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A Real-Time Computational
Learning Model for Sequential
Decision-Making Problems Under
Uncertainty
Modeling dynamic systems incurring stochastic disturbances for deriving a control policy
is a ubiquitous task in engineering. However, in some instances obtaining a model of a
system may be impractical or impossible. Alternative approaches have been developed
using a simulation-based stochastic framework, in which the system interacts with its
environment in real time and obtains information that can be processed to produce an
optimal control policy. In this context, the problem of developing a policy for controlling
the system’s behavior is formulated as a sequential decision-making problem under un-
certainty. This paper considers the problem of deriving a control policy for a dynamic
system with unknown dynamics in real time, formulated as a sequential decision-making
under uncertainty. The evolution of the system is modeled as a controlled Markov chain.
A new state-space representation model and a learning mechanism are proposed that can
be used to improve system performance over time. The major difference between the
existing methods and the proposed learning model is that the latter utilizes an evaluation
function, which considers the expected cost that can be achieved by state transitions
forward in time. The model allows decision-making based on gradually enhanced knowl-
edge of system response as it transitions from one state to another, in conjunction with
actions taken at each state. The proposed model is demonstrated on the single cart-pole
balancing problem and a vehicle cruise-control problem. �DOI: 10.1115/1.3117200�
Introduction
Deriving a control policy for dynamic systems is an off-line

rocess in which various methods from control theory are utilized.
hese methods aim to determine the policy that satisfies the sys-

em’s physical constraints while optimizing specific performance
riteria. A challenging task in this process is to derive a math-
matical model of the system’s dynamics that can adequately pre-
ict the response of the physical system to all anticipated inputs.
xact modeling of complex engineering systems, however, may
e infeasible or expensive. Viable alternative methods have been
eveloped enabling the real-time implementation of control poli-
ies for systems when an accurate model is not available. In this
ramework, the system interacts with its environment and obtains
nformation enabling it to improve its future performance by

eans of a cost �or reward� associated with control actions taken.
his interaction portrays the learning process conveyed by the
rogressive enhancement of the system’s “knowledge” regarding
he control policy that minimizes �maximizes� the accumulated
ost �reward� with respect to the system’s operating point �state�.
he environment is assumed to be nondeterministic; namely, tak-

ng the same action in the same state on two different stages, the
ystem may transit to a different state and receive a dissimilar cost
reward� in the subsequent stage. Consequently, the problem of
eveloping a policy for controlling the system’s behavior is for-
ulated as a sequential decision-making problem under uncer-

ainty.
Dynamic programming �DP� has been widely employed as the

rincipal method for analysis of sequential decision-making prob-
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lems �1�. Algorithms, such as value and policy iteration, have
been extensively utilized in solving deterministic and stochastic
optimal control problems, Markov and semi-Markov decision
problems, min-max control problems, and sequential games.
However, the computational complexity of these algorithms in
some occasions may be prohibitive and can grow intractably with
the size of the problem and its related data, referred to as the DP
“curse of dimensionality” �2�. In addition, DP algorithms require
the realization of the conditional probabilities of state transitions
and the associated cost, implying a priori knowledge of the system
dynamics.

Alternative approaches for solving sequential decision-making
problems under uncertainty have been primarily developed in the
field of reinforcement learning �RL� �3,4�. RL has aimed to pro-
vide simulation-based algorithms, founded on DP, for learning
control policies of complex systems, where exact modeling is in-
feasible or expensive �5�. A major influence on research leading to
current RL algorithms has been Samuel’s method �6,7�, used to
modify a heuristic evaluation function for deriving optimal board
positions in the game of checkers. In this algorithm, Samuel rep-
resented the evaluation function as a weighted sum of numerical
features and adjusted the weights based on an error derived from
comparing evaluations of current and predicted board positions.
This approach was refined and extended by Sutton �8,9� to intro-
duce a class of incremental learning algorithms, temporal differ-
ence �TD�. TD algorithms are specialized for deriving policies for
incompletely known systems, using past experience to predict
their future behavior. Watkins �10,11� extended Sutton’s TD algo-
rithms and developed an algorithm for systems to learn how to act
optimally in controlled Markov domains by explicitly utilizing the
theory of DP. A strong condition implicit in the convergence of
Q-learning to a control policy is that the sequence of stages that
forms the basis of learning must include an infinite number of
stages for each initial state and action. However, Q-learning is

considered the most popular and efficient model-free learning al-
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Downloa
orithm in deriving control policies in Markov domains �12�.
chwartz �13� explored the potential of adapting Q-learning to an
verage-reward framework with his R-learning algorithm; Bertse-
as and Tsitsiklis �3� presented a similar to Q-learning average-
eward algorithm. Mahadevan �14� surveyed reinforcement-
earning average-reward algorithms and showed that these
lgorithms do not always produce bias-optimal control policies.

Although many of these algorithms are eventually guaranteed
o find suboptimal policies in sequential decision-making prob-
ems under uncertainty, their use of the accumulated data acquired
ver the learning process is inefficient, and they require a signifi-
ant amount of experience to achieve good performance �12�. This
equirement arises due to the formation of these algorithms in
eriving control policies without learning the system dynamics en
oute, that is, they do not solve the system identification problem
imultaneously.

Algorithms for computing control policies by learning the mod-
ls are especially appealing in applications in which real-world
xperience is considered expensive. Sutton’s Dyna architecture
15,16� exploits strategies, which simultaneously utilize experi-
nce in building the model and adjust the derived policy. Priori-
ized sweeping �17� and Queue-Dyna �18� are similar methods
oncentrating on the interesting subspaces of the state-action
pace. Barto et al. �19� developed another method, called real-time
ynamic programming �RTDP�, referring to the cases in which
oncurrently executing DP and control processes influence one
nother. RTDP focuses the computational effort on the state-
ubspace that the system is most likely to occupy. However, these
ethods are specific to problems in which the system needs to

chieve particular “goal” states.
In this paper, we consider the problem of deriving a control

olicy for a dynamic system with unknown dynamics formulated
s a sequential decision-making problem under uncertainty. The
oal is to adequately control an unknown system, when its perfor-
ance can be completely measured, by learning the system dy-

amics in real time. A state-space representation model and a
earning mechanism are proposed that can be used to improve
ystem performance over time for its entire operating domain
20�. The major difference between the existing methods and the
roposed learning model is that the latter utilizes an evaluation
unction, which considers the expected cost that can be achieved
y state transitions forward in time. The model accumulates
radually enhanced knowledge of system response as it transitions
rom one state to another, in conjunction with actions taken at
ach state.

The remainder of the paper proceeds as follows: Section 2 pro-
ides the mathematical framework of sequential decision-making
roblems under uncertainty. Section 3 introduces the predictive
ptimal decision-making �POD� model and the learning mecha-
ism that can be utilized to improve system performance over
ime. The proposed model is demonstrated on the single cart-pole
alancing problem in Sec. 4 and on a vehicle cruise-control prob-
em in Sec. 5. Conclusions are presented in Sec. 6.

Problem Formulation
A large class of sequential decision-making problems under un-

ertainty can be modeled as a Markov decision process �MDP�
21�. MDP provides the mathematical framework for modeling
ecision-making in situations where outcomes are partly random
nd partly under the control of the decision maker. Decisions are
ade at points of time referred to as decision epochs, and the time

omain can be either discrete or continuous. The focus of this
aper is on discrete-time decision-making problems.

The Markov decision process model consists of five elements:
a� a decision maker �controller�, �b� system states, �c� control
ctions, �d� the transition probability matrix, and �e� the transition
ost matrix. In this framework, the decision maker is faced with
he problem of influencing system behavior as it evolves over

ime, by selecting control actions. The objective of the decision

41010-2 / Vol. 131, JULY 2009

ded 22 May 2009 to 141.212.126.174. Redistribution subject to ASM
maker is to select the control policy, which causes the system to
perform optimally with respect to some predetermined optimiza-
tion criterion. Control actions must anticipate costs associated
with future system states-actions. The system’s operation is
treated as a controlled stochastic process �sk ,k=0,1 ,2 , . . .� that
visits the states of a finite state-space S.

At each decision epoch, the system occupies a state sk= i from
the finite set of all possible system states S.

S = �1,2, . . . ,N�, N � N �1�

In this state sk= i�S, the decision maker has a set of allowable
actions available, ak�A�sk� ,A�sk��A, where A is the finite ac-
tion space.

A = �sk�SA�sk� �2�

The decision-making process occurs at each of a sequence of
decision epochs k=0,1 ,2 , . . . ,M ,M �N. At each epoch, the de-
cision maker observes a system’s state sk= i�S, and executes an
action ak�A�sk�, from the feasible set of actions A�sk��A at this
state. At the next epoch, the system transits to the state sk+1= j
�S imposed by the conditional probabilities p�sk+1= j �sk= i ,ak�,
designated by the transition probability matrix P�· , ·�. The condi-
tional probabilities of P�· , ·�, p :S�A→ �0,1�, satisfy the follow-
ing constraint:

�
j=1

N

p�sk+1 = j�sk = i,ak� = 1 �3�

Following this state transition, the decision maker receives a
cost associated with the action ak, R�sk+1= j �sk= i ,ak�, and R :S
�A→R as imposed by the transition cost matrix R�· , ·�. The
states of a MDP possess the Markov property, stating that the
conditional probability distribution of future states of the process
depends only on the current state and not on any past states, i.e., it
is conditionally independent of the past states �the path of the
process� given the present state. Mathematically, the Markov
property states that

p�sk+1�sk,sk−1, . . . ,s0� = p�sk+1�sk� �4�

We seek a finite sequence of functions �= ��0 ,�1 , . . . ,�M−1�,
defined as a control policy, which minimizes the total cost over M
decision epochs. The functions �k specify the control ak=��sk�
that will be chosen when at kth decision epoch the state is sk.
Consequently, the total cost corresponding to a policy �
= ��0 ,�1 , . . . ,�M−1� and initial state s0 is given by

J��s0� = �
k=0

M−1

R�sk+1�sk,��sk�� �5�

At each initial state s0 and �, there is a corresponding sequence
of control actions a0 ,a1 , . . . ,aM−1, where ak=��sk�. The accumu-
lated cost J��s0� is a random variable since �sk ,k�0� and �ak ,k
�0� are random variables. Hence the expected accumulated cost
of a Markov policy is given by

J��s0� = E
sk�S

�k�A�sk�

	�
k=0

M−1

Rk�sk+1 = j�sk = i,�k�sk��
 �6�

J��s0� can be readily evaluated in terms of the transition probabil-
ity matrix, namely,

J��s0� = �
k=1

M−1

�
j�S

P�sk+1 = j�sk = i,�k�sk�� · R�sk+1 = j�sk = i,�k�sk��

�7�

Consequently, the optimal policy ��= ��0
� ,�1

� , . . . ,�M
� � for the
M-decision epoch sequence is
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�� = arg min
���

J��

�s0� �8�

In this paper, we consider the problem of deriving a control
olicy for a dynamic system with unknown dynamics, namely, no
rior information regarding the values of the transition probability
nd cost matrices is provided. The problem is formulated as a
arkov decision process. The goal is to adequately control an

nknown system when its performance can be completely mea-
ured in real time. This problem involves two major subproblems:
a� the system identification problem and �b� the stochastic control
roblem. The first is exploitation of the information acquired from
he system output to identify its behavior, that is, how a state
epresentation can be built by observing the system’s state transi-
ions. The second is the assessment of the system output with
espect to alternative control policies, and selecting those that op-
imize specified performance criteria.

The POD computational model proposed in this paper is suit-
ble for solving the system identification problem in real time. To
ddress the stochastic control problem, the lookahead control al-
orithm POSCA �22� is employed that assigns at each state the
ontrol actions that minimize the transition cost of the next two
ecision epochs. The accumulated cost resulting from the control
olicy of POSCA is bounded by the accumulated cost of the op-
imal minimax control policy of DP with probability 1 �23�.
OSCA is especially appealing for real-time implementation
hen the time between decision epochs is small. In this situation,

he controller needs to select control actions quickly and there is
ot enough time to search for an optimal policy for a relatively
istant future.

Predictive Optimal Decision-Making Model
The POD computational model consists of a new state-space

ystem representation that accumulates gradually enhanced
nowledge of the system’s transition from each state to another in
onjunction with actions taken for each state. This knowledge is
xpressed in terms of an expected evaluation function associated
ith each state. The major difference between the proposed learn-

ng method and the existing RL methods is that the latter consists
f evaluation functions attempting to successively approximate
q. �6�. These evaluation functions assign to each state the total
ost expected to accumulate over time starting from a given state
hen a policy � is employed. The proposed learning model, on

he contrary, utilizes an evaluation function, which considers the
xpected cost that can be achieved by state transitions forward in
ime. This approach is especially appealing to learning engineer-
ng systems in which the initial state is not fixed �22,24,25�, and
ecursive updates of the evaluation functions to approximate Eq.
6� demand a huge number of iterations to achieve the desired
ystem performance.

3.1 POD State-Space Representation. In our analysis, we
onsider dynamic systems incurring stochastic disturbances in sta-
ionary environment, that is, we assume that the Markov chain is
omogeneous. The proposed state-space representation defines the

OD domain S̃, which is implemented by a mapping H from the
artesian product of the finite state space and action space of the
arkov chain �sk ,k�0�.

H:S � A � S → S̃ �9�

here S= �1,2 , . . . ,N� ,N�N denotes the Markov state space, and
=�sk�SA�sk� , ∀sk= i�S stands for the finite action space. Each

tate of the POD domain represents a Markov state transition from

k= i�S to sk+1= j�S for all k�0, as illustrated in Fig. 1, that is,
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S̃ ª	 s̃k+1
ij �s̃k+1

ij � sk = i →
��sk��A�sk�

sk+1 = j,�
j=1

N

p�sk+1 = j�sk = i,ak�

= 1,N = �S�

∀i, j � S, ∀ ��sk� � A�sk� �10�

DEFINITION 3.1. The mapping H generates an indexed family of

subsets S̃i for each Markov state sk= i�S, defined as predictive
representation nodes �PRNs�. Each PRN is constituted by the set

of POD states s̃k+1
ij � S̃i representing the state transitions from the

state sk= i�S to all other Markov states

S̃i ª �s̃k+1
ij �sk = i →

��sk��A�sk�
sk+1 = j, ∀ j � S� �11�

PRNs partition the POD domain insofar as the POD underlying
structure captures the state transitions in the Markov domain as
depicted in Fig. 2, namely,

S̃ = �s̃k
ij�S̃i

S̃i �12�

with

�s̃k
ij�S̃i

S̃i = � �13�

PRNs, constituting the fundamental aspect of the POD state
representation, provide an assessment of the Markov state transi-
tions along with the actions executed at each state. This assess-
ment aims to establish a necessary embedded property of the new
state representation so as to consider the potential transitions that
can occur in subsequent decision epochs. The assessment is ex-

pressed by means of the PRN value R̄i�s̃k+1
ij ���si��, which ac-

counts for the minimum expected cost that can be achieved by
transitions occurring inside a PRN.

Fig. 1 Construction of the POD domain
Fig. 2 Partition of POD through the PRNs
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DEFINITION 3.2. The PRN value R̄i��s̃k+1
ij ���si�� is defined as

R̄i�s̃k+1
ij ���sk = i�� ª min

��sk��A
E

sk+1�S
	�

j=1

N

R�sk+1 = j�sk = i,��sk��

�14�

∀ s̃k+1
ij � S̃, ∀ i, j � S, ∀ ��sk� � A�sk� and N = �S�

The PRN value is exploited by POD state representation as an
valuation metric to estimate the subsequent Markov state transi-
ions. The estimation property is founded on the assessment of
OD states by means of an expected evaluation function

PRN
i �s̃k+1

ij ,��sk�� defined as

RPRN
i �s̃k+1

ij ,��sk�� ª E
sk+1�S

�R�sk+1 = j�sk = i,��sk���

+ R̄j�s̃k+2
jm ���sk+1��

�15�
∀ s̃k+2

jm � S̃, ∀ i, j,m � S, ∀ ��sk�, � A�sk�, ∀ ��sk+1� � A�sk+1�

Consequently, employing the POD evaluation function through

q. �15�, each POD state s̃k+1
ij � S̃i is comprised of an overall cost

orresponding to �a� the expected cost of transiting from state sk

i to sk+1= j �implying also the transition from the PRN S̃i to S̃ j�
nd �b� the minimum expected cost when transiting from sk+1= j

o any other Markov state at k+2 �transition occurring into S̃ j�.

3.2 Real-Time Self-Learning System Identification. While
he system interacts with its environment, the POD model learns
he system dynamics in terms of the Markov state transitions. The
OD state representation attempts to provide a process in realiz-

ng the sequences of state transitions that occurred in the Markov
omain, as infused in PRNs. The different sequences of the Mar-
ov state transitions are captured by the POD states and evaluated
hrough the expected evaluation functions given in Eq. �15�. Con-
equently, the lowest value of the expected evaluation function at
ach POD state essentially estimates the subsequent Markov state
ransitions with respect to the actions taken.

The learning performance is closely related to the exploration-
xploitation strategy of the action space. More precisely, the de-
ision maker has to exploit what is already known regarding the
orrelation involving the admissible state-action pairs that mini-
ize the costs and also to explore those actions that have not yet

een tried for these pairs to assess whether these actions may
esult in lower costs. A balance between an exhaustive exploration
f the environment and the exploitation of the learned policy is
undamental to reach nearly optimal solutions in a few decision
pochs and, thus, to enhance the learning performance. This
xploration-exploitation dilemma has been extensively reported in
he literature. Iwata et al. �26� proposed a model-based learning

ethod extending Q-learning and introducing two separated func-
ions based on statistics and on information by applying explora-
ion and exploitation strategies. Ishii et al. �27� developed a

odel-based reinforcement- learning method utilizing a balance
arameter, controlled through a variation of action rewards and
erception of environmental change. Chan-Geon and Sung-Bong
28� proposed an exploration-exploitation policy in Q-learning
onsisting of an auxiliary Markov process and the original Mar-
ov process. Miyazaki and Yamamura �29� developed a unified
earning system realizing the tradeoff between exploration and
xploitation. Hernandez-Aguirre et al. �30� analyzed the problem
f exploration-exploitation in the context of the approximately
orrect framework and studied whether it is possible to set bounds
n the complexity of the exploration needed to achieve a fixed
pproximation error over the action value function with a given
robability.

An exhaustive exploration of the environment is necessary to
vade premature convergence on a suboptimal solution even if

his may result in both sacrificing the system’s performance in the

41010-4 / Vol. 131, JULY 2009
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short run and increasing the learning time. In our case it is as-
sumed that, for any state sk= i�S, all actions of the feasible ac-
tion set ��sk��A�sk� are selected by the decision maker at least
once. At the early decision epochs and until full exploration of the
action set A�sk� occurs, the mapping from the states to probabili-
ties of selecting the actions is constant; namely, the actions for
each state are selected randomly with the same probability.

p���sk��sk� =
1

�A�sk��
, ∀ ��sk� � A�sk�, ∀ sk � S �16�

The POD state representation attempts to provide an efficient
process in realizing the state transitions that occurred in the Mar-
kov domain. The different sequences of the state transitions are
captured by the POD states and evaluated through the expected
evaluation functions given in Eq. �15�. Consequently, the lowest
value of the expected evaluation function at each PRN essentially
predicts the Markov state transition that will occur in the future.
As the process is stochastic, however, it is still necessary for the
controller to build a decision-making learning mechanism of how
to select actions.

The idea behind for such a mechanism is founded on the theory
of stochastic control problems with unknown disturbance distri-
bution, also known as games against nature. The decision-making
mechanism is modeled as a stochastic game between the decision
maker �controller� and an “opponent” �environment�. Each POD

state s̃k+1
ij � S̃i corresponds to a completed game that started at the

Markov state sk= i�S and ended up at sk+1= j�S. At state sk= i,
the decision maker has a set of strategies �control actions� ��sk�
�A�sk� available to play. Similarly, the environment’s set of strat-
egies are the Markov states S= �1,2 , . . . ,N� ,N�N. During the
learning process of the POD model, this game has been played
insofar as the decision maker forms a belief about the environ-
ment’s behavior by fully exploring all available strategies, ��sk�
�A�sk�. This property arises when the state representation con-
verges to the stationary distribution of the Markov chain �23,31�.
Consequently, at state sk= i�S, the decision maker can select
those control actions by means of the PRN expected evaluation
functions, RPRN

i �s̃k+1
ij ,��sk��. However, to handle the uncertainty

of this prediction, the decision maker seeks a policy �*��
through POSCA, which guarantees the best performance in the
worst possible situation, namely,

���sk� = arg min
�̄k�sk��A�sk�

� max
sk+1�S

�RPRN
i �s̃k+1

ij ,��sk���� �17�

4 Application I: The Single Cart-Pole Balancing Prob-
lem

The overall performance of the POD real-time learning model
is evaluated on the basis of its application to the inverted pendu-
lum balancing problem. The inverted pendulum involves a pendu-

Fig. 3 The inverted pendulum
lum hinged to the top of a wheeled cart as illustrated in Fig. 3. The
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bjective of POD is to balance the pendulum having no prior
nowledge about the system dynamics utilizing only real-time
easurements.
Realizing the balance control policy of a single inverted pendu-

um without a priori knowledge of the system’s model has been
xtensively reported in the literature for the evaluation of learning
lgorithms. Anderson �32� implemented a neural network
einforcement-learning method to generate successful action se-
uences. Two neural networks having a similar structure were
mployed to learn two functions: �a� an action function mapping
he current state into control actions, and �b� an evaluation action

apping the current state into an evaluation of that state. These
wo networks were trained utilizing reinforcement learning by
valuating the performance of the network and were compared
ith real-time measurements. Williams and Matsuoka �33� pro-
osed a learning architecture for training a neural network con-
roller to provide the appropriate control force to balance the in-
erted pendulum. One network for the identification of the plant
ynamics and one for the controller were employed. Zhidong et
l. �34� implemented a “neural-fuzzy BOXES” control system by
eural networks and utilized reinforcement learning for the train-
ng. Jeen-Shing and McLaren �35� proposed a defuzzification

ethod incorporating a genetic algorithm to learn the defuzzifica-
ion factors. Mustapha and Lachiver �36� developed an actor-critic
einforcement-learning algorithm represented by two adaptive
eural-fuzzy systems. Si and Wang �37� proposed a generic on-
ine learning control system similar to Anderson’s utilizing neural
etworks and evaluated it through its application to both a single
nd double cart-pole balancing problems. The system utilizes two
eural networks and employs the action-dependent heuristic dy-
amic programming to adapt the weights of the networks.

In the implementation of the POD on the single inverted pen-
ulum presented here, two major variations are considered: �a� a
ingle look-up table-based representation is employed for the con-
roller to develop the mapping from the system’s Markov states to
ptimal actions, and �b� two system’s state variables are selected
o represent the Markov state. The latter introduces uncertainty
nd thus a conditional probability distribution associating the state
ransitions with respect to the actions taken. Consequently, the
OD method is evaluated in deriving the optimal policy �balance
ontrol policy� in a sequential decision-making problem under
ncertainty.

The governing equations, derived from the free body diagram
f the system, shown in Fig. 4, are as follows:

�M + m�ẍ + bẋ + mL�̈ cos � − mL�̇2 sin � = U �18�

mLẍ cos � + �I + mL2��̈ + mgL sin � = 0 �19�

here M =0.5 kg, m=0.2 kg, b=0.1 N s /m, I=0.006 kg m2, g
9.81 m /s2, and L=0.3 m.
The goal of the learning controller is to realize in real time the

orce U of a fixed magnitude to be applied either to the right or the

Fig. 4 Free body diagram of the system
eft direction so that the pendulum stands balanced when released
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from any angle � between 3 deg and �3 deg. The system is
simulated by numerically solving the nonlinear differential equa-
tions �18� and �19� employing the explicit Runge–Kutta method
with a time step of �=0.02 s. The simulation is conducted by
observing the system’s states and executing actions �control force
U� with a sample rate k=0.02 s �50 Hz�. This sample rate defines
a sequence of decision-making epochs, k=0,1 ,2 , . . . ,M ,M �N.

The system is fully specified by four state variables: �a� the
position of the cart on the track x, �b� the cart velocity ẋ, �c� the
pendulum’s angle with respect to the vertical position �, and �d�
the angular velocity �̇. However, to incorporate uncertainty, the
Markov states are selected to be only the pair of the pendulum’s
angle and angular velocity, namely, the finite state-space S in Eq.
�1� is defined as

S = ���,�̇�� �20�

Consequently, at state sk= i�S and executing a control force
value U�sk�, the system will end up at state sk+1= j�S with a
conditional probability p�sk+1= j �sk= i ,U�sk��. The control force
U�sk� selects values from the finite set A, defined as

A = A�sk� = �− 3N,3N� �21�

The decision-making process occurs at each of the sequence of
epochs k=0,1 ,2 , . . . ,M ,M �N. At each decision epoch, the
learning controller observes the system’s state sk�S and executes
a control force value U�sk��A�sk�. At the next decision epoch, the
system transits to another state sk+1�S imposed by the condi-
tional probabilities p�sk+1 �sk ,U�sk�� and receives a numerical cost
�the pendulum’s angle ��.

The inverted pendulum is simulated repeatedly for different ini-
tial angles � between 3 deg and �3 deg. The simulation lasts for
50 s and each complete simulation defines one iteration. If at any
instant during the simulation, the pendulum’s angle � becomes
greater than 3 deg or less than �3 deg, this constitutes a failure,
denoted by stating that there was one iteration associated with a
failure. If, however, no failure occurs during the simulation, this is
denoted by stating that there was one iteration associated with no
failure.

After completing the learning process, the controller employing
the POD learning model realizes the balance control policy of the
pendulum, as illustrated in Fig. 5. In some instances, however, the
system’s response demonstrates some overshoots or delays during
the transient period, shown in Fig. 6. This can be handled by a

Fig. 5 Simulation of the system after learning the balance con-
trol policy with POD for different initial conditions
denser parametrization of the state-space or adding a penalty in
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ong transient responses. The efficiency of the POD learning
ethod in deriving the optimal balance control policy that stabi-

izes the system is illustrated in Fig. 7. It is noted that after POD
ealizes the optimal policy in 749 failures, as the number of itera-
ions continues no further failures occur.

Application II: Vehicle Cruise Control
The POD model is applied here to a vehicle cruise-control

roblem. Cruise control automatically regulates the vehicle’s lon-
itudinal velocity by suitably adjusting the gas pedal position. A
ehicle cruise-control system is activated by the driver who de-
ires to maintain a constant speed in long highway driving. The
river activates the cruise controller while driving at a particular
peed, which is then recorded as the desired or set-point speed to
e maintained by the controller. The main goal in designing a
ruise-control algorithm is to maintain vehicle speed smoothly but
ccurately, even under large variation of plant parameters �e.g.,
he vehicle’s varying mass in terms of the number of passengers�
nd road grade. In the case of passenger cars, however, vehicle
ass may change noticeably but is within a small range. There-

ore, powertrain behavior might not vary significantly.

ig. 6 Simulation of the system after learning the balance con-
rol policy with POD for different initial conditions „zoom in…

ig. 7 Number of failures until POD derives the balance con-

rol policy
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The objective of the POD learning cruise controller is to realize
in real time the control policy �gas pedal position� that maintains
the vehicle speed as set by the driver under a great range of
different road grades. Implementing learning vehicle cruise con-
trollers has been addressed previously employing learning and
active control approaches. Zhang et al. �38� implemented learning
control based on pattern recognition to regulate in real time the
parameters of a proportional, integral, and derivative �PID� cruise
controller. Shahdi and Shouraki �39� proposed an active learning
method to extract the driver’s behavior and to derive control rules
for a cruise-control system. However, no attempt has been re-
ported in implementing a learning automotive vehicle cruise con-
troller utilizing the principle of reinforcement learning, i.e., en-
abling the controller to improve its performance over time by
learning from its own failures through a reinforcement signal from
the external environment, and thus, attempting to improve future
performance.

The software package ENDYNA by TESIS �40�, suitable for real-
time simulation of internal combustion engines, is used to evalu-
ate the performance of the POD learning cruise controller. The
software simulates the longitudinal vehicle dynamics with a
highly variable drive train including the modules of starter, brake,
clutch, converter, and transmission. In the driving mode the en-
gine is operated by means of the usual vehicle control elements
just as a driver would do. In addition, a mechanical parking lock
and the uphill grade can be set. The driver model is designed to
operate the vehicle at given speed profiles �driving cycles�. It
actuates the starter, accelerator, clutch, and brake pedals according
to the profile specification, and also shifts gears. In this example,
an existing vehicle model is selected representing a midsize pas-
senger car carrying a four-cylinder 1.9 l turbocharged diesel en-
gine.

When activated, the learning cruise controller bypasses the
driver model and takes over the vehicle’s cruising. The Markov
states are defined to be the pair of the transmission gear and the
difference between the desired and actual vehicle speeds 	V,
namely,

S = ��gear,	V�� �22�

The control actions correspond to the gas pedal position and can
take values from the feasible set A, defined as

A = A�sk� = �0,0.7� �23�

To incorporate uncertainty the vehicle is simulated in a great
range of different road grades from 0 deg to 10 deg. Consequently,
at state sk�S and executing a control action �gas pedal position�,
the system transits to another state sk+1�S with a conditional
probability p�sk+1 �sk ,ak�sk��, since the acceleration capability of a
vehicle varies at different road grades. As a consequence of this
state transition the system receives a numerical cost �difference
between the desired and actual vehicle speeds�.

After completing four simulations of each road grade, the POD
cruise controller realizes the control policy �gas pedal position� to
maintain the vehicle’s speed at the desired set point. The vehicle
model was initiated from zero speed. The driver model, following
the driving cycle, accelerated the vehicle up to 40 mph and at 10
s the POD cruise controller was activated. The desired and actual
vehicle speeds for three different road grades as well as the gas
pedal rates of the POD controller are illustrated in Fig. 8. The
small discrepancy between the desired and actual vehicle speeds
before the cruise-controller activation is due to the steady-state
error of the driver’s model. However, since the desired driving
cycle set the vehicle’s speed to be at 40 mph, when the POD
cruise controller is activated helps to correct this error and, after-
wards, maintains the vehicle’s actual speed at the set point. The
accelerator pedal position is at different values because in the case
of road grades 2 deg and 6 deg the selected transmission gear is 2,
shown in Fig. 9, while in the case of road grade 10 deg the se-

lected transmission gear is 1. Hence, at different selected gears,
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he accelerator pedal varies to maintain constant vehicle speed. In
ig. 10, the performance of the POD cruise controller is evaluated

n a severe driving scenario where the road grade changes from 0
eg to 10 deg, while the POD cruise controller is active. In this
cenario, the POD is activated again at 10 s when the road grade
s 0 deg, and at 14 s the road grade becomes 10 deg. The engine
peed and the selected transmission gear for this scenario are
hown in Fig. 11. While the vehicle is cruising at constant speed
nd the road grade changes from 0 deg to 10 deg, the vehicle’s
peed starts decreasing after some time. Once this occurs, the
elf-learning cruise controller senses the discrepancy between the
esired and actual vehicle speeds and commands the accelerator
edal so as to correct the error. Consequently, there is a small time
elay in the acceleration pedal command, illustrated in Fig. 10,
hich depends on vehicle inertia.

Concluding Remarks
This paper presented a computational model consisting of a

ew state-space representation and a learning mechanism capable
f solving sequential decision-making problems under uncertainty
n real time. The major difference between the existing methods
nd the proposed learning model is that the latter utilizes an evalu-

ig. 8 Vehicle speed and accelerator pedal rate for different
oad grades by self-learning cruise control with POD

ig. 9 Engine speed and transmission gear selection for dif-

erent road grades by self-learning cruise control with POD
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ation function, which considers the expected cost that can be
achieved by state transitions forward in time. The model aims to
build autonomous intelligent systems that can learn to improve
their performance over time in stochastic environments. Such sys-
tems must be able to sense their environments, estimate the con-
sequences of their actions, and learn in real time the control policy
that optimizes a specified objective. The performance of the
model in deriving a control policy was evaluated on two applica-
tions: �a� the cart-pole balancing problem and �b� a vehicle cruise-
controller development. In the first problem, the pendulum was
made an autonomous intelligent system capable of realizing the
balancing control policy when it was released from any angle
between 3 deg and �3 deg. In the second problem, an autono-
mous cruise controller was implemented that was able to learn to
maintain the desired vehicle speed at any road grade between 0
deg and 10 deg.

Future research should investigate the potential of advancing
the POD method to accommodate more than one decision maker
in sequential decision-making problems under uncertainty, known
as multi-agent systems �41�. These problems are found in systems
in which many intelligent decision makers �agents� interact with
each other. The agents are considered to be autonomous entities.
Their interactions can be either cooperative or selfish, i.e., the

Fig. 10 Vehicle speed and accelerator pedal rate for a road
grade increase from 0 deg to 10 deg

Fig. 11 Engine speed and transmission gear selection for a

road grade increase from 0 deg to 10 deg

JULY 2009, Vol. 131 / 041010-7

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a
i
a
p
o

A

s
e
M
b
e

R

0

Downloa
gents can share a common goal, e.g., control of vehicles operat-
ng in platoons to improve throughput on congested highways by
llowing groups of vehicles to travel together in a tightly spaced
latoon at high speeds. Alternatively, the agents can pursue their
wn interests.
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