(t−1 ) = 0 or ui(t−1 ) = −2
(
λv
i (t

+

1 ) + πi
)
.

However, the latter cannot be true since from (22), ui(t−1 ) =

−λv
i (t

−

1 ) = −
(
λv
i (t

+

1 ) − πi
)
. Hence, ui(t−1 ) = 0, and thus ui(t−1 ) =

ui(t+1 ) = 0. □

Theorem 3. For each CAV i ∈ N (t), the speed constraint vi(t) −

vmin ≥ 0 becomes active at the junction point t1 only if u∗

i (t) is
negative and increasing in [t0i , t

f
i ].

Proof. v∗

i (t), given by (25), has a minimum at t1 ∈ (t0i , t
f
i ] if

∇v∗

i (t1)(t − t1) ≥ 0. Since u∗

i (t) < 0, for all t ∈ [t0i , t
f
i ], and

(t − t1) ≤ 0, for all t ∈ [t0i , t1], and given Theorem 1, the result
follows. □

3.3.2. The state constraint, vi(t) − vmax ≤ 0, becomes active
The analysis when the state constraint, vi(t) − vmax ≤ 0,

becomes active is similar to the analysis for the arc v (t)−v ≥
i min

7

0, thus due to space limitation we do not repeat it here. The
proofs of the following theorems are similar to Theorems 2 and
3, and thus we just provide the statements.

Theorem 4. For each CAV i ∈ N (t), if the speed constraint
vi(t) − vmax ≤ 0 becomes active at the junction point t1, then the
optimal control input is continuous at t1.

Theorem 5. For each CAV i ∈ N (t), the speed constraint vi(t) −

vmax ≤ 0 becomes active at the junction point t1 only if u∗

i (t) is
positive and decreasing in [t0i , t

f
i ].

3.4. Interior constraints for left and right turns

For any CAV i ∈ N (t) that makes a left, or right turn, we
need to impose interior speed constraints at the entry of the
merging zone. These constraints will ensure that the CAV enters
the merging zone with the corresponding allowable speed, ventry,
that guarantees comfort for the passengers, hence vi(tmi ) ≤ ventry,
where tmi is the time that CAV i enters the merging zone. The
analysis is the same as in the constrained arc vi(t) − vmax ≤ 0.

Remark 5. For the implementation of the analytical solution cor-
responding to the combination of the above cases, we first start
with the unconstrained arc and derive the solution using (24)–
(26). If the solution violates any of the state or control constraints,
then the unconstrained arc is pieced together with the arc cor-
responding to the violated constraint. The two arcs yield a set
of algebraic equations which are solved simultaneously using the
boundary conditions of (9) and interior constraints between the
arcs. If the resulting solution, which includes the determination of
the optimal switching time from one arc to the next one, violates
another constraint, then the last two arcs are pieced together
with the arc corresponding to the new violated constraint, and
we re-solve the problem with the three arcs pieced together. The
three arcs will yield a new set of algebraic equations that need
to be solved simultaneously using the boundary conditions of (9)
and interior constraints between the arcs. The resulting solution
includes the optimal switching time from one arc to the next one.
The process is repeated until the solution does not violate any
other constraints.

The process of piecing the arcs together to derive the op-
timal solution of the low-level problem can be computational
intensive and might prevent real-time implementation. Next, we
discuss the upper-level optimization problem in which we seek
the minimum time t fi that guarantees an optimal solution for the
low-level problem without activating any of the constraint arcs.

4. Upper-level optimization

When a CAV i ∈ N (t) with a given oi, enters the control
zone, it accesses the crossing protocol and solves an upper-level
optimization problem. The solution of this problem yields for CAV
i the time trajectory tpi (pi). In our exposition, we seek to derive
the minimum time t fi that CAV i exits the control zone without
activating any of the state and control constraints of the low-level
optimization Problem 1. Therefore, the upper-level optimization
problem should yield a t fi such that the solution of the low-
level optimization problem will result in the unconstrained case
(24)–(26).

There is an obvious trade-off between the two problems. The
lower the value of t fi in the upper-level problem the higher the
value of the control input in [t0i , t

f
i ] in the low-level problem. The

low-level problem is directly related to minimizing energy for
each CAV (individually optimal solution). On the other hand, the
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pper-level problem is related to maximizing the throughput of
he intersection, thus eliminating stop-and-go driving and travel
ime (system optimal solution). Therefore, by seeking a solution
or the upper-level problem which guarantees that none of the
tate and control constraints becomes active may be considered
n appropriate compromise between the two.

.1. The time trajectory

For simplicity of notation, for each CAV i ∈ N (t) we write the
optimal position (26) of the unconstrained arc in the following
form

p∗

i (t) = φi,3 · t3 + φi,2 · t2 + φi,1 · t + φi,0, t ∈ [t0i , t
f
i ], (44)

where φi,3 ̸= 0, φi,2, φi,1, φi,0 ∈ R are the constants of integration
derived in the Hamiltonian analysis in Section 3.

Remark 6. For each i ∈ N (t), the optimal position (44) is a
real-valued continuous and differentiable function R≥0 ↦→ R≥0.
Based on (3), it is also a strictly increasing function with respect
to t ∈ R≥0.

The optimal speed and control are given by

v∗

i (t) = 3φi,3 · t2 + 2φi,2 · t + φi,1, t ∈ [t0i , t
f
i ], (45)

u∗

i (t) = 6φi,3 · t + 2φi,2, t ∈ [t0i , t
f
i ]. (46)

Next, we investigate some properties of (44).

Lemma 1. For each i ∈ N (t), the optimal position p∗

i (t) given by
(44) is a one-to-one function for all t ∈ [t0i , t

f
i ].

Proof. It follows from (3) that, for each i ∈ N (t), p∗

i (t) is a strictly
increasing function with respect to t ∈ R≥0. Thus, it follows from
the mean value theorem that for all t1, t2 ∈ [t0i , t

f
i ] with t1 ̸= t2,

we have p∗

i (t1) ̸= p∗

i (t2). □

Clearly (44) is a surjective function as any cubic polynomial
function always has at least one real root. Therefore, (44) is a
bijective function and its inverse exists. We rewrite the cubic
polynomial function (44) as

t3 +
φi,2

φi,3
t2 +

φi,1

φi,3
t +

(
φi,0

φi,3
−

pi
φi,3

)
= 0, t ∈ [t0i , t

f
i ], (47)

which then can be reduced by the substitution t = τ −
φi,2
3φi,3

to
he normal form
3
+ ωi,0τ +

(
ωi,1 + ωi,2pi

)
= 0, (48)

here

i,0 =
φi,1

φi,3
−

1
3

(
φi,2

φi,3

)2

, (49)

i,1 =
1
27

[
2
(

φi,2

φi,3

)3

−
9φi,2 · φi,1

(φi,3)2

]
+

φi,0

φi,3
, (50)

i,2 = −
1

φi,3
. (51)

e are interested in deriving the expression for the inverse
unction of (44) which can be accomplished by finding the root
f (48).

orollary 3. Since, for each i ∈ N (t), (44) is a bijective function,
here exists an inverse function p∗(t)−1. From Definition 6, the
i

8

nverse function, p∗

i (t)
−1 is the time trajectory tpi (pi) that yields the

time that CAV i is at the position pi inside the control zone, i.e.,

t∗pi (pi) =

3

√
−

1
2

(
ωi,1 + ωi,2 pi

)
+

√
1
4

(
ωi,1 + ωi,2 pi

)2
+

1
27

ω3
i,0 +

3

√
−

1
2

(
ωi,1 + ωi,2 pi

)
−

√
1
4

(
ωi,1 + ωi,2 pi

)2
+

1
27

ω3
i,0

+ωi,3, (52)

where ωi,3, ωi,2, ωi,1, and ωi,0 ∈ R such that we have ωi,3 = −
φi,2
3φi,3

nd 1
4 (ωi,1 + ωi,2 pi)2 +

1
27ω

3
i,0 > 0.

Proof. Using the Cardano method for cubic polynomials, we can
derive the algebraic solution of the cubic equation. This yields
the inverse function for bijective cubic polynomial function for
each i ∈ N (t) defined in the closed interval [t0i , t

f
i ]. The algebra

is tedious but standard, and thus, we omit the derivation. □

Lemma 2. Let tpi (p
∗

i ) = p∗

i (t)
−1 be the time trajectory for each

i ∈ N (t). Then the constants φi,3, φi,2, φi,1, φi,0 ∈ Φi, Φi ⊂ R, with
i,3 ̸= 0, can be derived by ωi,3, ωi,2, ωi,1, ωi,0 ∈ Ωi, Ωi ⊂ R, from

the following equations: φi,0 =
−ωi,1+ωi,0 ωi,3−ω3

i,3
ω2
i,2

, φi,1 = −
ωi,0+ω2

i,3
ωi,2

,

φi,2 =
3ωi,3
ωi,2

, and φi,3 = −
1

ωi,2
.

Proof. We have

ωi,0 =
φi,1

φi,3
−

1
3

(
φi,2

φi,3

)2

, (53)

i,1 =
1
27

[
2
(

φi,2

φi,3

)3

−
9φi,2 · φi,1

(φi,3)2

]
+

φi,0

φi,3
, (54)

ωi,2 = −
1

φi,3
, (55)

ωi,3 = −
φi,2

3φi,3
. (56)

After some algebraic manipulations and rearrangements, the re-
sult follows. The algebra is tedious but quite straightforward, and
thus, we omit the derivation. □

Corollary 4. For each i ∈ N (t), the time trajectory tpi (p
∗

i ) is a
function of φi,3, φi,2, φi,1, φi,0 ∈ Φi, Φi ⊂ R, with φi,3 ̸= 0.

Remark 7. The time trajectory tpi (p
∗

i ) ∈ [t0i , t
f
i ], yields the time

that CAV i ∈ N (t) is at the position p∗

i (t) inside the control zone.

Lemma 3. For each i ∈ N (t), the domain of tpi (p
∗

i ) is the closed
nterval [pi(t0i ), pi(t

f
i )].

roof. Since, for each i ∈ N (t), p∗

i (t) is a strictly increasing
unction in [t0i , t

f
i ], then by the Intermediate Value Theorem, p∗

i (t)
akes values on the closed interval [pi(t0i ), pi(t

f
i )]. □

orollary 5. For each i ∈ N (t), ṗ
(
p∗

i (t)
−1

)
̸= 0 for all p ∈

pi(t0i ), pi(t
f
i )]. Hence, tpi (p

∗

i ) is differentiable in [pi(t0i ), pi(t
f
i )].

orollary 6. For each i ∈ N (t), tpi (p
∗

i ) is a strictly increasing
unction in [pi(t0i ), pi(t

f
i )].
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4
.2. Optimization framework

In what follows, for each CAV i ∈ N (t), we formulate a
constrained optimization problem to yield its optimal path in
[t0i , t

f
i ]. We start our exposition with the introduction of the cost

function and proceed with the equality and inequality constraints.

4.2.0.1. Cost function. We seek to derive the minimum time t f
∗

i
that a CAV i ∈ N (t) exits the control zone without activating any
of the state and control constraints of the low-level optimization
Problem 1, i.e., t f

∗

i should yield (24)–(26). For each CAV i, the min-
imum time t f

∗

i can be derived by minimizing the time trajectory
tpi (p

∗

i ), given by (52) and evaluated at pfi .
For any fixed pi ∈ [p0i , p

f
i ] of i ∈ N (t), since the time trajectory

tpi (p
∗

i ) is a function of φi (Corollary 4), if we vary the constants φi
the time that i is at the position pi changes. Hence, in our analysis,
we construct the function fi : Φi → [t0i , t

f
i ], which evaluates the

time trajectory at pfi and yields that time that each CAV i is located
at pfi with respect to the variables φi, i.e.,

fi(φi) = tpi (p
f
i ). (57)

Therefore, to derive the minimum time t f
∗

i for a CAV i, we seek
to minimize fi(φi), with respect to φi = (φi,3, φi,2, φi,1, φi,0).

Proposition 2. The function fi(φi) is convex.

Proof. If we fix the time in (44) and vary φi = (φi,3, φi,2, φi,1, φi,0),
then (44) is an affine function denoted as pi(φi). The variables φi
take values from a closed subset Φi of R4, Similarly, the image of
pi(φi) is a closed subset of R. For any κ ∈ [0, 1], for a fixed time
τ ∈ [t0i , t

f
i ], and for any φi, φ

′

i ∈ Φi, we have

κ
(
φi,3 · τ 3

+ φi,2 · τ 2
+ φi,1 · τ + φi,0

)
+ (1 − κ)

(
φ′

i,3 · t3

+ φ′

i,2 · t2 + φ′

i,1 · t + φ′

i,0

)
= κφi,3τ

3
+ (1 − κ)φ′

i,3τ
3

+ κφi,2τ
2
+ (1 − κ)φ′

i,2τ
2
+ κφi,1τ + (1 − κ)φ′

i,1τ + κφi,0

+ (1 − κ)φ′

i,0. (58)

Hence, pi(φi) is a convex function. Since fi(φi) is the inverse of
pi(φi) (Lemma 2), the result follows. □

4.2.0.2. Equality constraints. The initial and final conditions (21)
at the entry and exit of the control zone respectively along with
the interior constraint p(tmi ) = pmi , at the time tmi that CAV i enters
the merging zone (in case of left or right turns), designate the
equality constraints. Thus,

h(1)
i (φi) = φi,3 · (t0i )

3
+ φi,2 · (t0i )

2
+ φi,1 · t0i + φi,0 = 0,

h(2)
i (φi) = φi,3 · (t fi )

3
+ φi,2 · (t fi )

2
+ φi,1 · t fi + φi,0 − pfi

= 0,

h(3)
i (φi) = 3 · φi,3 · (t0i )

2
+ 2 · φi,2 · t0i + φi,1 − v0

i = 0,

h(4)
i (φi) = 6 · φi,3 · t fi + 2 · φi,2 = 0,

h(5)
i (φi) = φi,3 · (tmi )3 + φi,2 · (tmi )2 + φi,1 · tmi + φi,0 − pmi

= 0. (59)

Proposition 3. The functions h(r)
i (φi), r = 1, . . . , 5 are convex.

Proof. If we fix the time in (59) and vary φi = (φi,3, φi,2, φi,1, φi,0),
then h(r)

i (φi), r = 1, . . . , 5, are affine functions. The variables
φ take values from a closed subset Φ of R4, so Φ is a convex
i i i
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set. Similarly, the image of pi(φi) is a closed subset of R. For any
κ ∈ [0, 1], for a fixed time τ ∈ [t0i , t

f
i ], and for any φi, φ

′

i ∈ Φi,
h(r)
i

(
δφi + (1−κ)φ′

i

)
= κh(r)

i (φi)+ (1−κ)h(r)
i (φ′

i ), r = 1, . . . , 5. □

4.2.0.3. Inequality constraints. To avoid the speed vi(t) constraints
(3) becoming active, for each i ∈ N (t), and for all t ∈ [t0i , t

f
i ],

vmin ≤ 3 · φi,3 · t2 + 2 · φi,2 · t + φi,1 ≤ vmax. (60)

It suffices to check the last equation at its extremum. The first
derivative of (60) yields the time τv ∈ [t0i , t

f
i ] that such extremum

exist.
To avoid the control input ui(t) constraint (2) becoming active,

for each i ∈ N (t), and for all t ∈ [t0i , t
f
i ],

ui,min ≤ 6 · φi,3 · t + 2 · φi,2 ≤ ui,max. (61)

From Corollary 2, given that none of the safety constraints (4) and
(5) are activated, as discussed next, the extremum of u(t) is at t0i .
Hence

ui,min ≤ 6 · φi,3 · t0i + 2 · φi,2 ≤ ui,max. (62)

Next, we impose a condition to avoid the state constraint (4)
becoming active within the control zone. This implies that the
distance between the path trajectories of CAV i and the preceding
CAV k ∈ N (t), Coi ∩ Cok ̸= 0, on lane θ ∈ L at each pi(t) should be
greater than δi(t), hence

ξi · (pk(t) − pi(t)) > δ̄ + ρi · vi(t), t ∈ [t0i , t
f
i ]. (63)

By substituting pk(t), pi(t), and vi(t), from (44) and (45), we have

t3(φi,3 − φk,3) + t2(φi,2 − φk,2 + 3ρi · φi,3/ξi)

+t(φi,1 − φk,1 + 2ρi · φi,2/ξi) + ρiφi,1/ξi

+φi,0 − φk,0 + δ̄/ξi < 0. (64)

It suffices to check the last equation at its extremum. The first
derivative of (64) yields the time τs ∈ [t0i , t

f
i ] that such extremum

exist.
Similarly, the constraint (5) may become active when the path

trajectories of i ∈ N (t) and a CAV j ∈ N (t), Coi ∩ Coj ̸= ∅, cruising
on another road, are crossed inside the merging zone which could
lead to a lateral collision. Thus, we impose the following condition

−pk,i(t) +
[
φi,3t3 + t2(φi,2 + 3ρiφi,3/ξi)

+t(φi,1 + 2ρiφi,2/ξi)
]
+ ρiφi,1/ξi + φi,0 + δ̄/ξi < 0, (65)

where pk,i(t) is the constant distance of CAV k from the entry
point that CAV i entered the control zone. It suffices to check the
last equation at its extremum. The first derivative of (65) yields
the time τl ∈ [t0i , t

e
i ], where tei is the time that CAV i exits the

merging zone, that such extremum exist.
Finally, when a CAV i needs to make either a left or right

turn, the speed at the entry of the merging zone needs to be less
than or equal to the corresponding allowable speed, ventry, that
guarantees comfort for the passengers. Hence

3 · φi,3 · (tmi )2 + 2 · φi,2 · tmi + φi,1 ≤ ventry. (66)

Since we seek to derive the minimum time without activating
any of the state, control, and safety constraints, we add a very
small ε > 0, in each inequality constraint that will prevent any
of these to become active. Without loss of generality, to simplify
the exposition, we also consider ξi = 1. Therefore, the set of
inequality constraints in the upper-level optimization is

g (1)
i (φi) = 3 · φi,3 · τ 2

v + 2 · φi,2 · τv + φi,1 − vmax + ε ≤ 0,

g (2)(φ ) = v − 3 · φ · τ 2
− 2 · φ · τ − φ + ε ≤ 0,
i i min i,3 v i,2 v i,1
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g

g

(3)
i (φi) = 6 · φi,3 · t0i + 2 · φi,2 − ui,max + ε ≤ 0,

(4)
i (φi) = ui,min − 6 · φi,3 · t0i − 2 · φi,2 + ε ≤ 0,

g (5)
i (φi) = τ 3

s (φi,3 − φk,3) + τ 2
s (φi,2 − φk,2 + 3ρiφi,3)

+ τs(φi,1 − φk,1 + 2ρi · φi,2) + ρiφi,1 + φi,0 − φk,0

+ δ̄ + ε ≤ 0,

g (6)
i (φi) = −pk,i(t) +

[
φi,3τ

3
l + τ 2

l (φi,2 + 3ρi · φi,3)

+ τl(φi,1 + 2ρi · φi,2)
]
+ ρiφi,1 + φi,0 + δ̄ + ε ≤ 0,

g (7)
i (φi) = 3 · φi,3 · (tmi )2 + 2 · φi,2 · tmi + φi,1 − ventry ≤ 0. (67)

Proposition 4. The functions g (m)
i (φi),m = 1, . . . , 7, are convex.

Proof. The proof is similar to the proof of Proposition 3. □

4.2.0.4. Problem formulation. For each CAV i ∈ N (t), we consider
the following problem

Problem 2.

min
φi

fi(φi)

subject to φi ∈ Φi, h(r)
i (φi) = 0, r = 1, . . . , 5,

g (m)
i (φi) ≤ 0, m = 1, . . . , 7. (68)

Note that the set Φi is determined by the occupancy sets of
the lanes, i.e.,

Φi =

{
φi | fi(φi) /∈

⋃
θ∈Coi

Oθ

}
, (69)

and can be formed by each i ∈ N (t) at t0i by accessing the crossing
protocol I(t).

The cost function, fi(φi), of Problem 2 is bounded below
(Remark 7). The Lagrangian function, Li(φi, γi, νi) : Rr+m+1

→ R,
is

Li(φi, γi, νi) = fi(φi) + γ T
i hi(φi) + νT

i gi(φi), (70)

where hi(φi) = [h(1)
i (φi) . . . h

(5)
i (φi)]T , gi(φi) =[g (1)

i (φi) . . . g
(7)
i (φi)]T ,

γi = [γ
(1)
i . . . γ

(5)
i ]

T , γi ∈ R5, and νi = [ν
(1)
i . . . ν

(7)
i ]

T , νi ∈ R7
≥0.

Next, we investigate some properties of the optimal solution
in Problem 2 using a geometric duality framework.

4.3. Geometric duality framework

A geometric duality framework can admit insightful visualiza-
tion through the use of hyperplanes along with their set support
and separation properties. Before we proceed, and for easy ref-
erence, we provide some standard definitions that we use in our
exposition.

Definition 8. Let Λ be a subset of Rn, n ∈ N. The affine hull of
Λ, denoted aff (Λ), is the intersection of all affine sets containing
Λ.

Definition 9. Let Λ be a subset of Rn, n ∈ N. We say that z is
a relative interior point of the set Λ, if z ∈ Λ and there exists an
open sphere R centered at z such that R ∩ aff(Λ) ⊂ Λ. The set
of all relative interior points of Λ is called the relative interior of
Λ, and is denoted by ri(Λ).
10
Definition 10. Let Λ be a subset of Rn, n ∈ N. We say that z is
a closure point of the set Λ, if there exists a sequence {zk} ⊂ Λ

that convergences to z. The closure of Λ, denoted cl(Λ), is the set
of all closure points of Λ.

Given a nonempty set Λ ⊂ Rn, n ∈ N, let ΛL be the set of all
limit points of Λ. The closure of Λ is cl(Λ) = Λ ∪ ΛL.

Definition 11. Given a nonempty set Λ ⊂ Rn, n ∈ N, we say
that a vector z ′ is a direction of recession of Λ if z + κz ′

∈ Λ for
all z ∈ Λ and κ ≥ 0.

Thus, z ′ is a direction of recession of Λ if starting at any
z ∈ Λ and going indefinitely along z ′, we never cross the relative
boundary of Λ to points outside Λ. The set of all directions of
recession is a cone containing the origin, and it is called the
recession cone of Λ.

The proofs of the following three lemmas can be found in Bert-
sekas et al. (2003).

Lemma 4. Let Λ be a nonempty closed convex set of Rm+r+1,
m, r ∈ N. Then the recession cones of Λ and ri(Λ) are equal.

Lemma 5. Let Λ be a nonempty closed convex set of Rm+r+1,
m, r ∈ N. Then cl(Λ)= cl(ri(Λ)).

Lemma 6. Let Λ be a nonempty closed convex set of Rm+r+1,
m, r ∈ N, that contains no vertical lines. Let (z, y, w) be a vector
in Λ, where z ∈ Rm, y ∈ Rr , and w ∈ R. Then, Λ is contained in a
closed halfspace corresponding to a nonvertical hyperplane, i.e., there
exist a vector ν ∈ Rm

≥0, γ ∈ Rr , δ ̸= 0, and a scalar η such that

νT z + γ Ty + δw ≥ η, ∀(z, y, w) ∈ Λ. (71)

Furthermore, if (z ′, y′, w′) /∈ Λ, then there exist a nonvertical
hyperplane strictly separating (z ′, y′, w′) and Λ.

In our analysis, we consider hyperplanes in the space of
constraint-cost pairs (hi(φi)(r), gi(φi)(m), fi(φi)) of Problem 2 viewed
as vectors in Rm+r+1, where m = 7, r = 5, in our case.
A hyperplane PH of this type is specified by a linear equation
involving a nonzero normal vector (ν, γ , δ), where ν ∈ Rm

≥0,
γ ∈ Rr , δ ̸= 0, and a scalar η

PH =

{
(z, y, w)|z ∈ Rm, y ∈ Rr , w ∈ R,

νT z + γ Ty + δw = η

}
. (72)

A hyperplane with normal (ν, γ , δ), ν ∈ Rm
≥0, γ ∈ Rr , δ ̸= 0, is

referred to as nonvertical. By dividing the normal vector of such
a hyperplane by δ, we can restrict attention to the case where
δ = 1.

Proposition 5. The subset Λ of Rm+r+1, where m = 7, r = 5,
given by the space of constraint-cost pairs (hi(φi)(r), gi(φi)(m), fi(φi))
of Problem 2, i.e.,

Λ =

{
hi(φi)(r), gi(φi)(m), fi(φi) | φi ∈ R4

}
, (73)

is convex.

Proof. Let (z, y, w) and (z ′, y′, w′) be two elements in Λ. For any
κ ∈ [0, 1], κ(νT z+γ Ty+w)+(1−κ)(νT z ′

+γ Ty′
+w′) = κνT z+(1−

κ)νT z ′
+κγ Ty+(1−κ)γ Ty′

+κw+(1−κ)w′. Since Λ is defined in
the space of constraint-cost pairs (hi(φi)(r), gi(φi)(m), fi(φi)), which
are convex (by Propositions 2, 3, and 4), the result follows. □
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orollary 7. The set

ΛE =

{
(z, y, w) | ∃ w′

≤ w and (z, y, w′) ∈ Λ

}
, (74)

is convex.

Lemma 7. If for every sequence {(zk, yk, wk) ⊂ Λ} with (zk, yk) →

(0, 0), we have w∗
≤ lim infk→∞ wk, where w∗

= inf(0,0,w)∈Λ w,
hen the set ΛE does not contain any vertical lines.

roof. Suppose that ΛE contains a vertical line. Then, since ΛE is
convex, the direction (0, 0, −1) would be a direction of recession
f cl(ΛE), and hence from Lemma 4, a direction of recession of
i(ΛE). Since (0, 0, w∗) is a closure point of ΛE , it is also a closure
oint of ri(ΛE) (Lemma 5), and therefore, there exists a sequence

{(zk, yk, wk) ⊂ ri(ΛE)} converging to (0, 0, w∗). Since (0, 0, −1)
s a direction of recession of ri(ΛE), {(zk, yk, wk − 1) ⊂ ri(ΛE)},
nd consequently, {(zk, yk, wk − 1) ⊂ ΛE}. Hence, in view of the
efinition of ΛE , there is a sequence {(zk, yk, w′

k) ∈ Λ}, with
′

k ≤ wk−1, for all k, such that lim infk→∞ w′

k ≤ w∗
−1. However,

his contradicts that w∗
≤ lim infk→∞ wk for every sequence

(zk, yk, wk) ∈ Λ} with (zk, yk) → (0, 0). □

emark 8. The hyperplane in PH with normal (ν, γ , 1) that
asses through a vector (hi(φi)(r), gi(φi)(m), fi(φi)) in Λ intercepts
he vertical axis

{
(0, 0, w) | w ∈ R

}
at the level of the Lagrangian

unction, Li(φi, γi, νi), in (70).

emark 9. A hyperplane in PH with normal (ν, γ , 1) crosses
he (m + r + 1)−st axis at (0, 0, η), η ≥ 0. Furthermore, it
ontains the set Λ in its upper closed halfplane if and only if, for
ll (z, y, w) ∈ Λ,
T z + γ Ty + w ≥ η. (75)

emark 10. Among all hyperplanes in PH with a normal (ν, γ , 1)
hat contain in their positive, closed halfspace set Λ, the highest
ttained level of interception of the vertical axis is

inf
i∈Φi

Li(φi, γi, νi). (76)

heorem 6. There is no duality gap in Problem 2.

roof. Since fi(·), h
(r)
i (·), g (m)

i (·); r = 1, . . . , 5;m = 1, . . . , 7, are
onvex functions, and h(r)

i (·), g (m)
i (·) are affine, the result immedi-

tely follows by applying the Slater’s weaker condition; see Slater
1950). □

orollary 8. If there is no duality gap in Problem 2, then

ax inf
(z,y)∈Λ

{νT z + γ Ty + w} = w∗, (77)

here w∗
= inf(0,0,w)∈Λ w.

Next, we provide the condition under which an optimal solu-
ion in Problem 2 exists.

heorem 7. An optimal solution of Problem 2 exists if and only if
or every sequence {(zk, yk, wk) ⊂ Λ} with (zk, yk) → (0, 0), there
olds w∗

≤ lim infk→∞ wk, where w∗
= inf(0,0,w)∈Λ w.

roof. We show sufficiency first. Let {(zk, yk, wk) ⊂ Λ} such
hat (zk, yk) → (0, 0). Taking the limit as k → ∞, we have
nf(z,y)∈Λ{νT z + γ Ty + w} ≤ lim infk→∞ wk, which implies that
ax inf(z,y)∈Λ{νT z + γ Ty + w} = w∗

≤ lim infk→∞ wk.
To show necessity, first we note that (0, 0, w∗) is a closure

∗
oint of ΛE , since by the definition of w , there exist a sequence

11
0, 0, wk} that belongs to Λ, and hence also to ΛE , and is such
hat wk → w∗. Next, we show by contradiction that (0, 0, w∗

−

) /∈ cl(ΛE), for any ε > 0. Suppose that (0, 0, w∗
− ε) ∈ cl(ΛE)

or some ε > 0. Hence, there exists a sequence {(zk, yk, wk) ⊂

E} such that (zk, yk, wk) → (0, 0, w∗
− ε). In view of the

definition of ΛE , this implies the existence of another sequence
{(zk, yk, w′

k) ⊂ Λ} with (zk, yk) → (0, 0) and w′

k ≤ wk for
all k, such that lim infk→∞ w′

k ≤ w∗
− ε, which contradicts the

hypothesis w∗
≤ lim infk→∞ wk. Since ΛE does not contain any

vertical lines (Lemma 7) and (0, 0, w∗
− ε) /∈ cl(ΛE) for any

ε > 0, it follows (Lemma 6) that there exists a nonvertical
hyperplane in PH that separates strictly (0, 0, w∗

−ε) and ΛE . This
hyperplane crosses the (m + r + 1)−st axis at a unique vector
(0, 0, η), which must lie between (0, 0, w∗

− ε) and (0, 0, w∗),
.e., w∗

− ε ≤ η ≤ w∗. Furthermore, η cannot exceed the value
ax inf(z,y)∈Λ{νT z +γ Ty+w}, for all (z, y, w) ∈ Λ, which implies

w∗
− ε ≤ max inf(z,y)∈Λ{νT z + γ Ty + w} ≤ w∗. Since ε can be

arbitrarily small, it follows that max inf(z,y)∈Λ{νT z + γ Ty + w} =

w∗. □

Corollary 9. The solution of Problem 2 yields the optimal φi =

(φi,3, φi,2, φi,1, φi,0) ∈ Φi that minimizes (52) evaluated at pfi , and
hence t fi . Recall that the constants ωi,3, ωi,2, ωi,1, ωi,0 ∈ Ωi in
(52) are derived directly from φi (Lemma 2). However, the inverse
of (52) defined in [p0i , p

f
i ] yields the optimal position (44) for the

unconstrained arc (Corollary 3) in [t0i , t
f
i ], for all i ∈ N (t). Hence,

for each CAV i ∈ N (t), the optimal control input of the low-level
optimization can be derived directly by taking the second derivative
of the inverse of (52) evaluated at pfi using the optimal φi =

(φi,3, φi,2, φi,1, φi,0) ∈ Φi.

Remark 11. If the condition w∗
≤ lim infk→∞ wk holds, it

guarantees that the set ΛE does not contain any vertical lines
(Lemma 7). The physical interpretation of the condition is that
there exists a time trajectory for a CAV to exit the control zone
without activating any of the equality and inequality constraints.

Remark 12. The decentralized framework presented here is
implemented as follows. Every time a CAV i ∈ N (t) enters the
control zone, it formulates and solves Problem 2 by accessing
the crossing protocol I(t). The solution yields the optimal time
trajectory tpi (pi) of CAV i, and as a result, the minimum time t fi
to exit the control zone. Problem 2 is solved sequentially by each
CAV that enters the control zone. Once the time trajectory of a
CAV inside the control zone is derived, then it does not change.
By inversing tpi (pi) and taking the second derivative, CAV i obtains
the optimal control input that corresponds to the unconstrained
arc. Therefore, the solution of Problem 2, if it exists, guarantees
that none of the state and control constraints becomes active
in the low-level optimization. If, however, the solution of Prob-
lem 2 does not exist, then CAV i selects a feasible t fi from the
crossing protocol I(t), and follows the analysis of the low-level
optimization, which includes piecing together the constrained
and unconstrained arcs, to derive the optimal control input from
t0i to t fi .

5. Simulation results

In this section, we present simulation results to evaluate the
analysis in the low-level and upper-level optimization. First, we
demonstrate the analysis of the low-level optimization with three
case studies using two CAVs. We consider cases where the state
and control constraints become active. Second, we demonstrate
the upper-level optimization analysis on a set of 10 and 24
CAVs at a four-way intersection. These cases include intersection-
crossing, left, turns right turns, and lane changes.
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Fig. 2. A state versus time graph for the case when CAV #1 follows an
unconstrained trajectory.

5.1. Low-level optimization

We simulate two CAVs that share a single lane within the con-
trol zone. The initial conditions of the CAVs are designed such that
the state and control constraints become active on the lead CAV
1, while the rear-end safety constraint activates on the following
CAV 2. Initially, CAV 1 generates all possible trajectories which
satisfy its boundary conditions. Then, it selects the feasible trajec-
tory which minimizes its total energy consumption. CAV 2 applies
the same process and verifies whether the resulting trajectory
is feasible concerning the rear-end safety constraint. If this con-
straint is not satisfied, then CAV 2 must solve a boundary-value
problem that satisfies the boundary, continuity, and optimality
conditions. We provide three scenarios for this simulation case
study. In the first scenario (Fig. 2), CAV 1 follows an unconstrained
trajectory. In the second scenario, the constraint umax becomes
active for CAV 1. In the third scenario, the constraint vmax is
activated for CAV 1. In each case, CAV 1 starts with a much lower
speed than CAV 2 to ensure the rear-end safety constraint is
activated.

For the first scenario (Fig. 2), CAV 1 follows an unconstrained
control input, which is positive and decreasing. To prevent a rear-
end collision, CAV 2 follows a small positive acceleration profile
until the safety constraint becomes active. This constraint activa-
tion causes CAV 2 to jump into a new arc, which corresponds to a
linear deceleration to zero (Fig. 2). The jump in the control input
of CAV 2 corresponds to a corner in the CAV’s speed, as well as
an instantaneous activation of the rear-end safety constraint.

In the second scenario (Fig. 3), CAV 1 begins with the umax
constraint active (we relax Assumption 3) for the first 1.3 s. CAV
2 uses this time to increase its acceleration until the rear-end
safety constraint becomes instantaneously active around t = 3.2
s. Then, CAV 2 slowly decelerates until it reaches the intersection
at its prescribed time. In the absence of the rear-end safety
constraint, CAV 2 would have followed a small linear acceleration
profile, as opposed to the initial breaking behavior observed in
Fig. 3.

Finally, in the third scenario (Fig. 4), CAV 1 activates the vmax
constraint arc from t = 6 s until the terminal time. In this case,
CAV 2 starts with some positive acceleration before jumping to
a negative unconstrained arc. The jump occurs instantaneously
when the rear-end safety constraint is activated. In each scenario,
CAV 1 follows a trajectory with a piecewise-linear control input.
The rear-end safety constraint determines the trajectory of CAV 2,
which must follow two unconstrained arcs with an instantaneous
jump where the safety constraint becomes active. The magnitude
of this jump depends on the jump conditions of the influence

functions.

12
Fig. 3. A state versus time graph for the case when umax is active for CAV 1
over the first 1.3 s.

Fig. 4. A state versus time graph for the case where vmax is active over the last
1.5 s for CAV 1.

Fig. 5. Diagram showing the 6 routes annotated over the intersection.

5.2. Upper-level optimization

To demonstrate the efficacy of the upper-level optimization, a
simulation was run for N (t) = 24 CAVs on an intersection shown
in Fig. 5. This scenario consists of 6 paths with 9 locations for
potential lateral collisions. It also includes turning speed, state
and control, and rear-end safety constraints.
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Each CAV enters at pi(t0i ) = 0 and follows a monotonically
increasing trajectory to the final distance pi(t

f
i ) = S1. The infea-

ible region caused by the rear-end safety constraint is shaded
ith a dashed line, while the vertical lines represent the lateral
ime headway constraint at each point along path 1. A discussion
bout the implications of real-time implementation of the upper-
evel control algorithm in an experimental setting is discussed
n Chalaki et al. (2020). Supplementary videos of the simulation
nd experimental results of the proposed framework as well as
he parameters used for the simulation results can be found at:
ttps://sites.google.com/view/ud-ids-lab/oppc.

. Concluding remarks and discussion

In this paper, we presented a decentralized theoretical frame-
ork, consisting of an upper-level and a low-level optimization,
hat aims at coordinating CAVs at different traffic scenarios. We
rovided a complete, analytical solution of the low-level opti-
ization problem that includes the rear-end safety constraint,
here the safe distance is a function of speed. We also provided
problem formulation for the upper-level optimization in which
here is no duality gap, implying that the optimal time trajectory
or each CAV does not activate any of the state, control, and
afety constraints of the low-level optimization, thus allowing for
nline implementation. Finally, we presented a geometric duality
ramework with hyperplanes to derive the condition under which
he solution of the upper-level optimization always exists.

In our framework, we considered 100% penetration rate of
AVs having access to perfect information (no errors or delays)
hich both impose limitations for real-world applications. It

s expected that CAVs will gradually penetrate the market, in-
eract with non-CAVs and contend with vehicle-to-vehicle and
ehicle-to-infrastructure communication limitations, e.g., band-
idth, dropouts, errors and/or delays. Although some recent
tudies have explored the implications of partial CAV penetra-
ion rates, see Rios-Torres and Malikopoulos (2018), Zhao et al.
2018) and Zhang and Cassandras (2019b), no system approaches
o date have reported in the literature to optimally coordinate
AVs at different penetration rates. Ongoing research focusing
n addressing partial penetration rates of CAVs relying upon
n-board sensing and overcoming real-world communication
imitations. A direction for future research should extend the
roposed framework to consider passengers’ comfort in addition
o energy efficiency and safety.
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