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ABSTRACT34

We address the problem of harmonizing the speed of an increasing number of vehicles on a high-35

way in real time. The objective is to derive the optimal acceleration/deceleration of each vehicle36

that harmonizes the speed of an increasing number of vehicles at a speed reduction zone on the37

highway, under the hard safety constraint to avoid rear-end collision. We formulate the control38

problem and provide an analytical and closed-form solution that can be implemented in real time.39

The solution yields the optimal acceleration/deceleration of each vehicle under the hard constraint40

of collision avoidance at the speed reduction zone. The effectiveness of the solution is evaluated41

through simulation and it is shown that the proposed approach can reduce significantly both fuel42

consumption and travel time. For different traffic volume levels, the per-vehicle fuel consumption43

were reduced by 12-17% over the base case and 2-12% over the state-of-the-art VSL algorithm.44

The travel time was reduced by 28-32% over the base case and 11-28% over the VSL algorithm.45

Keywords: Speed harmonization, connected and automated vehicles, traffic flow, optimal control,46

energy usage47
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I. INTRODUCTION48

Motivation49

In a rapidly urbanizing world, we need to make fundamental transformations in how we use and50

access transportation. This starts with the observation that the purpose of a transportation system51

is not mobility but rather accessibility to goods, services, and activities. Mobility is only an un-52

intended outcome of our accessibility needs and may be viewed as an intermediate service (the53

means) on the way to what we really want: access. As we move to increasingly complex systems54

(1), new control approaches are needed to optimize the impact on system behavior of the interplay55

between vehicles at different traffic scenarios.56

Intersections, merging roadways (2, 3), speed reduction zones along with the drivers’ responses to57

various disturbances (4) are the primary sources of bottlenecks that contribute to traffic congestion58

(5). In 2015, congestion caused people in urban areas to spend 6.9 billion hours more on the road59

and to purchase an extra 3.1 billion gallons of fuel, resulting in a total cost estimated at $160 billion60

(6). In the US, the average hours annually wasted per commuter was estimated as 50 hours, having61

ranked the worst country worldwide (7). Particularly, in the most congested metropolitan areas62

including Los Angeles, CA (81 hours), Washington DC (75 hours) and San Francisco, CA (7563

hours), in which cities every driver has wasted more than three days in a gridlock traffic a year (7).64

Speed harmonization is one of the major Intelligent Transportation Systems (ITS) applications op-65

erated in the US. Instead of having drivers go high speed into a jam, the drivers approach slowly66

earlier in the upstream, the speed of queue build-up decreases, therefore the congestion recovery67

time is improved. Eventually, even though their speed may be temporarily reduced, the system68

is processing vehicles faster. The idea of speed harmonization has been realized through various69

techniques, such as Variable Message Signs (VMS), Variable Speed Limit (VSL) and the rolling70

speed harmonization (a.k.a., pace-car technique) (8). Both VMS and VSL systems employ the71

display gantries mounted along roadways to deliver messages or control schemes. Typical mes-72

sages provided through VMS systems are road/exit closures, crashes, maintenance/constructions,73

weather warnings, estimated travel times, etc. While, VSL provides the dynamic speed limits to74

traffic flow approaching the queues at the downstream bottleneck to reduce the speed variances75

and mitigate shock waves effects. Another strategy of speed harmonization is so-called the rolling76

speed harmonization. It uses the designated patrol vehicles entering the traffic to hold a traffic77

stream to follow them behind at a lowered speed and traverse a congestion area smoothly while78

mitigating shock waves.79

Literature Review80

In the past couple of decades, the practice of speed harmonization has been matured mainly through81

the VSL strategies which appeared to be more effective and efficient than other techniques such82

as VMS or the rolling speed harmonization (9, 8). Up to date, advanced VSL strategy employs83

proactive approach that applies a control scheme beforehand by anticipating the complex behavior84

of dynamic systems (10). Even though the proactive approach made the VSL systems more ef-85

fective than ever before, they still remain sub-optimal since they use heuristic approach to search86

the best solution (11). With an impetus that there was no speed harmonization algorithm which87

pursues optimal control yet, this study developed a control algorithm or tighten the inflow traffi-88

cusing the Hamiltonian method through individual vehicular control. Given that the majority of89
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existing VSL strategies rely on macroscopic models which employ aggregated traffic data, consid-90

ering microscopic behaviors of vehicles to design VSL strategy is expected to improve accuracy91

in representing traffic conditions, ability to reflect the occurrence of shock waves resulted from the92

behavior of individual drivers such as sudden deceleration, merging or lane changing (10). Fur-93

thermore, to provide an environmentally-conscious strategy, our speed harmonization algorithm is94

designed to minimize acceleration variations which closely relate fuel consumption, while assuring95

an effective utilization of the roadway and safety elements via explicit constraints within the algo-96

rithm. In general, minimizing acceleration benefits the fuel consumption since internal combustion97

engines are optimized over steady state operating points (i.e., constant torque and speed) (12). It is98

also proven by the fuel consumption model developed by Kamal et al. (13) which demonstrated a99

monotonic behavior of the fuel consumption with respect to the acceleration, and it becomes even100

more significant at higher vehicle speeds. The speed harmonization algorithm was evaluated using101

microscopic traffic simulations under the 100% automated vehicle environment, and the result was102

compared with one of the state-of-the-art speed harmonization algorithm as well as with no-control103

case.104

Speed harmonization strategies can be broadly categorized in reactive and proactive approaches.105

The reactive approach control initiates the operation at a call upon a queue detected, and it uses106

immediate traffic condition information to determine a control strategy for the subsequent time in-107

terval. While the reactive strategy allows to remedy the bottleneck with real-time feedback forward108

operations, it has limitations related to time lag between the occurrence of congestion and a con-109

trol implemented (10). In contrast, the proactive approach has the capability of acting proactively,110

while anticipating the complex behavior of dynamic systems (10). Thus, it can predict bottleneck111

formations before they even occur. Also, the nature of predictions of proactive VSL strategies112

allows for more systematic approach for network-wide coordination which supports system opti-113

mization, whereas reactive approach is restrained to a localized control logic.114

Reactive Speed Harmonization115

The first field implementation of speed harmonization is known as the VSL system in the German116

motorway A8 corridor in Munich stretched to the boundary of Salzburg, Austria in 1965 (14). Dur-117

ing the early 1960s, the US also implemented a VSL with Variable Message Sign (VMS) system118

on a portion of the New Jersey Turnpike (9). These speed harmonization systems required human119

interventions to determine the messages or speed limits based on the conditions such as weather,120

traffic conditions and construction schedules. Since 1970s, advances in sensor technologies and121

traffic control systems allowed the speed harmonization automatically operated based on the traffic122

flow or weather conditions using various types of sensors. The earlier VMS and VSL implemen-123

tations usually address safety issues under work zone areas or inclement weathers (9). In 2007,124

the speed harmonization strategies aimed at improving traffic flow mobility. The VSL system in125

the M42 motorway at Birmingham, UK and Washington State Department of Transportation (WS-126

DOT) (15), the algorithms were automatically activated based on the pre-defined threshold of flow127

and speed collected from detectors embedded in the pavement and displayed the lowered speed128

limit within the control zone of pre-defined length (16).129

Development and evaluations of various VSL algorithms were actively practiced among academic130

researchers by using simulations tools. The evolution in VSL algorithms that can respond to cur-131

rent traffic more effectively allowed the performance of VSL to continuously enhance. Park and132
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Yadlapati (17) and Lin et al. (2004) developed reactive approach VSL algorithms to improve133

safety and mobility at work-zone areas. By determining the VSL control in responsive of the134

varying travel times in conjunction with the safety surrogate measures, the evaluations showed135

that the proposed VSL algorithms outperformed the existing VSL algorithms especially with the136

traffic demand fluctuations thanks to the responsive functions (17). Juan et al. (18) conducted a137

simulation-based study and concluded that the performance of VSL can vary by the traffic volume138

levels. After reacing a particular traffic volume level, the benefit can become more apparent, or139

alternatively less obvious and therefore VSL needs to be intergrated with ramp metering control140

(18). Kwon et al. (19) developed a VSL algorithm which incorporated the function of identify-141

ing the moving jam based on the deceleration rate between adjacent spots. With the success in142

simulation-based evaluations, the VSL algorithm was implemented to the Twin Cities Metropoli-143

tan areas, MN. The field evaluation showed the reduction in average maximum deceleration by144

about 20% over the before case and improved the vehicle throughput at the bottleneck areas (19).145

Through their evolution, the reactive speed harmonization methods have consistently showed im-146

provements in many aspects such as reliability, safety and environmental sustainability by pro-147

viding adequate feedback to the dynamic traffic conditions. However, the capability of reactive148

control is limited as it only responds after a bottleneck occurs and heavily depend on the heuristic149

approach until the bottleneck is resolved.150

Proactive Speed Harmonization151

In order to achieve more systematical approach for preventing adverse impacts from impending152

shock waves, the proactive approach utilizing a prediction model was proposed. The concept153

of the proactive VSL strategy was first suggested by Alessandri et al. (20). They adopted the154

Kalman Filter to estimate impending traffic status based on the time-series traffic measurements155

(21). Given the estimated traffic flow, the VSL control algorithm produced control strategy to156

minimize various types of cost functions (e.g., average travel time, summation of square densities157

of all sections) using Powell’s optimization method. Although this effort initiated the prediction-158

based VSL systems, the prediction using a time-series approach is not robust, especially when for159

unexpected traffic disturbances, since it is heavily relied on the empirical patterns.160

A pioneering effort in developing a proactive VSL strategy was made by Hegyi et al. (22). They161

proposed Model Predictive Control (MPC) for the proactive approach VSL systems (22). MPC is162

a method for the dynamic traffic control problem that optimizes a cost function of the total time163

spent in the network by all drivers. It performs predictions by explicitly using macroscopic traffic164

models, and calculates the control scheme that minimizes an objective function. The key element of165

the Hegyi et al.’s algorithm (22) is that they focused on preventing traffic breakdown by decreasing166

the density of approaching traffic, rather than focusing on reducing the speed variances. Having167

the MPC framework which enabled a network-wide optimization, Hegyi et al. (22) coordinated168

a series of VSLs for the system optimization (22). The idea behind the coordination of multiple169

VSLs was to resolve shock waves at the bottleneck as well as to prevent having upstream delays170

(22).171

Recognizing the capability of MPC method towards handling nonlinear and multi-variable models172

while providing the capability to consider a network-wide optimization, many researchers adopted173

MPC to develop proactive VSL methods. Lu et al. (2010) developed a MPC-based proactive VSL174
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algorithm with a different point of view; they focused on creating a discharge section immedi-175

ate upstream of the bottleneck to regulate traffic flow into the bottleneck and remain close to its176

capacity. Carlson et al. (23) developed a proactive VSL algorithm aimed at improving solvabil-177

ity to improve solvability for large-scale network by adopting a discrete-time dynamic optimal178

control method using the suitable feasible-direction algorithm (24). Furthermore, they applied a179

rolling horizon mode for providing efficient and simpler feedback control strategies, but their so-180

lution was sub-optimal (23). The aforementioned MPC-based proactive VSL algorithms showed181

substantial improvements in vehicle throughput, safety, equity, and driver acceptance under micro-182

scopic simulation experiments (23, 22, 25, 26). However, these methods impose some challenges183

in practical applications due to the computational complexity entailed with MPC. According to184

Frejo and Camacho (11), the average computational time for MPC taken for a unit control horizon185

was about 316.47 seconds in a Pentium I3 with 3 GHz under the network used in their study. Also,186

the requirement of model development and calibration is another hurdle that weaken the robustness187

of their control algorithms.188

Pursuing a practically applicable algorithm, Hegyi et al. (2008) developed a VSL algorithm so-189

called, SPECIALIST using shock wave theory. Based on the different traffic states along the190

freeway segments, their future traffic evolution pattern was predicted. By identifying the location191

of the front boundaries of shock waves and the active speed limits, VSL control scheme is deter-192

mined in a way to maximize the discharge rate at the bottleneck (Hegyi et al., 2008). Their control193

logic is more robust in a way that the model only includes a few parameters that have physical194

interpretation, such as the maximum thresholds of speed and flow rate at which the traffic status195

is identified as having shock waves and the speed and the flow associated with free-flow traffic196

(Hegyi et al., 2008).197

The performance of the speed harmonization has been varied by control strategies, characteristics198

of locality and driving behaviors. The travel time improvement has been a debatable point, i.e.,199

there was no significant change, or even increase in travel time during peak hours (19, 8). However,200

it has been widely agreed that the speed harmonization helps increase the vehicle throughput at the201

bottleneck: the vehicle throughput increased by 4-5% via VSL systems (16) and by 5-10 % via202

rolling speed harmonization implemented in European countries (27). Speed harmonization also203

benefits the safety; personal injury crashes reduced about 30-35% in European experiments. Crash204

rate sustained even at the narrowed lanes during construction after the implementation of the VSL.205

The environmental impacts were substantial as well. Both the practice of VSL and rolling speed206

harmonization showed reduction in vehicle emissions by 4-10% depending on the pollutants (27),207

and fuel consumption was reduced by 4% (16).208

Organization of the Paper209

The structure of the remaining paper is as follows. In Section II we introduce the modeling frame-210

work, present the assumptions of our approach and formulate the problem. In Section III, we derive211

a closed-form analytical solution and show that the rear-end collision constraint does not become212

active. Finally, we provide simulation results in Section IV and concluding remarks in Section V.213
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FIGURE 1 Speed harmonization at a speed reduction zone.

II. PROBLEM FORMULATION214

We consider a highway with four lanes Figure 1 in each direction and a speed reduction zone with215

a length S. The highway has a control zone, and the distance from the entry of the control zone216

until the entry of the speed reduction zone is L.217

Modeling Framework218

We consider an increasing number of automated vehicles N(t) ∈ N in each lane k, k = 1, . . . , 4,219

where t ∈ R+ is the time, entering the control zone. When a vehicle in a lane reaches the control220

zone at some instant t, we assign a unique identity i = N(t)+ 1 which is an integer corresponding221

to the location of the vehicle in the queue for each lane k inside the control zone. The number222

N(t) can be reset only if no vehicles are inside the control zone. To simplify notation, we restrict223

our attention to a single lane.224

The proposed framework can be extended to multiple lanes, if each vehicle’s identity include also225

the lane identity. If for example, there is a highway with m lanes, then we can assign an integer226

i = Nk(t) + 1, where Nk is the number of automated vehicles inside the control zone on the lane227

k, k = 1, . . . ,m.228

LetN (t) = {1, . . . , N(t)}, be the queue in the lane associated with the control zone. We represent229

the dynamics of each vehicle i ∈ N (t), moving along a specified lane with a state equation230

ẋi = f(t, xi, ui), xi(t
0
i ) = x0i , (1)

where t ∈ R+ is the time, xi(t), ui(t) are the state of the vehicle and control input, t0i is the time231

that vehicle i enters the control zone, and x0i is the value of the initial state. For simplicity, we232

assume that each vehicle is governed by a second order dynamics233

ṗi = vi(t)

v̇i = ui(t)
(2)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position, speed and acceleration/deceleration234

(control input) of each vehicle i inside the control zone. Let xi(t) =
[
pi(t) vi(t)

]T denote235
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the state of each vehicle i, with initial value x0i =
[
0 v0i

]T , taking values in the state space236

Xi = Pi × Vi. The sets Pi, Vi and Ui, i ∈ N (t), are complete and totally bounded subsets of R.237

The state space Xi for each vehicle i is closed with respect to the induced topology on Pi×Vi and238

thus, it is compact.239

We need to ensure that for any initial state (t0i , x
0
i ) and every admissible control u(t), the system (1)240

has a unique solution x(t) on some interval [t0i , t
m
i ], where t0i is the time that vehicle i ∈ N (t) enters241

the control zone, and tmi is the time that vehicle i enters the speed reduction zone. The following242

observations from (2) satisfy some regularity conditions required both on f and admissible controls243

u(t) to guarantee local existence and uniqueness of solutions for (2): a) the function f is continuous244

in u and continuously differentiable in the state x, b) the first derivative of f in x, fx, is continuous245

in u, and c) the admissible control u(t) is continuous with respect to t.246

To ensure that the control input and vehicle speed are within a given admissible range, the following247

constraints are imposed.248

umin ≤ ui(t) ≤ umax, and
0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t

m
i ],

(3)

where umin, umax are the minimum deceleration and maximum acceleration respectively, and vmin,249

vmax are the minimum and maximum speed limits, respectively.250

To ensure the absence of rear-end collision of two consecutive vehicles traveling on the same lane,251

the position of the preceding vehicle should be greater than, or equal to the position of the following252

vehicle plus a safe distance δ.253

For each vehicle i, we define the control interval Ri as254

Ri

{
ui(t) ∈ [umin, umax] | pi(t) ≤ pk(t)− δ,

vi(t) ∈ [vmin, vmax],∀i ∈ N (t), |N (t)| > 1,∀t ∈ [t0i , t
f
i ]
}
,

(4)

where vehicle k is immediately ahead of i on the same road.255

In the modeling framework described above, we impose the following assumptions:256

Assumption 1: When the vehicles enter the control zone, the constraints are not active.257

Assumption 2: For any vehicle i − 1 ∈ N (t) traveling on the same road and lane as vehicle258

i ∈ N (t), vi−1(t
0
i ) ≥ vi(t

0
i ) = v0i .259

Assumption 3: The speed for all vehicles inside the speed reduction zone is vr, i.e., for all i ∈ N (t),260

vi(t
m
i ) = vi(t

f
i ) = vr, where tfi is the time that each vehicle i exits the speed reduction zone.261

Assumption 4: Each vehicle i has proximity sensors and can measure local information without262

errors or delays.263

We briefly comment on the above assumptions. The first assumption assures that the solution264

will start from a feasible state and control input. The second assumption assures that the rear-265

end collision avoidance constraint does not become active at any time in (t0i , t
m
i ). The feasibility266

enforcement analysis for the vehicles to satisfy such conditions imposed by Assumption 1 is dis-267

cussed in (28). The third assumption is a natural consequence of the speed reduction zone since268
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all vehicles should follow the speed designated in the zone. The fourth assumption might impose269

barriers in a potential deployment of the proposed framework. However, we could extend our re-270

sults in the case that this assumption is relaxed, if the noise in the measurements and delays are271

bounded. In this case, we can determine the uncertainties of the state of the vehicle as a result of272

sensing and/or communication errors/delays, and account for these in the safety constraints.273

Optimal Control Problem Formulation274

We consider the problem of minimizing the congestion at the speed reduction zone, shown in275

Figure 1, with the optimal acceleration/deceleration of each vehicle in terms of fuel consumption276

under the hard safety constraints to avoid rear-end collision. The potential benefits of the solution277

of this problem are substantial. By controlling the vehicles in the upstream or tighten the inflow278

traffic, the speed of queue built-up decreases, and thus the congestion recovery time is also reduced.279

Even though the speed of each vehicle is reduced, the throughput of the highway is maximized.280

When a vehicle enters the control zone, we assign a unique identity as described in the previous281

section. We formulate N(t) decentralized problems that can be solved in real time. Before we282

proceed with the decentralized problem formulation we need to establish some definitions.283

For each vehicle i when it enters a control zone, we define the local observation set Yi(t) as284

Yi(t)
{
pi(t), vi(t), t

m
1

}
, ∀t ∈ [t0i , t

m
i ], (5)

where pi(t), vi(t) are the position and speed of vehicle i inside the control zone, and tm1 , is the285

time targeted for vehicle 1 in the FIFO queue to exit the speed reduction zone. Note that once the286

vehicle i enters the control zone, then immediately all information in Yi(t) becomes available to i.287

We consider the problem of minimizing the control input at any time for each vehicle from the time
t0i it enters the control zone until the time tmi that enters the speed reduction zone under the hard
safety constraints to avoid rear-end collision. The control problem of coordinating N(t) vehicles
in the lane can be formulated as

min
1

2

∫ tmi

t0i

u2i (t) dt, (6)

subject to : (2) and (3),

with boundary conditions pi(t0i ), vi(t
0
i ), pi(t

m
i ) and vi(tmi ).288

III. SOLUTION OF THE OPTIMAL CONTROL PROBLEM289

For the analytical solution and real-time implementation of the control problem (6), we apply290

Hamiltonian analysis. In our analysis, we have assumed (Assumption 3.1) that when the vehicles291

enter the control zone, none of the constraints are active. However, this might not be in general292

true. For example, a vehicle may enter the control zone with speed higher than the speed limit.293

In this case, we need to solve an optimal control problem starting from an infeasible state. The294

feasibility enforcement analysis for the vehicles to satisfy such initial conditions is discussed in295

(28).296
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Analytical solution297

The solution of the problem including the rear-end collision avoidance constraint may become298

intractable due to the numerous scenarios of activation/deactivation of the constraints. To address299

this problem, the constrained and unconstrained arcs will be pieced together to satisfy the Euler-300

Lagrange equations and necessary condition of optimality. Thus, it is not included in the analysis301

below. However, we can guarantee rear-end collision avoidance at time tmi . In the following302

section, we show that the rear-end collision avoidance constraint does not become active at any303

time in (t0i , t
m
i ) assuming it is not active at t = t0i .304

From (6) and the state equations (2), the Hamiltonian function can be formulated for each vehicle
i ∈ N (t) as follows

Hi

(
t, x(t), u(t)

)
= Li

(
t, x(t), u(t)

)
+ λT · fi

(
t, x(t), u(t)

)
, (7)

Thus

Hi

(
t, x(t), u(t)

)
=

1

2
u2i + λpi · vi + λvi · ui, (8)

where λpi and λvi are the co-state components. The necessary condition for optimality is305

∂Hi

∂ui
= ui + λvi = 0, (9)

From the last equation, the optimal control is given306

ui + λvi = 0, i ∈ N (t). (10)

The Euler-Lagrange equations yield307

λ̇pi = −
∂Hi

∂pi
= 0 (11)

308

λ̇vi = −
∂Hi

∂vi
= −λpi . (12)

From (11) we have λpi = ai and (12) implies λvi = −(ait + bi), where ai and bi are constants309

of integration corresponding to each vehicle i. Consequently, the optimal control input (accelera-310

tion/deceleration) as a function of time is given by311

u∗i (t) = ait+ bi. (13)

Substituting the last equation into the vehicle dynamics equations (2) we can find the optimal speed312

and position for each vehicle, namely313

v∗i (t) =
1

2
ait

2 + bit+ ci (14)

314

p∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di, (15)
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where ci and di are constants of integration. These constants can be computed by using the initial315

and final conditions. Since we seek to derive the optimal control (13) online, we can designate316

initial values pi(t0i ) and vi(t0i ), and initial time, t0i , to be the current values of the states pi(t) and317

vi(t) and time t, where t0i ≤ t ≤ tfi . Therefore the constants of integration will be functions318

of time and states, i.e., ai(t, pi, vi), bi(t, pi, vi), ci(t, pi, vi), and di(t, pi, vi). To derive online the319

optimal control for each vehicle i, we need to update the integration constants at each time t.320

Equations (14) and (15), along with the initial and final conditions defined above, can be used to321

form a system of four equations of the form Tibi = qi, namely322 
1
6
t3 1

2
t2 t 1

1
2
t2 t 1 0

1
6
(tfi )

3 1
2
(tfi )

2 tfi 1
1
2
(tfi )

2 tfi 1 0

 .

ai
bi
ci
di

 =


pi(t)
vi(t)

pi(t
f
i )

vi(t
f
i )

 . (16)

Hence we have323

bi(t, pi(t), vi(t)) = (Ti)
−1.qi(t, pi(t), vi(t)), (17)

where bi(t, pi(t), vi(t)) contains the four integration constants ai(t, pi, vi), bi(t, pi, vi), ci(t, pi, vi),324

di(t, pi, vi). Thus (13) can be written as325

u∗i (t, pi(t), vi(t)) = ai(t, pi(t), vi(t))t+ bi(t, pi(t), vi(t)). (18)

Since (16) can be computed online, the controller can yield the optimal control online for each ve-326

hicle i, with feedback indirectly provided through the re-calculation of the vector bi(t, pi(t), vi(t))327

in (17). Similar results are obtained when the constraints become active as reported in (29).328

IV. SIMULATION FRAMEWORK AND RESULTS329

To evaluate the effectiveness of the proposed optimal control algorithm, a simulation framework330

was established by integrating a controller and a simulator using the Visual C# programming envi-331

ronment. As presented in Figure 2, the optimal control algorithm described in the previous sections332

was coded using MATLAB language Dynamic Link Library (DLL) interface programming to al-333

low data exchange with other external programs within the framework. A simulation test-bed334

network was developed under VISSIM, and it was integrated into the framework by using its COM335

interface.336

The mobility measures such as travel time, average speed and vehicle throughput were directly337

obtained from VISSIM. Fuel consumption measure was estimated by using the polynomial meta-338

model proposed by Kamal et al. (13) which yielded vehicle fuel consumption as a function of339

speed, v(t), and control input, u(t) as in (19).340

ḟv = ḟcruise + ḟaccel (19)

where t ∈ R+ is the time, ḟcruise = w0 + w1 · v(t) + w2 · v2(t) + w3 · v3(t) estimates the fuel341

consumed by a vehicle traveling at a constant speed v(t), and ḟaccel = u(t)·(n0+n1·v(t)+n2·v(t)2)342
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FIGURE 2 Overview of simulation framework

is the additional fuel consumption caused by acceleration u(t). The polynomial coefficients wn,343

n = 0, . . . , 3 and rm, m = 0, 1, 2 were calculated from experimental data. For the case studies344

we considered in this paper, all vehicles were the same with the parameters reported in (13), where345

the vehicle mass was Mv = 1, 200 kg, the drag coefficient was CD = 0.32, the air density was346

ρa = 1.184 km/m2, the frontal area was AF = 2.5m2, and the rolling resistance coefficient was347

µ = 0.015.348

Test-bed network349

As noted, the proposed speed harmonization algorithm was implemented in the simulation test-350

bed network developed using the VISSIM microscopic traffic simulation program. A hypothetical351

test-bed network consists of about 2,000-meter single-lane corridor as shown in Figure 3. A 300-352

meter long speed reduction zone which is operated at the speed limit of 35 mph was located at the353

downstream of the network and a 300-meter long control zone was created immediate upstream354

the entrance of the speed reduction zone, so that the control algorithm effectively applies when355

speed deceleration is required.356

The VISSIM model was carefully calibrated by referring to the guideline of the Highway Capacity357

Manual (HCM) 2010 (30). The Chapter 15 of the HCM 2010 (30) presents that the capacity358

of two-lane highways under based conditions is 1,700 veh/hr, with a limit of 3,200 veh/hr for359

both directions. Without a possibility of having passing maneuvers from the opposite direction360

in the proposed test-bed network which is a one-way corridor, a maximum flow rate of 1,800361

veh/hr was desired to achieve through calibration. To this end, the key parameters for the car-362
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FIGURE 3 Test-bed network developed in VISSIM

following model which determine minimum distance between adjacent vehicles were assessed for363

calibration. In VISSIM, the minimum safety distance (dxsafe) which is defined as a distance a364

driver would maintain while following another vehicle can be expressed as shown in (20) (31).365

dxsafe = CC0 + CC1 · v (20)

where CC0 denotes a standstill distance between two vehicles (in feet), CC1 denotes a headway366

time (in seconds) which a driver wants to maintain at a certain speed and v represents average speed367

(ft/sec2). With a good amount of calibration effort, the CC0 was used as the default value of 4.92368

feet and the CC1 was adjusted to 1.2 seconds, thereby the maximum traffic flow was approximated369

about 1,800 veh/hr as desired.370

Experimental set-up371

To assess the impact of the optimal control algorithm under varying traffic volume conditions,372

three different volume cases were tested: (i) traffic volume of 1,620 veh/hr which is 10% less than373

the capacity (ii) traffic volume of 1,800 veh/hr at the capacity and (iii) traffic volume of 1,980374

veh/hr which is 10% more than the capacity. For all scenario cases, the total simulation period was375

1,000-second long comprising of 100-second warm-up period and 900-second of control algorithm376

implementation to avoid empty network situation during the algorithm applications. 5 replications377

of each simulation case were conducted to account for the effect of stochastic components of traffic378

and drivers’ behaviors, and all produced statistically similar results with a 95% confidence level379

(32).380

The control parameters used for optimal control algorithm are summarized in Table 1. According381
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TABLE 1 Constraint Parameters of Optimal Control Algorithm
Parameter Value
Min. speed 10 m/s
Max. speed 35m/s

Max. acceleration 4.5m/s2

Max. deceleration -4.5m/s2

Min. gap distance 20 ft

to a guideline published by the Federal Highway Administration (33), the maximum acceleration382

and deceleration are suggested as 10ft/sec2(or 3.1m/s2) and -15ft/sec2(or -4.5m/s2), respec-383

tively. Considering vehicle technical feasibility of automated vehicles, the maximum acceleration384

threshold was relaxed to 15ft/sec2(or 4.5m/s2) and the maximum deceleration was adopted as385

the guideline taking account for the safety and comfortable driving behaviors. The minimum gap386

distance of 20 ft was determined based on the shortest time headway of automated vehicles. Ac-387

cording to Gouy et al. (34), the minimum safety headway of automated vehicles was observed as388

0.3 seconds under which a vehicle can travel about 20 ft with the maximum speed of 35 m/s2389

in this study. For a constancy between the controller and the traffic simulator, the optimal con-390

trol strategy was calculated and updated every 0.1 seconds which is identical with the VISSIM391

microscopic simulator resolution.392

To assess the performance of the optimal control algorithm, two comparison groups were devel-393

oped: (i) a base case associated with human drivers based on the Wiedemann 99 psycho-physical394

car-following model and (ii) the state-of-the-art VSL algorithm called SPECIALIST (SPEed Con-395

trollIng ALgorIthm using Shock wave Theory) (35). The SPECIALIST algorithm is a proactive396

VSL algorithm which projects a traffic conditions in the near future using the Model Predictive397

Control (MPC) method (35). The highlight of the SPECIALIST is that the algorithm utilizes the398

shock wave theory to generate the control scheme (e.g., control speed and control duration), thus it399

does not require complicated computation and only has a few parameters with physical interpreta-400

tions that helps for feasible field implementations (35). In this study, the SPECIALIST algorithm401

was modeled using the C# programming and implemented in the VISSIM using its COM interface.402

Since the SPECIALIST algorithm bases on a mesoscopic model which utilizes the spot-based mea-403

surement collected at a fixed location and aggregated for a certain period of time, detector stations404

were evenly embedded at every 250 feet along the corridor to estimate the local traffic states. The405

traffic state of each detector station was estimated every 60 seconds by using the aggregated esti-406

mation of the latest 60-second interval, and the activation of VSL was examined every 60 seconds407

as well. Once the control scheme was generated, new measurement was not updated until the cur-408

rent control was finished. It is important to mention that the vehicles within the control zone were409

ensured to follow the VSL control scheme at 100% compliance rate without perception-reaction410

time. Such ideal condition was necessary for a fair comparison with the optimal control algorithm411

which assumed 100% automated vehicle environment. The SPECIALIST algorithm had several412

parameters that can be selected by the operator. For the best performance of the algorithm, the413

parameters were tuned with several iterations. The thresholds of vmax and qmax were chosen as414

35 mph and 1,500 veh/hr, respectively, which were determined after empirical trials to find the415

minimum values above which traffic congestion was not observed under the VSL implemented at416

the 100% automated vehicle market penetrations. Remaining design parameters (e.g., the shock417
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FIGURE 4 Comparisons among Base, VSL and Optimal control

wave propagation speed, the density within the zone where VSL is deployed, and the density and418

flow after the shock wave is resolved) were adopted from the earlier study (35).419

Results and analysis420

Figure 4 presents mobility and fuel economy measures of no-control, the VSL algorithm and the421

proposed optimal control algorithm. When compared with no-control and VSL algorithm, the422

optimal control algorithm significantly reduced the per-vehicle fuel consumption by 12-17% over423

the no-control case and 2-12% over the VSL algorithm for the three traffic volume cases. Both424

the VSL algorithm and the optimal control algorithm improved the fuel consumption by ensuring425

vehicles to approach the speed reduction zone with less speed variation compared to the no-control426

case, but the VSL algorithm could not provide the optimized control scheme as the control scheme427

was heuristic solution. On the contrary, the optimal control algorithm provided vehicles in the428

control zone with the optimal strategy to approach the speed reduction zone, thereby the per-429

vehicle fuel consumption remain constant for all three traffic volume cases.430

The optimal control algorithm also improved mobility. Travel time and vehicle throughput were431

improved for all three cases of traffic volumes over the no-control and the VSL algorithm. It is432

interesting to note that the VSL algorithm reduced the travel time when the traffic volume was less433

than or at the capacity, but it became less effective when the traffic volume exceeded the capacity.434

On the contrary, the optimal control reduced the travel time under the flow rate 10% more than the435

capacity, resulting in the travel time improvements of 32-28% over the base case and 11-28% over436

the VSL algorithm.437

V. CONCLUDING REMARKS AND FUTURE RESEARCH438

In this paper, we considered the problem of harmonizing in real time the speed of an increas-439

ing number of vehicles in a highway. We formulated the control problem and used Hamiltonian440

analysis to provide an analytical, closed-form solution that can be implemented in real time. The441

solution, when it exists, yields the optimal acceleration/deceleration of each vehicle to cross the442

speed reduction zone while maximizing the traffic throughput, and under the hard constraint of443
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collision avoidance. The effectiveness of the proposed solution is demonstrated through simula-444

tion and it is shown that the proposed approach can reduce significantly both fuel consumption and445

travel time.446

In our proposed framework, we did not consider lane changing and we assumed that each vehi-447

cle can measure local information without errors or delays. The assumption of perfect information448

seems to impose barriers in a potential implementation and deployment of the proposed framework.449

Although it is relatively straightforward to extend our results in the case that this assumption is re-450

laxed, future research should investigate the implications of having information with errors and/or451

delays to the system behavior. Finally, considering lane changing and mixed traffic, e.g., automated452

vehicles and human-driven vehicles, would eventually aim at addressing the remaining practical453

consequences of implementing this framework.454
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