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ABSTRACT 
Previous research reported in the literature has shown the benefits 
of traffic coordination to alleviate congestion, and reduce fuel 
consumption and emissions. However, there are still many 
remaining challenges that need to be addressed before a massive 
deployment of fully automated vehicles. This paper aims to 
investigate the energy impacts of different penetration rates of 
connected and automated vehicles (CAVs) and their interaction 
with human-driven vehicles. We develop a simulation framework 
for mixed traffic (CAVs interacting with human-driven vehicles) 
in merging roadways and analyze the energy impact of different 
penetration rates of CAVs on the energy consumption. The Gipps 
car following model is used along with heuristic controls to 
represent the driver decisions in a merging roadways traffic 
scenario. Using different penetration rates of CAVs, the 
simulation results indicated that for low penetration rates, the fuel 
consumption benefits are significant but the total travel time 
increases. The benefits in travel time are noticeable for higher 
penetration rates of CAVs.    
CCS Concepts 
Computing methodologies ~ Simulation support systems. 
 Keywords 
Connected and automated vehicles; cooperative merging control; 
merging highways; vehicle coordination; car following; mixed 
traffic simulation.  
1. INTRODUCTION 
Merging roadways are one of the primary sources of traffic 
congestion  [1], [2]. The required coordination of maneuvers that 
are required in a limited period of time to safely merge onto the 
main road traffic, makes merging roadways one of the main 
sources of driver discomfort and frustration. The stress 
experienced by drivers when merging may encourage a more 
aggressive driving behavior and further slow the traffic flow, 
increasing the fuel consumption [3]. In 2014, traffic congestion 
resulted in people expending 6.9 billion of extra hours on the road 

and an estimated cost of $160 billion in extra fuel [4]. 
Connected and automated vehicles (CAVs) can provide shorter 
gaps between vehicles and faster responses while improving 
highway capacity. Given the recent technological developments, 
several research efforts have considered approaches to achieve 
safe and efficient coordination of merging maneuvers with the 
intention to avoid severe stop-and-go driving. Research efforts 
using either centralized or decentralized approaches have focused 
on coordinating CAVs in specific traffic scenarios [5].  The 
overarching goal of vehicle coordination is to yield a smooth 
traffic flow aimed at avoiding stop-and-go driving. One of the 
very early efforts in this direction was proposed in 1969 by 
Athans [6]. Assuming a given merging sequence, Athans 
formulated the merging problem as a linear optimal regulator to 
control a single string of vehicles, with the aim of minimizing the 
speed errors that will affect the desired headway between each 
consecutive pair of vehicles. Later, Schmidt and Posch [7] 
proposed a two-layer control scheme based on heuristic rules that 
were derived from observations of the non-linear system 
dynamics behavior. Similar to the approach proposed in [6], Awal 
et al. [8] developed an algorithm that starts by computing the 
optimal merging sequence to achieve reduced merging times for a 
group of vehicles that are closer to the merging point.  
More recently, the problem of coordinating vehicles that are 
wirelessly connected to each other at merging roads was 
addressed in [9], [10]. A closed-form solution was developed 
aimed at optimizing the acceleration profile online of each vehicle 
in terms of fuel economy while avoiding collision with other 
vehicles at the merging zone. The proposed solution was validated 
through simulation and it was shown that coordination of 
connected vehicles can reduce fuel consumption at merging roads 
by up to 50%. 
Although previous research reported in the literature has shown 
the benefits of autonomous traffic coordination control to alleviate 
traffic congestion and reduce fuel consumption and emissions, 
many challenges have to be addressed before a massive 
deployment of fully automated vehicles. It is expected, however, 
that CAVs will penetrate in the market slowly and interact with 
non-autonomous vehicles. 
This paper aims to investigate the energy impacts of different 
penetration rates of CAVs and their interaction with human-driven 
vehicles. The contribution of this paper is the development of a 
simulation framework for mixed traffic (CAVs interacting with 
human-driven vehicles) in a merging roadway scenario and, the 
analysis of the energy impact of different penetration rates of 
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CAVs on fuel consumption. We assume the CAVs are controlled 
by the control algorithm reported in [9], [10]. A baseline scenario 
is developed in which “human-driven” vehicles attempt to merge 
into a main road using the Gipps car following model to represent 
the driver decisions (speed at each instant of time). 
  
2. METHODOLOGY 
We address the merging scenario shown in Figure 1, where a 
secondary one-lane road merges onto a main one-lane road. 
Typically, the vehicles on the secondary road yield to the vehicles 
on the main road and wait until a safe opportunity is perceived to 
merge onto the main road. We assume that a portion of the 
vehicles on the roads are CAVs while the remaining are human-
driven vehicles (non-CAVs) that will attempt to merge by using 
only observations of their surroundings. The CAVs are controlled 
using the optimization framework and control algorithms reported 
in [9], [10]. The human-driven vehicles (non-CAVs) follow 
heuristic rules and the Gipps car following model [11] to represent 
the driver behavior and decisions regarding the speed. Then, the 
two control frameworks are combined to evaluate the energy 
impacts produced by different penetration rates of CAVs. In the 
following subsections we describe the two control approaches. 
2.1 Modeling approach for human-driven 
vehicles 
We consider the merging roadways of Figure 1 and use the Gipps 
car following model [12] to represent the driver decisions. The 
Gipps model adjust the driver behavior with the aim to keep a safe 
following distance from the leader vehicle. There are two 
conditions to guarantee a collision-free trip 1) 3 / 2gap  , and 
2) ,min ,minˆf lu u , where gap  is the time gap with respect to the 
leader,  represents the “apparent” driver reaction time and it is 
the simulation sample time, ,minfu  is the highest allowed braking 
and ,minˆlu  the follower estimation of the highest braking the 
leader can achieve [11], [13], [14].   In the Gipps model, the speed v  of the follower vehicle is computed as 

, ,( ) min{ ( ), ( )}f f acc f decv t v t v t      ,  (1) 
where ,f accv is the speed when the vehicle is not constrained by 
the traffic flow and ,f decv  is the speed when the vehicle is 
constrained by a leader in front and they are calculated as 

, ,max ,max ,max
( ) ( )1( ) ( ) 2.5 0.025f ff acc f f f f
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 (3) 
were ,f l  identify the follower and the leader respectively, p  is 
the vehicle position, v  is the vehicle speed, ,maxfv is the 
maximum desired speed, ,maxfu is the maximum desired 
acceleration, ,minfu is the highest allowed braking value, ,minˆlu is 
the follower’s estimation of the leader highest braking value, vehL  
is the vehicle length and, fd  is the desired following distance. In 
our work, the desired following distance was chosen to keep the 
2-second rule and the Gipps following model is applied to 

compute the speed attained for all the human-driven vehicles 
(non-CAVs). The 2-second rule establishes that the time gap 
between two consecutive vehicles should be at least two seconds 
to safely stop in case the vehicle in front suddenly brakes.  
 

 
 

Figure 1. Merging roads with connected and automated vehicles 
interacting with human-driven vehicles. 

 
The details of the algorithm are included in Table 1. 
A vehicle traveling on the main road will consider its preceding 
vehicle on the road as its leader and will follow the speed dictated 
by the Gipps model until it reaches the merging zone, i.e., 

f Mergingp P . Once in the merging zone, the vehicle will 
evaluate whether there is a vehicle merging in front, in such case, 
it will start considering the merging vehicle as its new leader. 
Similarly, a vehicle traveling on the secondary road will consider 
its preceding vehicle on the road as its leader until its position 
reaches a distance    from the merging zone (this section of the 
road of length   before the merging zone will be identified as the 
pre-merging zone for non-CAVs). Once there, the “driver” starts 
evaluating the merging conditions and looks for the closest safe 
gap to merge by choosing a new potential leader and a new 
potential follower ( 1fp  ) in the main road. If the estimated time 
gap with the new potential follower is less than 1.5 s, the vehicle 
will start decelerating to be able to stop and avoid lateral collision 
in the merging zone. The “driver” will then wait until the next 
available gap to evaluate the merging conditions again. Once the 
vehicle merge, it will continue following the speed dictated by the 
Gipps car following model to try to keep a safe distance from its 
new leader on the main road. 
2.2 Optimization framework to model CAVs 
behavior 
We consider the merging roadways of Figure 1 where the CAVs 
are coordinated by using the optimization framework that will be 
briefly described next. Further details of the approach can be 
found  in [9], [10]. The region of potential lateral collision of the 
vehicles is called merging zone and has a length S. There is also a 
control zone and a centralized controller that can control the 
vehicles traveling inside the control zone. The distance from the 
entry of the control zone until the entry of the merging zone is L. 



 
Table 1. Merging algorithm for non-CAVs 

 
We consider an increasing number of automated vehicles

( )N t  , where t  is the time, entering the control zone. 
When a vehicle reaches the control zone at some instant t  the 
controller assigns a unique identity ( ) 1i N t   that is an integer 
corresponding to the location of the CAV in a first-in-first-out 
(FIFO) queue for the control zone. If two or more vehicles enter 
the control zone at the same time, then the controller selects 
randomly their position in the queue. We consider that each 
vehicle is governed by a second order dynamics 

( )
( )

i i
i i

p v t
v u t







  (4) 

where ( )i ip t P , ( )i iv t V , and ( )i iu t U  denote the position, 
speed and acceleration/deceleration (control input) of each vehicle 
i . The sets iP , iV  and iU , ( )ii tN , are complete and totally 
bounded subsets of  . The state space iX  for each vehicle i  is 

closed with respect to the induced topology on i iP V and thus, it 
is compact. 
2.2.1 Optimization Problem Formulation 
We seek to address the problem of coordinating online an 
increasing number of automated vehicles on two merging 
roadways. The objective is to derive an analytical solution that 
yields the optimal control input at any time in terms of fuel 
consumption. For the latter, we use the polynomial metamodel 
proposed in [15] that yields vehicle fuel consumption as a 
function of the speed, v  and control input, u .  
To ensure that the control input and vehicle speed are within a 
given admissible range, the following constraints are imposed. 

min max
0min max

( ) ,  and
0 ( ) ,   [ , ]

i
fi i i

u u t u
v v t v t t t
 

       (5) 

where min max,  u u  are the minimum deceleration and maximum 
acceleration respectively, and min max,  v v  are the minimum and 
maximum speed limits respectively,  0it  is the time that vehicle i  
enters the control zone, and fit  is the time that vehicle i  exits the 
merging zone. 
To ensure the absence of rear-end collision of two consecutive 
vehicles traveling on the same lane, the position of the preceding 
vehicle should be greater than, or equal to the position of the 
following vehicle plus a predefined safe distance  . The 
following definition refer to the case when the queue ( )tN  
contains more than one vehicle. 
Definition 2.1: For each vehicle i , we define the control interval 

iR  as  
min max

0min max

{ ( ) [ , ] | ( ) ( ) ,
(t) [ , ], ( ),| ( ) | 1, [ , ]},

i i i k
fi i i

R u t u u p t p t
v v v i t t t t t

  
     



N N   (6) 

where vehicle k  is immediately ahead of i  on the same road. 
Definition 2.2: For each vehicle i , we define the set i  as the set 
of all positions along the lane where a lateral collision is possible, 
namely 

0
{ ( ) | ( ) [ , ], ( ),

( ) 1, [ , ].
i i i

fi i

p t p t L L S i t
t t t t

    
  

 N
N   (7) 

To avoid lateral collision for any two vehicles i  and j  on 
different roads, the following constraint must hold 

0, [ , ].fi j i it t t      (8) 
The above constraint implies that only one vehicle, at a time, can 
be crossing the merging zone.   
When a vehicle enters a control zone, it receives a unique identity 
i  from the centralized controller. Recall that  ( ) 1,..., ( )t N tN is 
the FIFO queue of vehicles in the control zone. A vehicle index 

( )i tN  also indicates which vehicle is closer to the merging 
zone, i.e., for any , ( )i k tN  with i k  then i kp p .  



Definition 3.1: Each vehicle ( )i tN  belongs to at least one of 
the following two subsets: 1) ( )i tL contains all vehicles traveling 
on the same road with i , and 2) ( )i tC  contains all vehicles 
traveling on different roads from i . 
The time fit  that the vehicle i  exits the merging zone is based on 
imposing constraints aimed at avoiding congestion in the sense of 
maintaining vehicle speeds above a certain value. There are two 
cases to consider:  
1) If vehicle 1i   belongs to ( )i tL , then both 1i   and i  should 
have the minimal safe distance allowable, denoted by  , by the 
time vehicle 1i   enters the merging zone, i.e., 

1 ,( )
f fi i fi i

t t v t
    (9) 

where 0( ) ( )fi i iiv t v t  as we designate the vehicles to exit the 
merging zone with the same speed they had when they entered the 
control zone.  
2) If vehicle 1i   belongs to ( )i tC , we constrain the merging 
zone to contain only one vehicle so as to avoid a lateral collision. 
Therefore, vehicle i  is allowed to enter the merging zone only 
when vehicle 1i   exits the merging zone, where mit  is the time 
that the vehicle i   enters the merging zone, i.e., 

1 ,( )
f fi i fi i

St t v t    (10) 

where 0( ) ( )fi i iiv t v t . Note that this recursive relationship over 
vehicles in a control zone queue satisfies both the rear-end and 
lateral collision avoidance constraints. We can then solve an 
optimization problem for each vehicle in the queue separately 

0
21min 2

Subject to: (2), (4) ( ).

fi

i i

t
iu t u
i t 


N

  (11) 

 
2.2.2 Hamiltonian Analysis 
For the analytical solution and online implementation of the 
problem (11), we apply Hamiltonian analysis [16]. To simplify 
the analysis, we consider the unconstrained problem and thus the 
optimal solution would not provide limits for the state and control. 
The constrained problem formulation is discussed in [17]. From 
(11) and the state equations (4), the Hamiltonian function can be 
formulated for each vehicle ( )i tN  as follows 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )),Ti i iH t x t u t L t x t u t f t x t u t     (12) 
Thus 

21( , ( ), ( )) ,2
p vi i i i iiH t x t u t u v u        (13) 

where pi  and vi   are the co-state components.  
The Hamiltonian allows finding the optimal control input, speed 
and position for each vehicle as a function of time, namely  

*( ) ,i i iu t a t b    (14) 
* 21( ) ,2i i i iv t a t b t c     (15) 

* 3 21 1( ) ,6 2i i i i ip t a t b t c t d      (16) 
where ic   and id  are constants of integration. To derive online 
the optimal control for each vehicle i ,  we need to update the 
integration constants at each time t . Equations (15) and (16), 
along with the initial and final conditions defined above, can be 
used to form a system of four equations of the form i i iTb = q , 
namely 

3 2

2

3 2
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  (17) 

Thus (14) can be written as  
*( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).i i i i i i i i iu t p t v t a t p t v t t b t p t v t    (18) 

Since (17) can be computed online, the controller can yield the 
optimal control online for each vehicle i , with feedback indirectly 
provided through the re-calculation of the vector   

( , ( ), ( ))i i it p t v tb in (17). 
3. SIMULATION RESULTS 
We simulated the scenario described in previous sections in 
Matlab assuming the control zone has a length 400L m  and the 
merging zone a length of 30S m . We assume that each non-
CAV attempts to reach and maintain a desired speed 

13.41 desv  m/s while following the 2 s rule to maintain a safe 
distance from the leading vehicle and will use a pre-merging zone 
with length   to evaluate the merging conditions and decide 
whether to merge or decelerate and wait for the next safe 
opportunity to merge. We also assume the CAVs attempt to reach 
and maintain a desired speed 13.41 desv  m/s before entering the 
merging zone and after they leave the merging zone. When a 
CAV reaches the control zone the centralized controller 
designates its acceleration/deceleration until the vehicle exits the 
merging zone.  
We considered two case studies: 1) 10 vehicles, all assumed to be 
non-CAVs and, 2) 30 vehicles attempting to merge in mixed 
traffic conditions, i.e., CAVs and non-CAVs. For the second case 
study, we simulated different penetration rates of CAVs on the 
road and compared the results with the baseline scenario in which 
all the 30 vehicles are assumed to be non-CAVs.  To quantify the 
benefits in fuel consumption, we used the model in [15]. 
3.1.1 Case Study 1: 10 non-CAVs 
We applied the heuristic control framework to 10 non-CAVs, 5 on 
each road. The purpose of this scenario is to confirm that the non-
CAVs are able to safely cross the merging zone, i.e., no crashes 
occur.  



The position trajectories in Figure 2 show that vehicles are able to 
cross the merging zone without collisions.  
 

 
Figure 2. Position trajectories for the 30 vehicles on case study 1. 

 
Once the vehicles reach the desired speed value, they have to start 
adjusting their speeds to keep a safe distance from their leading 
vehicles (Figure 3). As expected, the variations in speed become 
more significant as the vehicles start getting closer to the merging 
zone. 
3.1.2 Case Study 2: 30 vehicles in mixed traffic 
conditions 
To assess the energy impacts of different penetration levels of 
CAVs on the traffic network, we combined the model approach 
for non-CAVs with the coordination framework for CAVs. Then, 
we simulated the merging scenario for 30 vehicles, 15 on each 
road, by assuming five different penetration rates of CAVs, i.e., 
0% (baseline), 30%, 50%, 70%, and 100%. For each case, the 
CAVs were chosen randomly. We used the baseline scenario to 
assess the energy impacts of having a mix of CAVs and non-
CAVs in the merging roads.  

 Figure 3. Speed profiles for the 10 vehicles in case study 1. 
The speed profiles for the 0% penetration rate (baseline) show 
how the variations in speed become more significant as the 
vehicles approach the merging zone (Figure 4). Congestion 
becomes unavoidable right before the merging zone, as some 
vehicles on the secondary road have to come to a full stop and 
wait until there is a safe gap to merge. When 50% of the vehicles 
are CAVs (Figure 5), the variations in speed are more disperse 
along the control zone and some congestion occurs inside the first 

200 m of the control zone. This “early” congestion is due to the 
CAVs attempting to adjust their speeds in advance to meet their 
safety constraints and the non-CAVs trying to keep a safe distance 
from their leaders on the respective roads. Note that to be able to 
meet the safety constraints some vehicles have to reach speeds 
above the desired value. When 100% of the vehicles are CAVs, 
the vehicles start adjusting their speed as soon as they reach the 
control zone to be able to meet the safety constraints (Figure 6). 
This early planning allows to avoid congestion and to get a higher 
average speed. 

 
Figure 4. Speed profiles for the 30 vehicles in case study 2 with 

0% CAVs penetration rate. 

 
Figure 5. Speed profiles for the 30 vehicles in case study 2 with 

50% CAVs penetration rate. 

 
Figure 6. Speed profiles for the 30 vehicles in case study 2 with 

100% CAVs penetration rate. 
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The fuel consumption results in Figure 7 suggest that even a 
penetration rate of 30% CAVs can have significant benefits in fuel 
consumption reduction (41%). However, as the penetration rate of 
CAVs increases, the rate of percentage benefits attenuates due to 
the variations is speed and the increased speed required in some 
cases to be able to meet the constraints. The highest benefit 
percentage is reached when all the vehicles are CAVs. In this last 
case, i.e, 100% penetration, the results are consistent with those 
reported in [9], [10], with benefits of about 50% in fuel 
consumption reduction.  
The total travel time show instead an increment of about 1% when 
30% of the vehicles attempting to merge are CAVs. The benefits 
in travel time appear when 70% of the vehicles are CAVs (about 
2% reduction) and the maximum benefit of 5.43% is reached 
when all the vehicles are CAVs due to the increased average 
speed.   
 
4. CONCLUSIONS 
In this paper we developed a simulation framework to analyze the 
implications that different penetration rates of CAVs and their 
interaction with human-driven vehicles can have on energy 
consumption. The optimization framework proposed in [9], [10] 
was used to simulate the dynamics of CAVs that are optimally 
coordinated and a heuristic control approach based on the use of 
the Gipps car following model, was developed to model the 
dynamics of human-driven vehicles. Using different penetration 
rates of CAVs, the simulation results indicated that for low 
penetration rates, the fuel consumption benefits are significant but 
the total travel time increases. 
 

 
Figure 7. Total fuel consumption results for different penetration 

rates of CAVs. 
 

 
Figure 8. Total travel time for different penetration rates of CAVs. 
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