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Abstract—Shared mobility can provide access to transportation on a custom basis without vehicle own-
ership. The advent of connected and automated vehicle technologies can further enhance the potential 
benefits of shared mobility systems. Although the implications of a system with shared autonomous vehi-
cles have been investigated, the research reported in the literature has exhibited contradictory outcomes. 
In this paper, we present a summary of the research efforts in shared autonomous vehicle systems that 
have been reported in the literature to date and discuss potential future research directions.
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I. Introduction

A. Motivation

I
n a rapidly urbanizing world, we need to make funda-
mental transformations in how we use and access trans-
portation. We are currently witnessing an increasing 
integration of our energy and transportation which, 

coupled with the human interactions, is giving rise to 
a new level of complexity [1] in emerging transportation 
systems such as connected and automated vehicles (CAVs) 
and shared mobility. As we move to increasingly complex 
emerging transportation systems, new control approaches 
[2], [3] are needed to optimize their impact on the mobility 
system behavior.

Shared mobility includes a variety of service models 
(e.g., carsharing, ridesharing, bikesharing) to meet travel 
needs and may result in a transformative impact on urban 
mobility [4]–[8] and landscape. As shared mobility ser-
vices evolve, there has been a debate on their potential 
impact [7], [9], [10]. The advent of intelligent transporta-
tion systems and information technologies has aimed at fa-
cilitating shared mobility services (Fig. 1). In this context, 
impact analysis of the introduction of connected vehicles 
and automated vehicles (AVs) into existing shared mobility 

services is vital to identify the opportunities and challeng-
es related to a shared autonomous mobility system. In this 
paper, we review the research reported in the literature 
on carsharing enhanced by vehicle connectivity and auto-
mation technologies, i.e., shared autonomous vehicle (SAV) 
system, and discuss potential implications in the environ-
ment and urban mobility.

B. Background
There are different types of carsharing service models, in-
cluding round-trip carsharing, one-way station-based or free-
floating carsharing, and peer-to-peer carsharing [5], [11]. In the 
past few years, short-term vehicle rental services provided by 
carsharing companies in major cities has attracted millions of 
users, while the number is expected to grow significantly [9], 
[10], [12]. Generally, it is believed that carsharing has positive 
impacts on energy use and greenhouse gas (GHG) emissions 
[12]–[16], particularly when low-polluting vehicles are intro-
duced into the transportation systems [17]. Although there is 
evidence that the use of carsharing services leads to a decrease 
in vehicle ownership [12]–[14], location-specific variations 
(e.g., urban form, level of transit service, availability of alterna-
tive modes, etc.) has an impact on vehicle miles traveled (VMT) 
and public transit ridership [9], [10], [12], [13], [18].

FIG 1 A view of a city enhanced by connectivity and automation.
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The emerging CAV technologies offer intriguing op-
portunities to enhance urban mobility and traffic safety, 
and the introduction of CAVs enables innovative often more 
responsive and efficient options for traveling which may 
change the way people use mobility services [19], [20]. It is 
likely that the wide adoption of CAVs could also affect the 
usage of existing infrastructure to better serve the ever-
changing transportation network [21]. While the benefits 
of CAV technologies on traffic flow and safety [22]–[26], 
coordination in specific traffic scenarios [27]–[33], and en-
ergy improvement on vehicle level [34]–[36] are well un-
derstood, potential deployment of the CAVs for the shared 
mobility service has raised a number of key questions re-
lated to fleet sizing, operation strategies and the implica-
tions on mobility, urban form, and environment [37]–[41].

With the ongoing growth of shared mobility and increas-
ing interests in CAV fleet, the convergence of emerging mo-
bility service and technology is still evolving. Many major 
automakers and technology companies are launching SAV 
pilot projects in the US and around the world, e.g., Ford, 
Voyage, Waymo, Uber, and Lyft [42]. While there is current-
ly no large-scale deployment of SAV fleet, several research 
efforts have evaluated the impacts of the SAVs, including 
simulation-based evaluation on environmental impact, 
cost-benefit, or demand analysis, e.g., [43]–[57]. There has 
been much contention on the potential influence of SAVs on 
travel behavior, urban landscape, congestion, and environ-
ment [58]. Although it seems that the required fleet size as 
well as the parking spaces to meet existing travel demand 
might drop significantly, multiple studies have indicated 
that full automation is likely to induce travel demand and 
attract new user groups, which may result in a potential in-
crease in energy consumption, e.g., [59], [60]. Furthermore, 
there have been also concerns that SAVs might attract con-
siderable attention from public transit patrons rather than 
private car owners, with implications on escalating traffic 
congestion, if not properly managed, e.g., [61], [62].

C. Scope of the Paper
In this paper, we review research efforts on the modeling and 
operations of the SAV system and try to identify potential re-
search gaps that require further investigation. In our review, 
we have excluded studies on the demand estimation and travel 
behavior analysis of the SAVs. We applied the following search 
strings and included the papers up to date containing any com-
bination of the keywords in the title, abstract, or keywords:
1)	 Shared autonomous (electric) vehicles, shared automat-

ed vehicles, autonomous vehicle sharing;
2)	 Autonomous carsharing, driverless carsharing, self-

driving carsharing;
3)	 Autonomous taxi, automated taxi, driverless taxi;
4)	 Automated demand responsive transport, autonomous 

mobility on demand, automated mobility on demand, 
autonomous mobility as a service.

Although the exploration of benefits of SAVs is still in ear-
ly stages, we note that there are many aspects in common 
with the conventional carsharing system (with or without 
the option of ridesharing). There are several review papers 
providing a good summary under the umbrella of shared 
mobility, e.g., see [63]–[69]. Similar review efforts on the 
SAVs include the study by Hao and Yamamoto [70], who fo-
cused on the features and demand aspects of the SAV sys-
tem through examining the corresponding aspects of car 
sharing in AVs. The most recent work conducted by Stocker 
and Shaheen [42] reviewed SAV pilots and legislation in the 
US, and discussed current and future development of the 
SAV system. Any such effort has obvious limitations. Space 
constraints limit the description of each paper in details, 
and thus, discussions are included only where they are im-
portant for understanding the fundamental concepts or ex-
plaining significant departures from previous work.

D. Organization of the Paper
The structure of the paper is organized as follows. In Sec-
tion II, we present an overview of the SAV system and mod-
eling approaches that have been commonly adopted. We 
then identify major design variables and system operating 
parameters that are widely studied in the literature to date 
and summarize the research efforts in Section III, includ-
ing the problems of fleet sizing, vehicle assignment and 
relocation, consideration of electric vehicles, and rideshar-
ing. In Section IV, we discuss different operation schemes 
of the SAVs in a mixed traffic environment that have been 
investigated in the literature. Finally, we discuss research 
gaps and potential future research directions in Section V.

II. Shared Autonomous Vehicle System Modeling
SAVs provide carsharing with a way of seamlessly relocat-
ing vehicles to better match dynamic demand [46]. As pilot 
programs of SAVs are beginning to accelerate around the 
world, there has been an increasing interest in investi-
gating the SAV system. In this section, we first introduce 
earlier work on the feasibility of statewide implementation 
of SAVs and system performance analysis along with the 
cost-benefit analysis. We then discuss two major directions 
in modeling and analysis of the SAV system: (1) the devel-
opment of analytical models along with specific problems 
that include vehicle assignment and rebalancing, e.g., [71]–
[74]; (2) the development of agent-based models to empha-
size the understanding of system performance and impact 
of the SAV system under different scenarios with a variety 
of parameters settings, e.g., [61], [75]–[79].

1) Feasibility Analysis
In an early work [43], Ford proposed a statewide SAV sys-
tem in New Jersey with a grid-based network model. The 
author discussed different operation strategies of a SAV 
system at different time periods. For example, in rush 
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hours, the SAVs would function like a personal rapid tran-
sit (PRT) system to satisfy travel demand and ease conges-
tion, whereas during non-rush hours, the SAVs could be 
operated with more flexibility and provide door-to-door 
service. The area considered in the paper was modeled as 
gridded zones, where a fixed SAV station would be located 
at the center of each cell. Later, Brownell and Kornhauser 
[80] described in detail two distinct SAV network models, 
i.e., PRT and the smart paratransit (SPT), and discussed 
the feasibility of a statewide SAV network in New Jersey. 
In the PRT network, fixed stations of the SAV system are 
established and passengers need to walk to their closest 
stations. Ridesharing is considered only if two passengers 
share the same origin-destination pair and arrive at the 
station within a predefined time window. The idea behind 
the SPT system is that trips with close origins and/or des-
tination will be served by one single vehicle. The vehicle 
moves around within the origin cell to pick up multiple 
passengers before traveling to the destination cell. Along 
the ways, the vehicle may stop at one, or more, locations to 
pick up or drop off passengers. In a SPT system with AVs, 
since the vehicle takes the place of the individual for ac-
cessing service, the distance between nodes in the transit 
grid could be increased. Burns et al. [44] conducted a cost-
benefit analysis of a SAV system where the entire trip de-
mand is satisfied by SAVs. To estimate the performance of a 
SAV system and compare with other systems (e.g., personal 
vehicle), the authors developed an analytical model with 
spatial queueing approach based on simplifying assump-
tions (e.g., uniformly distributed origins and destinations, 
constant trip request rate, etc.). The results from three case 
studies showed that a SAV system is capable of providing 
better mobility experience at a significantly lower cost, in 
addition to its environmental and safety benefits.

2) Analytical Modeling
Several research efforts reported in the literature have 
treated a SAV system as a spatial queueing system where 
passengers arrive at each station, pick up the vehicles—if 
parked at the station—and wait or leave the system, if no 
vehicle is available (Fig. 2). After dropping off passengers 
at their destinations, vehicles either start the next service, 
or park, or relocate themselves to other stations, e.g., [71]–
[74], [81], [82]. For instance, Zhang et al. [38] described a 
SAV network as a spatial queueing system where transpor-
tation requests queue up and are served by the SAVs in the 
network. The authors presented two models for SAV sys-
tems. In the first model, the authors considered a distrib-
uted approach, where the objective is to design a routing 
policy that minimizes the average steady-state time delay 
between the generation of an origin-destination pair and 
the time the trip is completed. In the second model, the 
authors considered a lumped approach—customers are as-
sumed to arrive at a set of stations in the network, where 

each customer picks up a vehicle, if available, or leaves the 
system, if no vehicle is parked at the station.

3) Agent-Based Modeling
To address the questions on the impact of SAVs on transpor-
tation mobility and investigate performance of the SAV sys-
tem under various scenarios, several research efforts have 
also focused on developing agent-based models to evaluate 
the transportation network with presence of SAVs [61], [75], 
[76], [83]. With the advantage of modeling each individual 
passenger/vehicle as an agent following simple rules, com-
plex behavior [84], [85] at a macroscopic level emerges, 
which provides an approximation of travel behavior in the 
transportation systems [75]. Marczuk et al. [86] and Aze-
vedo et al. [87] proposed an extension to the agent-based 
demand and supply model (SimMobility) for the design and 
evaluation of the SAV system in a multi-level simulation 
framework, and explored the effects of fleet size and sta-
tion location for both station-based and free-floating SAV 
systems. Boesch and Ciari [75] discussed the advantages of 
MATSim (an activity-based agent-based simulation model) 
with the presence of SAVs and its potential applications on 
investigating related problems, such as the potential of 
SAVs complementing or competing with other transporta-
tion modes, appropriate fleet size in different transporta-
tion systems, and the demand distribution with respect to 
the response of different fleet sizes.

Focusing on the potential impact of a SAV system on ur-
ban parking demand, Zhang et al. [77], [78] investigated 
different system operation strategies under low penetra-
tion of SAVs with an agent-based simulation model. Ride-
sharing and traveler’s acceptance of sharing rides were 
also explored in the paper. The results showed a significant 
parking demand reduction with the SAV system—enabling 
ridesharing and adding vehicle cruising options would 
further reduce parking demand. Kondor et al. [88] devel-
oped an agent-based simulation model to estimate parking 
demand savings with shared vehicles and SAVs for home-
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FIG 2 Shared autonomous vehicles in a queueing system.
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work commuting. Other conclusions drawn from this study 
include that up to 50% reduction in parking needs could be 
achieved at the expense of less than 2% increase in VMT. 
Jager et al. [83] developed an agent-based framework for a 
shared autonomous electric vehicle (SAEV) system that re-
flects the system behavior on an operational level. Although 
the system has a central dispatcher, the vehicles compete 
for customers and make their own decisions for routing 
and charging. Simulation results confirmed the feasibility 
of operating a SAV fleet with both high service levels and 
vehicle utilization. However, environmental benefits can 
only be expected when using renewable energy sources 
and enabling ride sharing features.

III. Shared Autonomous Vehicle System Design Variables
Similar to conventional carsharing service, not only the 
operations of a SAV is significantly affected by the assign-
ment and rebalancing strategies over a fleet of SAVs, mobil-
ity and environment, but also the urban landscape can be 
considerably impacted by the implementation strategies of 
a SAV system. Naturally, the problems of fleet sizing, vehi-
cle-trip assignment, and rebalancing in a network of SAVs 
are the major subjects in enhancing our understanding of 
a SAV system, with the options of ridesharing and usage of 
electric vehicles that have attracted considerable attention 
recently. The majority of the literature to date has concen-
trated on how the SAV system tackles one or more of the 
aforementioned problems, and has aimed at enhancing our 
understanding about the performance and potential ben-
efits of the network with a fleet of SAVs. In the following 
subsections, we provide a summary of SAV system model-
ing and discuss key topics that have been investigated in 
previous studies regarding the SAV system.

A. Fleet Sizing of a Shared Autonomous Vehicles System
Fleet size is the major determinant of the operating cost 
of the SAV system. General considerations in determining 
the fleet size include system access, directness, sharing, 
and passenger waiting time [89], [90]. In what follows, we 
summarize different approaches in addressing fleet sizing 
problems in a SAV system.

Fagnant et al. [91] simulated a SAV system in Austin area 
with a grid-based network model following a similar mod-
eling framework presented in [43]. In this work, a fleet of 
SAVs is generated in the network to ensure that passenger 
waiting times are within predefined bounds. A heuristic 
strategy is implemented to relocate vehicles such that the 
stock of SAVs among cells is balanced. A replacement rate 
of 1 SAV per 9.3 conventional vehicles was identified as ap-
propriate for the area considered in the paper. The authors 
concluded that even with an excess VMT, emissions and 
environmental outcomes for the SAVs are still advanta-
geous compared to those for the average US vehicle fleet. 
In the modeling framework for the SAV system developed 

by Winter et al. [89], the minimum fleet size and the opti-
mal fleet size that yield the minimum system costs are de-
termined through an iterative procedure, where the core 
is a simulation tool that is applied for assigning vehicles 
to passenger requests. Several scenarios are conducted to 
analyze the influence of different design parameters (e.g., 
vehicle capacity, operational parameters, demand level) on 
system performance.

Vazifeh et al. [92] investigated the minimum fleet size 
problem of a SAV system with a network-based model. Trips 
based on known demand and link travel times were taken 
as input to construct the vehicle shareability network un-
der the constraint of maximum trip connection time. With 
fully knowledge of daily trip demand, the authors found 
that 40% taxis in New York City can be reduced without 
incurring delay to passengers, under the constraint of 
15-minute maximum trip connection time. Relaxing the 
assumption of complete demand information, the authors 
concluded that if trip requests were collected at 1-minute 
interval, the system could be operated with a 30% fleet re-
duction at a relative high level of service (i.e., above 90% 
served trips within a 6-min delay).

Spieser et al. [73] addressed two major fleet sizing prob-
lems: (1) the minimum number of vehicles needed to stabilize 
the workload of a SAV system and (2) the number of vehicles 
needed to ensure a desired level of service provided to the cus-
tomers. In their paper, the SAV system is modeled as a queue-
ing network where each region is mapped into single-server 
node, and each route between each pair of regions is mapped 
into infinite-server nodes. The vehicle rebalancing process is 
modeled as an arrival process of “virtual passengers.” Con-
ducting a case study in Singapore, the paper showed that a 
SAV can meet the personal mobility needs of the entire popu-
lation with a fleet size about one third of the total number of 
passenger vehicles currently in operation.

Masoud and Jayakrishnan [93] discussed a different im-
plementation strategy of the SAV system, with households 
forming clusters (i.e., neighborhoods). Each neighborhood 
shares the ownership and ridership of a set of autonomous 
vehicles that serve as rental cars during their idling times. 
The authors focused on the optimization of the fleet size in a 
neighborhood and the number of rental requests for the ve-
hicles during their idling times. Two optimization models 
were developed. The first model addressed the neighbor-
hood clusters and aimed at minimizing the total number 
of the vehicles by considering essential trips to be satisfied 
for all the households in a neighborhood. The second model 
optimized the total number of rental requests so as to maxi-
mize extra income from idling vehicles, considering time 
window constraints of the owners’ essential trips.

Most of previous work has emphasized on searching for 
the minimum fleet size of SAVs that could provide service 
on the existing demand at a desired level, when replacing 
the existing conventional vehicle service by SAVs. We have 
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noticed promising results from multiple papers indicating 
that a high replacement rate of conventional vehicles is fea-
sible to satisfy the same level of demand. However, there is 
still some work missing to assess holistically the impact of 
urban mobility due to potentially changing travel behav-
ior and demand as a result of the introduction of AV in the 
mixed traffic environment.

B. Vehicle Assignment in a Shared Autonomous  
Vehicle System
Although there is a rich body in the literature in dynamic 
assignment problems with various applications on taxi, 
paratransit, trucking services, etc., that require real-time 
vehicle assignment to dynamic service requests (e.g., see 
[94]–[97] for more details), most papers reported in the lit-
erature to date have focused on investigating SAV system 
performance with simplified vehicle assignment strategies 
(usually rule-based). In what follows, we present a general 
formulation of the vehicle assignment problem in a SAV 
system. Let i M!  be a trip request, j N!  be the index of 
a vehicle, and xij equal to 1 if and only if trip i is assigned 
to vehicle j, where NM 1  is the set of trip requests and 

NN 1  is the set of vehicles. The general vehicle-traveler, 
or vehicle-trip, assignment problem to minimize the trip 
assignment cost, Ja, [38], [98]:

	 ,   min J c xa ij
i

ij
j

= // � (1)

subject to

	 , ,x i1 Mij
j

!=/ � (2)

	 { , }, , ,x i j0 1 NMij 6! ! ! � (3)

where cij is the cost of assigning trip request i to vehicle j, 
which could be represented by trip travel distance, travel 
time, or monetary cost. The trip assignment cost in (1) is 
evaluated at every trip assignment time step with dynamic 
service requests. The constraint (2) ensures that each trav-
eler is assigned to only one vehicle.

When assigning travelers to the nearest idling AVs, sev-
eral research efforts have considered a first-come-first-
served strategy, which is a heuristic approach to minimize 
passenger waiting time [44], [78], [90], [91, [99]. In a paper 
by Fagnant and Kockelman [46], the SAV service area is 
divided into small zones, where trips are randomly gen-
erated. Every five minutes, passengers will be randomly 
ordered and assigned to the nearest available SAV in the 
same zone, up to a maximum vehicle arrival time. If such 
assignment fails, those passengers will be held until next 
assignment. Hyland and Mahmassani [100] investigated 
the underlying stochastic vehicle assignment problem for 
the SAV system with no shared rides. With the assumption 
that the fleet operator has no information of the spatial-
temporal demand distribution, the authors compared dif-

ferent SAV assignment policies as the solution approaches 
to the local optimization problem at each time step. Two of 
the applied strategies were first-come-first-served, and the 
other strategies minimized traveler waiting times (under 
different vehicle-traveler assignment constraints).

Hanna et al. [101] examined four different methods for as-
signing vehicles in a SAV system: (1) a decentralized greedy 
matching where users are assigned to their nearest vehicles in 
a random order, (2) a centralized greedy matching approach 
ensuring that each vehicle is matched with its closest user, (3) 
the Hungarian minimum cost matching algorithm that mini-
mizes passenger waiting time and unoccupied distance trav-
eled, and (4) a minimal makespan matching algorithm which 
minimizes the longest distance that any vehicle must travel 
to a passenger. The authors showed that compared to greedy 
approaches, the latter two methods improved system perfor-
mance through reducing unoccupied travel distance, passen-
ger waiting time, and waiting time variation.

C. Vehicle Rebalancing of a Shared Autonomous  
Vehicle System
The SAV system shares similar characteristics with the 
carsharing system consisting of conventional vehicles [46]. 
In terms of unbalanced demand distribution, both systems 
face the same problem of vehicle rebalancing. Two major 
rebalancing strategies have been investigated in the lit-
erature of carsharing with conventional vehicles including 
(1) operator-based vehicle relocation and (2) user-based 
vehicle relocation, which could potentially be adapted in 
addressing the same problem in the SAV system, see [63], 
[102]–[105]. However, the relocation of SAVs still have dif-
ferences with that of conventional sharing vehicles, since 
SAVs are fully compliant and always cooperative [106]. 
Thus, due to the inherent capabilities of self-driving and 
self-rebalancing of a SAV system, research efforts have fo-
cused more on the problem with a centralized operator that 
has dispatching control over the entire SAV network, which 
may yield a system optimum solution for the entire system.

We provide a general formulation to illustrate the ve-
hicle rebalancing problem for a SAV system. Let ry be the 
number of idling vehicles in zone/station y Z!  and ryz 
be the number of rebalancing vehicles from zone/station 
y to zone/station z Z! , where NZ 1  is the total number 
of zones/stations in the network. Generally, the objective 
function Jr is the total cost induced by vehicle rebalancing 
[71], [107], [108]:

	 ,   min J c rr yz
y

yz
z

= // � (4)

subject to

	 , , ,r r y z Zyz
z

y 6 !=/ � (5)

	 , , ,r y zN Zyz 6! ! � (6)
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where cyz is the cost of moving vehicles from zone/station y 
to zone/station z, which could be represented by trip travel 
distance, travel time, or monetary cost. In a system with 
dynamic trip requests, (4) will be evaluated at every re-
balancing time step and (5) defines the total rebalancing 
vehicles from zone/station y should equal the number of 
idling vehicles in the zone.

Targeting at the problem of unbalancing demand and 
supply, Pavone et al. [109] addressed the vehicle relocation 
problem for a mobility-on-demand system, optimizing the 
rebalancing assignment that minimizes the number of ve-
hicles to be moved. Using a fluid model of the system, the 
authors showed that the optimal rebalancing policy can be 
found as the solution to a linear program, under which ev-
ery station reaches an equilibrium where there are excess 
vehicles and no waiting customers. Based on this study, 
Zhang and Pavone [72] presented a queueing-theoretical 
approach and provided the solution to an offline optimal 
rebalancing problem. Later, Wen et al. [107] extended the 
research by incorporating door-to-door service and ride-
sharing option in a free-floating SAV system. From the fleet 
operator’s perspective, Spieser et al. [108] investigated the 
vehicle rebalancing problem in a SAV system by quantifying 
the operation cost as a function of fleet size, demand loss 
and utilization rate, and analyzed the impact of fleet size on 
demand loss, vehicle utilization rate, and vehicle rebalanc-
ing miles traveled. Hörl et al. [110] evaluated performance 
of four heuristic and optimal rebalancing policies for a SAV 
system in an agent-based simulation environment, and sug-
gested that the utilization of intelligent demand forecasts 
and rebalancing algorithms would be crucial for a SAV sys-
tem to be competitive with private vehicles.

Through simulation based evaluation, recent work fo-
cused on the impact of vehicle rebalancing strategies in a 
SAV system. Zhu and Kornhauser [111] investigated the re-
balancing strategies for the SAV system in New Jersey and 
their effects on the fleet size and level of service provided in 
scenarios where all non-walking travel demand is served 
by SAVs. Shared trips are served by vehicles of different ca-
pacities (i.e., 3, 6, 15, and 50 passengers). Two rebalancing 
strategies are developed based on known demand. In the 
first approach, vehicles are moved at the end of the day to 
make sure that there are enough vehicles at each station 
that satisfy the demand at the beginning of the day. In the 
second approach, vehicles are relocated as needed to fill in 
any station without enough vehicles. The authors also eval-
uated the performance of the statewide SAV system with 
varying fleet sizes, in terms of passenger waiting time and 
rebalancing trip lengths. The results showed that one SAV 
could possibly replace more than six traditional vehicles 
while the demand could still be well served.

Fagnant and Kockelman [46] investigated the opera-
tion of SAVs through an agent-based model and focused on 
the implications of travel and environmental impacts of 

SAVs under a mixed traffic condition. Addressing the im-
balanced demand patterns, the authors proposed several 
relocation strategies to balance vehicle supply and reduce 
future traveler wait times: (1) relocating vehicles based on 
expected demand and (2) relocating vehicles to balance 
stock based on predicted supply. Marczuk et al. [112] devel-
oped a simulation framework for rebalancing an one-way 
SAVs system in SimMobility environment. The proposed 
fleet management center is responsible for passenger-
to-vehicle assignment, vehicle routing and re-balancing. 
Three vehicle relocation strategies were proposed for the 
system: (1) no rebalancing as the baseline scenario, (2) of-
fline rebalancing that minimizes the number of rebalanc-
ing trips, and (3) online rebalancing that minimizes the 
total time/effort spent for rebalancing per rebalancing in-
terval. Winter et al. [113] analyzed the impacts of different 
relocation strategies of a SAV system in a simulated generic 
grid network. Five vehicle relocation strategies were test-
ed, including remaining idle, random shuffling, returning 
to original location, moving based on demand anticipation, 
and moving to balance vehicle stock over the network. In 
the simulation framework, the fleet size of the SAV system 
is given as an input, and vehicles are dispatched through a 
rule-based strategy. Performance measures such as aver-
age passenger utility, average waiting time, and the ratio 
of vehicle driving time were examined. The simulation 
showed that remaining idle strategy would be the most ef-
ficient in terms of passenger waiting time, yet the worst 
performer considering link occupancy and parking turn-
over rates. In contrast, strategies aimed at distributing 
vehicles yielded higher parking turnover rates but showed 
lower service efficiency. In light of these results, the au-
thors extended the study by imposing the constraints of 
limited parking facilities in the evaluation of the above five 
heuristic relocation strategies for idle SAVs, and examined 
the potential impact of SAVs on urban traffic in terms of 
congestion, parking consumption and mode shift [114].

As discussed in the above papers, e.g., [111]–[114], depend-
ing on the objectives and targeting performance measures, 
the rebalancing strategy to be applied in a SAV system may 
be different. The operation of a fleet of SAV is considerably 
affected by the applied relocation strategy or a combination 
of strategies, considering the inter-dependencies among 
parking demand, traffic condition, and user mode choice. 
Although current research efforts emphasize rebalancing 
strategies in an isolated SAV system, the externalities should 
be analyzed in more depth to enhance the understanding of 
traffic dynamics with the implementation of SAV service.

D. The Usage of Electric Vehicles in a Shared Autonomous 
Vehicle System
A significant amount of work has focused on the use of 
electric vehicles in a SAV system to achieve larger energy 
and emission savings for a greener transportation system 
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[61], [76], [90]. Considering the range of electric vehicles, 
there is a number of constraints in a SAEV system. For in-
stance, a vehicle may need to visit a charging station after 
dropping off passengers. There may be instances that vehi-
cles have to turn down trip requests and drive to charging 
stations instead, resulting in different vehicle-trip assign-
ment strategies [115]–[117].

Based on the work in [38], Zhang et al. [106] presented 
a model predictive control (MPC) approach to optimize 
vehicle scheduling and routing in a SAEV system, con-
sidering vehicle charging constraints. Compared to other 
control algorithms of a SAV system (i.e., nearest-neighbor 
dispatch, collaborative dispatch, Markov redistribution, 
real-time rebalancing), the authors concluded with a case 
study in New York City that the MPC algorithms outper-
formed the other strategies in terms of average customer 
waiting times.

Chen et al. [61], [76] addressed the operations of a SAEVs 
with an agent-based model based on the work reported in 
[46] and [91]. The emphasis of this research is the perfor-
mance analysis of a fleet of SAEVs under various vehicle 
range and charging infrastructure scenarios. The authors 
also explored the pricing schemes of a SAEV system when 
competing against other modes (i.e., private human-driven 
vehicles and city bus service), and found that with higher 
SAEV penetration rate, the private vehicle replacement 
rate by the SAEVs increases, leading to improved system 
performance. Similarly, the study by Bauer et al. [118] pre-
dicted battery range and charging infrastructure require-
ments of a fleet of SAEVs operating on Manhattan island 
with an agent-based model. The authors also conducted 
sensitivity analysis of the cost and the environmental im-
pact of providing SAEV service with a wide range of chang-
es in cost components (e.g., battery type, vehicle type, etc.). 
The study indicated that instead of battery range, the major 
challenge to introducing SAEVs may be building sufficient 
charging infrastructure.

Kang et al. [115] developed a framework for a SAEV sys-
tem that consists of demand forecasting, fleet assignment, 
electric vehicle designing, and charging station locating 
modules. The fleet assignment module determines the 
optimal vehicle assignment and charging schedules, and 
the charging station locating module decides the optimal 
charging station locations. The system-level objective is 
to maximize service profit for the operator, through opti-
mizing decision variables including fleet size, number of 
charging stations, electric powertrain design, membership 
fee, and vehicle rental fee. The locations of charging sta-
tions are selected with a p-median model from a pool of 
predetermined candidates. A comparison between a SAV 
system and a SAEV system was conducted in terms of cost 
and benefit under different scenarios (e.g., varying gas 
prices and charging station installation costs), showing 
that a SAEV system would be more profitable for most of 

the scenarios. Although both systems are marketable, the 
optimized SAEVs required longer waiting times than op-
timized SAVs due to the constraints of vehicle range and 
charging issues.

Iacobucci et al. [119] developed a simulation model to 
evaluate a SAEV system interacting with passengers and 
charging at designated stations based on a heuristic charg-
ing strategy. The potential utilization of the SAEV system 
as an operating reserve provider and its performance in 
response to grid operator requests were evaluated. The 
authors concluded that the proposed system could reduce 
the required fleet size as compared to private vehicles 
while providing a comparable level of transportation ser-
vice with low break-even prices. Later, based on the work 
presented in [106], the authors developed a framework for 
the optimization of charging scheduling and vehicle rout-
ing and relocation for a fleet of SAEVs [120]. The proposed 
framework consists of two layers of optimization model: 
over longer time scales, the charging scheduling optimiza-
tion minimizes waiting times and electricity costs, while 
over shorter time scales, vehicle routing and relocation 
are optimized under charging constraints. The authors re-
ported that a substantial reduction in charging costs was 
yielded from the proposed framework without significantly 
affecting passenger waiting times, as well as the potential 
of SAEVs to offer energy storage to the grid and avoid grid 
congestion.

In summary, the introduction of electric vehicles in 
the SAV system offers a large potential to further enhance 
environmental benefits. However, constraints such as ve-
hicle range and charging facility locations add more dy-
namics into the system, and multiple studies suggested 
that the infrastructure and charging scheduling are the 
key influencing factors of system performance of a fleet of 
SAEVs. Considerably work has focused on the performance 
analysis of SAEV system as compared to the SAV system, 
through evaluating the impact of vehicle range, charging 
infrastructure, as well as electricity costs [61], [76], [118]. 
Considering charging constraints, several research efforts 
have also emphasized on re-examining vehicle routing 
and relocation strategies as well as optimizing charging lo-
cations [106], [115], [121]. Recently, the option of vehicle-to-
grid as well as the integrated planning of power grid and 
shared mobility service has also attracted considerable at-
tention [119], [120], to improve the perception of SAEVs and 
ensure sustainable commutes within the notion of smart 
cities [122].

E. The Option of Ridesharing in a Shared Autonomous  
Vehicle System
The problems of ridesharing and carsharing are usually 
decoupled in the existing literature [123]. Recently re-
search efforts started exploring the option of ridesharing 
in a SAV system, e.g., [124]–[127]. By allowing ridesharing, 
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the fleet size may be further reduced to provide a desired 
level of service to the passengers, although the total VMT 
probably might increase [128], [129]. There are generally 
two types of ridesharing as illustrated in Fig. 3: (a) trip 
combining neighboring origins and destinations (Fig. 3a) 
and (b) trip chaining based on trip temporal and spatial 
characteristics (Fig. 3b). We consider here ridesharing as 
the option of serving multiple passengers in a single ve-
hicle trip, or trip chain, in the SAV system, and emphasize 
the impact of opening up ridesharing options in the SAV 
service, without detailing the operation modes and strate-
gies for ridesharing. Considering different system objec-
tives (e.g., minimizing total VMT, minimizing total travel 
time, or maximizing served trips) and various system con-
straints (e.g., time window and seat constraints), there has 
been work on the SAV system with the option of rideshar-
ing and the evaluation of different ridesharing strategies 
against network performance.

Levin et al. [124] analyzed the possibility of ridesharing 
in a SAV system where passengers could select the first ar-
rived vehicle regardless of occupancy. The authors found 
that SAVs with the choice of ridesharing may cause more 
congestion due to additional miles traveled for detouring. 
Zhang et al. [78], [142] applied an agent-based model to 
evaluate the performance and potential benefits of a SAV 
system with dynamic ridesharing. In a grid-based simu-
lation network, a centralized operator monitors real-time 
trip requests and SAV status as well as manages trip as-
signment for the SAV system, where ridesharing option is 
evaluated against passenger’s willingness and travel cost. 
Their work suggested that dynamic ridesharing in a SAV 
system could potentially lead to reduced vehicle owner-
ship, parking demand, and emissions.

Hyland and Mahmassani [125] compared the perfor-
mance of a SAV system with and without ridesharing option 
in terms of the ability to handle demand surges. In this pa-
per, the mathematical formulations of the vehicle assign-
ment with/without ridesharing were presented and the 
solutions were derived with a rolling-horizon approach. 
The simulation results indicated that the SAV with ride-
sharing service improved system performance in response 
to demand surges.

Based on the vehicle rebalancing strategies tested in 
[46], Fagnant and Kockelman [126] considered the option 
of dynamic ridesharing in a simulated SAV system. With 
the case study of a 24-mile by 12-mile region in Austin, 
the authors concluded that dynamic ridesharing in a SAV 
system was able to limit excess VMT from the SAV system, 
reduce passenger waiting times (under the constraint that 
ridesharing should not increase travel time of current pas-
sengers by more than 40%), and yield an enhanced level 
of service.

Farhan and Chen [141] discussed the impacts of ride-
sharing on the operational efficiency of SAEVs with a 
discrete-time simulation model. Both the fleet size and 
number of charging stations are determined during sim-
ulation. In their research, the travelers are grouped into 
clusters based on spatial criteria, and the ride-share match-
ing problem is formulated as a vehicle routing problem 
minimizing system-wide vehicle miles traveled under time 
window constraint. The results indicated that allowing a 
second passenger in ridesharing yielded marginal benefit 
of fleet size and charging station reduction. Although more 
passengers in shared trips reduced the required fleet size 
and number of charge stations, passenger waiting times in-
creased due to ridesharing (i.e., reduced level of service).

IV. Shared Autonomous Vehicle System Operation
Although the majority of the literature has been focused on 
examining the feasibility and performance of the SAV ser-
vice as an isolated system, there is an increasing interest 
towards the investigation of more realistic operational sce-
narios related to the SAVs. Recent research efforts have also 
focused on answering questions such as: “How will the SAV 
system perform in a mixed traffic environment?” “What will 
be the mobility impact of integrating the SAVs with other 
modes of transport?” In this section, we focus on different 
operational aspects of a SAV system, and summarize the 
studies that consider realistic and mixed traffic conditions.

A. Operation in a Realistic Traffic Environment
The majority of the aforementioned work has addressed 
the SAV system with full SAV penetration or without con-
sidering background traffic. Only a few papers have fo-
cused on the impact of congestion of SAVs, e.g., [81], [124], 
[132], [155], [156]. For example, to investigate the impact 
of SAVs on mobility, Levin et al. [124] presented a general 

Trip Origin

Trip Destination

(a)

(b)

FIG 3 Ridesharing in the shared autonomous vehicle system: a) trip 
combination; b) trip chaining.
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event-based framework for simulating the operations of a 
SAV system with existing traffic models. Considering 100% 
penetration of SAVs, the authors found that under certain 
scenarios (e.g., with the option of dynamic ridesharing), a 
smaller fleet of SAVs performed better than a larger fleet 
due to lower congestion in the network. Maciejewski and 
Bischoff [156] evaluated the impact of a city-wide introduc-
tion of SAVs on traffic congestion through an agent-based 
simulation model, focusing on the analysis of traffic con-
gestion under different SAV penetration rates. Under the 
assumption of increased road capacity due to AV opera-
tions, their work showed that despite increased traffic vol-
ume, a fleet of SAV could have a positive effect on traffic at 
a penetration rate as low as 20%.

Levin [131] developed a linear programming formula-
tion for vehicle routing problem in the SAV system, where 
traffic flow was modeled through the link transmission 
model. The results showed that asymmetric demand (e.g., 
demand during peak periods) could lead to significantly 
rebalancing trips and greater congestion than uniformly 
distributed demand pattern. Since more vehicles might 
cause additional congestion on roadway network, it is im-
portant for the SAV system to plan for different traffic pat-
terns. Liang et al. [132] proposed an integer programming 
model to define the routing of the SAVs based on profit 
maximization function, where travel times on the links 
varied with the flow of SAVs (without any background traf-
fic). Later in [133], the authors applied the algorithm for 
trip assignment and dynamic routing in the city of Delft, 
the Netherlands with a rolling horizon scheme. Assuming 
that the operator of a SAV fleet has the choice of accepting 
or rejecting trip requests according to a profit maximiza-
tion function, the analysis showed that taking into account 
the impact of dynamic travel time led to different results 
of satisfied trips and VMT, and ultimately affected overall 
operator profit and network congestion level.

Rossi et al. [81] studied the routing and rebalancing 
problem of SAVs in congested transportation networks, 
where a SAV system is modeled in a network flow frame-
work such that vehicles are represented as flows in a road 
network. The objective of the routing problem is to mini-
mize the weighted sum of passenger trip travel times and 
vehicle rebalancing travel times considering network ca-
pacity. The objective of the rebalancing problem is to op-
timize rebalancing paths such that traffic congestion is 
minimized. Through numerical studies on real-world traf-
fic data, the authors showed that the proposed real-time 
routing and rebalancing algorithm yielded lower customer 
waiting time by avoiding excess congestion on the road, 
compared to point-to-point rebalancing algorithms where 
no underlying road network is assumed.

Through an agent-based model, Fagnant and Kockel-
man [46] investigated the operation of SAVs and focused 
on the implications of travel and environmental impacts 
of SAVs under a mixed traffic condition. Instead of 100% 
penetration of SAVs, the authors considered the transporta-
tion system with a small market share of SAVs (i.e., around 
3.5%). The simulation results under different scenarios 
(e.g., varying trip generation rates, network congestion lev-
els, SAV fleet size, etc) indicated that each SAV can substi-
tute around eleven conventional vehicles at the cost of 10% 
more VMT, and the overall emissions savings are expected 
to be sizable for most emission species.

B. Operating in a Multi-Modal Environment
Based on the discussion in the previous sections, it seems 
clear that SAVs, compared to personal owned human-driv-
en vehicles, have significant advantages for individuals as 
well as for the transportation system in terms of mobility, 
safety, and energy savings (especially with SAEVs), e.g., 
[46]–[48], [76], [83], [86]. A combination of SAVs with other 
transportation modes such as public transportation, how-

Approach Topic Reference 

Optimization Fleet sizing [38], [73], [92], [93], [98], [115], [130] 

Vehicle routing / trip assignment [81], [98], [106], [120], [123], [125], [127], [131]–[136] 

Vehicle rebalancing / relocation [72], [81], [107], [108], [130] 

Other considerations [115], [121], [134] 

Simulation evaluation Fleet sizing [43], [44], [47], [48], [80], [86], [89], [90], [128]

Vehicle routing / trip assignment [83], [87], [99], [128], [137], [138] 

Vehicle rebalancing / relocation [46], [48], [77], [91], [104], [110], [112]–[114], [128], [137], [139], [140] 

Ridesharing [77], [124], [126], [129], [141]–[147] 

Pricing scheme [57], [61], [145], [148], [149] 

Transit integration / mode choice [61], [87], [89], [138], [140], [143], [146], [148]–[154]

Electric vehicles [57], [76], [83], [104], [116]–[119], [140], [141] 

Table 1. Approaches in Shared Autonomous Vehicle System Modeling.
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ever, might impose different conclusions [9], [10], [12], [18]. 
Although SAVs could be utilized in the way to facilitate the 
first and last mile transport [157] and promote the use of 
public transportation system (e.g., [154], [158]), SAVs may 
also divert passengers away from transit systems due to 
their capability of providing door-to-door services (e.g., 
[154], [159]).

1) Shared Autonomous Vehicles as a Complement  
of Public Transit
Early research efforts have explored the performance of 
integrating the SAV system with transit systems. For ex-
ample, based on the same network in New Jersey as in [43], 
Zachariah et al. [143] simulated a system of SAVs where the 
train network is preserved and treated as an integral part 
of the system. Using SAVs as a complementary service of a 
train system, Liang et al. [134] presented an optimization 
model to define the service area of a SAV system for first/
last mile transport that maximizes the profit of the SAV op-
erator. Later in [135], the authors designed a SAV system 
providing shuttle service between a major train station 
and city area, considering the competition between SAVs 
or other modes (e.g., biking or walking), as well as the im-
pact of traffic congestion on mode split. With the objective 
of minimizing total travel time, the authors developed an 
optimization model to decide the best fleet size and price 
rate for the SAV system.

Shen et al. [146], [151] explored the feasibility of integrat-
ing SAVs in the public transportation system to improve 
the first/last mile connectivity. With a simplified simula-
tion model without considering traffic congestion where 
the demand for the SAV system was assumed to be 10% of 
the original bus demand, the study showed that by enabling 
ridesharing, the integrated service was able to reduce aver-
age passenger travel time and ease traffic through less oc-
cupancy of road resources. Scheltes and de Almeida Correia 
[140] studied the SAEV system providing last-mile service 
for a train line. In the simulation model, vehicle assignment 
in response to traveler request followed a first-come-first-
served model. The scenarios of short-term pre-booking, 
vehicle relocating, and opportunity charging were also 
explored. The results showed that compared to bicycle and 
walking as last mile transportation modes, the SAEV system 
was able to reduce average passenger travel time and wait-
ing time, especially when pre-booking option was enabled.

Wen et al. [153] proposed a systematic approach to de-
sign and simulate an integrated system of SAVs and public 
transit. The authors emphasized that the SAV operation is 
designed to be transit-oriented with the purpose of sup-
porting existing public transit service. In an agent-based 
simulation platform, the interaction between service op-
erator and travelers is modeled with a set of system dynam-
ics equations, such that the decisions of both parties could 
be captured in the system. The authors suggested that en-

couraging ridesharing, allowing in-advance requests, and 
combining fare with transit would be useful to enable ser-
vice integration and promote sustainable travel. Pinto et al. 
[138] proposed a simulation framework integrating a trav-
el mode choice model and a dynamic transit assignment 
model to assess the impacts of a suburban first-mile SAV 
system on transit demand. Similarly, Martinez and Vie-
gas [150] presented an agent-based model to evaluate the 
impact of the SAVs in the city of Lisbon, Portugal. In their 
simulation model, current travel demand is served by two 
types of AVs that compete with each other, i.e., a SAV pro-
viding door-to-door service with the choice of ridesharing 
and an autonomous minibus that replaces current bus ser-
vice without any transfers for users. The simulation results 
revealed positive mobility impact of SAVs especially when 
introducing the autonomous minibus into the network.

2) Shared Autonomous Vehicles as a Competitor  
of Public Transit
Liu et al. [149] simulated transportation patterns in Austin 
network with a system of SAV from a mode-choice perspec-
tive. A user-equilibrium based dynamic traffic assignment 
model was applied in simulation environment. The study 
focused on travelers’ mode choices with the presence of 
SAVs. In a mixed traffic environment, where private hu-
man-driven vehicles, public transit, and SAVs coexist, the 
study analyzed the impacts of the SAV system on energy 
consumption and emissions under different SAV penetra-
tion rates and SAV rental fees. Based on the sensitivity anal-
ysis of rental fees, the authors found that if the SAV fare rate 
is low enough, SAV users might travel more than private 
vehicle users. Therefore, although the use of AVs is expect-
ed to result in energy savings and emission reduction, the 
extra VMT by SAVs could compromise such environmental 
benefits. The mode choice results indicated that, for trav-
elers who do not own a private vehicle, SAVs are prefer-
able for short-distance trips compared to public transit. 
However, demand shifting from public transit would be a 
concern once the SAVs become available in the study area. 
Hörl [148] conducted a similar study and investigated the 
SAV service in a multi-modal traffic simulation environ-
ment. The simulation results in the test scenario raised the 
following two concerns: (1) the introduction of SAVs led to 
increased VMT and, moreover, (2) SAVs attracted public 
transportation users rather than private car owners.

Snelder et al. [152] developed a simulation framework to 
assess both direct and indirect impacts of AVs and SAVs in 
a mixed traffic environment. To capture demand elastici-
ties, the network fundamental diagram was combined with 
mode choice models. Furthermore, the spatial impact was 
also modeled as an exogenous input to the framework via a 
percentage of relocated inhabitants per lane use type. The 
simulation results showed that a shift to SAVs could be ex-
pected. However, the improved accessibility for many resi-
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dents could result in a significant increase in vehicle trips 
(and also in VMT), which might impose negative effects on 
traffic condition. Similar conclusions were drawn from the 
study on the effects of full automation with the possibility 
of trip chaining of household trips, yet in a scenario where 
most vehicles are still privately owned [136].

In summary, findings of multiple studies indicate that 
although the introduction of SAVs in the transportation 
system might improve mobility and safety, it could result 
in enormous changes of travel behavior, mode choice, car 
ownership, and possibly transportation infrastructure 
and urban form. A holistic assess of the impact of the SAV 
systems on urban mobility and related social implications 
might be challenging at the moment as SAVs are still evolv-
ing. However, SAV service could possibly have negative im-
pact on traffic congestion and be strongly competitive with 
public transit without appropriate incentive mechanisms.

V. Outlook and Future Directions

A. Concluding Remarks
In this paper, we summarized current research efforts in 
SAV systems that have been reported in the literature to 
date. Although the SAV system have many aspects in com-
mon with the conventional carsharing system, the inherent 
characteristics of self-driving and self-rebalancing with 
SAVs further enhance free-floating carsharing service and 
increase the stochasticity of the system internally. Exter-
nally, the introduction of AVs in the transportation network 
could change fundamentally traffic patterns in the future. 
The complexity of traffic and urban dynamics, thus, places 
considerable uncertainty in terms of both short-term and 
long-term impacts of the system [160].

The majority of research efforts has considered a sys-
tem either of full SAV penetration rate or without any traf-
fic, and compared its performance with the conventional 
mobility systems (in terms of fleet size requirement, ener-
gy implications, VMT, passenger travel times, etc). Among 
these research efforts, agent-based modeling is one of the 
major approaches to evaluate network performance of a 
SAV system and assess potential impacts of the system. 
Several research efforts have focused on developing op-
timization models to address the following questions: (1) 
“what is the minimum fleet size to provide a desired level 
of service?” (2) “What is the optimal vehicle assignment 
strategy to minimum passenger travel time?” (3) “What 
is the optimal vehicle relocation strategy to minimize the 
number of rebalancing trips without inducing waiting 
delay?” In general, the SAV system could benefit from the 
cooperative characteristics of the fleet—the connectivity 
and automation embedded in the system open up the op-
portunities for a central controller to apply optimal opera-
tion strategies to achieve global optimum against different 
network design objectives.

Although previous research has aimed at enhancing our 
understanding of the SAV systems, there are still open is-
sues to be addressed. For example, most papers consider 
the SAV system with fixed stations whereas free floating 
SAV systems have not been thoroughly investigated. Within 
a SAV system, the optimal fleet sizing problem to maintain 
a minimum required level of service or to ensure a desired 
level of service is still under-explored. The considerations 
of different vehicle assignment and relocation strategies, or 
the option of ridesharing further increase the complexity of 
the problem. So far most papers have applied heuristics for 
the implementation of SAVs to solve these problems and fo-
cused more on assessing potential benefits of a SAV system.

B. Future Research
There are several directions for future research consider-
ing the gaps in the work reported in the literature to date. 
Although previous work has addressed the replacement ra-
tio of SAVs to conventional private vehicles, the majority of 
the results are derived with existing demand patterns in 
an isolated system. The problem of modeling the SAV sys-
tem with presence of other transportation modes, as either 
a complement or competing mode, needs further investi-
gation. Especially, the following questions still remain un-
answered: (1) “What is the network performance of a SAV 
system in a realistic transportation network?” (2) “How 
much improvement in the level of service in a transporta-
tion network can be achieved with an integrated SAV sys-
tem?” To address these challenges, it is necessary to study 
the operational strategies (e.g., optimal fleet size/vehicle 
assignment/relocation strategy, etc) which would yield the 
minimum and/or desired level of service of the transporta-
tion network. Furthermore, in an environment where mas-
sive amount of data could be collected from vehicles and 
infrastructure, what we used to model as uncertainty be-
come an additional input. With the advent of information 
and communication technologies, better utilizing available 
information for optimal operational strategies requires 
novel solutions to reduce dimensions and to overcome is-
sues associated with data in high-dimensional spaces.

With all possible mobility service options enabled by 
CAVs, one particular question that still remains unan-
swered is “how demand pattern or travel behavior will 
eventually change?” With the shared mobility choices 
(and enhanced convenience with SAVs), there is already 
an evidence of an increase of induced demand (e.g., more 
night travels, or trips shifted from transit demand). How-
ever, little research has been conducted on investigating 
the impact of the emerging SAV system on the vulnerable 
population, while a systematic framework of providing 
accessibility to a variety of social groups is still missing. 
Meanwhile, the nature of self-driving and self-rebalancing 
of a SAV system also implies potential changes on land use. 
For example, the implications of a SAV system on urban 
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parking spaces is still under-explored. Thus, the long-term 
impact of shared mobility system on urban transportation 
systems is still an open question.
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