
EMERGENCE VIA CONSTRAINED OPTIMIZATION: ANALYSIS

AND EXPERIMENTS WITH CONSTRAINT-DRIVEN FLOCKING

by

Logan E. Beaver

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical
Engineering

Summer 2022

© 2022 Logan E. Beaver
All Rights Reserved

EMERGENCE VIA CONSTRAINED OPTIMIZATION: ANALYSIS

AND EXPERIMENTS WITH CONSTRAINT-DRIVEN FLOCKING

by

Logan E. Beaver

Approved:
Ajay Prasad, Ph.D.
Chair of the Department of Mechanical Engineering

Approved:
Levi T. Thompson, Ph.D.
Dean of the College of Engineering

Approved:
Louis F. Rossi, Ph.D.
Vice Provost for Graduate and Professional Education and
Dean of the Graduate College

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Andreas A. Malikopoulos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Herbert Tanner, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Sambeeta Das, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Rahul Mangharam, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Christopher M. Kroninger, M.S.
Member of dissertation committee

ACKNOWLEDGEMENTS

First, I would like to acknowledge and thank my advisor, Dr. Andreas Ma-

likopoulos, for his support, energy, and enthusiasm over these past five years. Andreas’s

passion and drive for academia are contagious, and I am confident enough in the many

lessons I’ve learned to strike out on my own. We both share a desire for disruptive

ideas, and Andreas’s vision has been an invaluable aid for shaping my research and

perspective into its current form. I would also like to acknowledge the members of

my dissertation committee. Dr. Bert Tanner’s many suggestions have been invaluable

for directing my research, and his technical questions have helped me to predict and

work around technical issues. I appreciate the unique perspective of Dr. Sambeeta

Das, and all her help and advice on planning my next career steps. I appreciate all the

support of Dr. Rahul Mangharam at UPenn, visiting his research group has been a

great experience, and these experiences have significantly affected the direction of my

research. Finally, my meetings and summers with Chris Kroninger at ARL have been

amazing experiences, and I have always been able to count on him to keep my research

well-grounded.

Of course nothing is achieved in a bubble, and I would also like to acknowledge

the many other wonderful people at the University of Delaware who have made this

journey not only possible, but enjoyable as well. I am grateful to the department of

mechanical engineering, and the Helwigs, for their support through the Helwig Fel-

lowship. I also would like to thank the Graduate College for their support through

the Graduate Scholar Award. I am especially grateful to Lisa Katzmire and Melissa

Arenz for helping me with the thousands of logistical and procedural questions I’ve

undoubtedly asked throughout my PhD.

v

I am grateful for the amazing friends I’ve made in the IDS Lab, and particu-

larly those who broke ground with me in the first cohort: Adi Dave, Behdad Chalaki,

Ben Remer, and Ishti Mahbub. I will never forget the (extremely) late nights working

with Behdad and Ben in the scaled smart city, and how we would resolve hours of

troubleshooting by changing the cars’ batteries or re-calibrating VICON. It is unfor-

tunate that Ben left us so soon (to go work in industry), and I’m sure he would have

shared in our despair when we learned that Dunkin’ Donuts lost their only night shift

worker and started closing at 10pm! In particular, the winter of 2019 will be forever

burned into my mind with equal parts pride and terror. Working around the clock

with Behdad, Tommy, Michael, and Ray to triage our cars was possibly the hardest

period of my entire life, and yet we persisted, and eventually turned that project into

an Emmy-nominated news segment with NBC-10 Philadelphia. I also owe a debt of

gratitude to Michael Dorothy, the “disruptive agent” at ARL. His guidance and techni-

cal discussions have become a cornerstone of my research over the past three years, and

somehow, he always knows exactly what questions will completely break my models.

I would also like to thank all of my friends and family for their patience, support,

and compassion during my time at UD. The pressures of graduate school are unique,

and I will always be grateful for those who put up with my dynamic work and sleep

schedules. I don’t know what I did to deserve such a wonderful sister as Jade, but I

will always be grateful to have her in my life. I also appreciate the efforts which all

of my parents have made, they have supported me and sacrificed in their own ways.

Although we have moved across the country, I have cherished my weekly Dungeons

and Dragons nights with my old friends Tyler, Scott, Nate, and Mike. Adi helped me

discover my love for board games, and I have spread that love like a virus to my dear

friends Behdad and Shadi during our many weekend excursions. I am grateful to the

MEGA board for all that they have done to improve the life of graduate students in

our department and college; working with Nicole, Steve, Jack, Kleio, Kayla, and Kaleb

was an absolute pleasure. Although I do not have time to name them all explicitly,

vi

I am grateful to the many supportive friends and friendly acquaintances I have made

throughout this journey. Completing a PhD is a marathon, and I have had countless

good influences every step of the way.

Finally, and perhaps most significantly, I will always be grateful for the kindness

and support of my girlfriend, Maryam Golbazi. In some ways it’s incredible that we’ve

both managed to survive our PhDs unscathed, and I am continually amazed at how

much we’ve both grown these past few years. I have loved our many little trips around

the east coast together, and I will never forget our micro-tour of Europe. Our daily

work from home routine is the only thing that kept me sane during the pandemic, and

I will always cherish the big adventures and small moments that we have shared.

vii

TABLE OF CONTENTS

LIST OF TABLES . xi
LIST OF FIGURES . xii
ABSTRACT . xv

Chapter

1 ENGINEERING COMPLEX SYSTEMS 1

1.1 Literature Overview . 4
1.2 Contributions . 9

2 GOAL ASSIGNMENT AS AN EMERGENT BEHAVIOR 13

2.1 An Energy-Optimal Framework for Assignment and Trajectory
Generation in Teams of Autonomous Agents 14

2.1.1 Problem Formulation . 16

2.1.1.1 Preliminaries . 19

2.1.2 Optimal Goal Assignment . 21
2.1.3 Optimal Trajectory Generation 27
2.1.4 Simulation Results . 29

2.2 Concluding Remarks . 32

3 CONSTRAINT-DRIVEN CONTROL FOR MULTI-AGENT
SYSTEMS . 34

3.1 Constraint-Driven Optimal Control of Multi-Agent Systems: A
Highway Platooning Case Study . 36

3.1.1 Introduction . 36

viii

3.1.2 Problem Formulation . 37
3.1.3 Optimal Control with Gradient Flow 42
3.1.4 Simulation Results . 49

3.2 A Constraint-Driven Approach to Line Flocking: The V Formation as
an Energy-Saving Strategy . 53

3.2.1 Introduction . 53
3.2.2 Problem Formulation . 55

3.2.2.1 Note on Notation . 55
3.2.2.2 System Dynamics . 55
3.2.2.3 Wake Model . 57

3.2.3 Optimal Feedback Controller 59

3.2.3.1 Implementation . 68

3.2.4 Simulation Results . 70
3.2.5 A Note on Heterogeneity . 71

3.3 Constraint-Driven Optimal Control for Emergent Swarming and
Predator Avoidance . 73

3.3.1 Introduction . 73
3.3.2 Problem Formulation . 75
3.3.3 Solution Approach . 78
3.3.4 Simulation . 84
3.3.5 Conclusion . 91

4 REAL-TIME OPTIMAL CONTROL 92

4.1 Optimal Control of Differentially Flat Systems is Surprisingly Simple 93

4.1.1 Introduction . 93
4.1.2 Problem Formulation . 95
4.1.3 Main Results . 99

4.1.3.1 Separability of the Optimality Conditions 99
4.1.3.2 Interior-Point Constraints 104
4.1.3.3 Trajectory Constraints 106

ix

4.1.3.4 Boundary Conditions 108

4.1.4 Double-Integrator Example 109

4.1.4.1 Optimal Motion Primitives 112

4.1.5 Numerical Simulation . 113
4.1.6 Proofs . 116

4.2 Experimental Validation of a Real-Time Optimal Controller for
Coordination of CAVs in a Multi-Lane Roundabout 117

4.2.1 The Roundabout Scenario . 118
4.2.2 Vehicle Model and Constraints 119
4.2.3 Analytical solution . 122
4.2.4 Experimental Results . 126

4.3 Conclusion . 128

5 CONCLUSIONS AND FUTURE WORK 130

5.1 Summary of Contributions . 131
5.2 Future Research Directions . 133

BIBLIOGRAPHY . 134

Appendix

A REPUBLICATION PERMISSIONS 146

x

LIST OF TABLES

2.1 Numerical results for N=10 agents and M=10 goals for various
sensing distances. 30

3.1 The energy cost for each UAV, including the total cost over the entire
period, the maximum and minimum instantaneous value of the cost,
and the cost value of the final time step. 72

3.2 Simulation parameters used to generate swarming behavior. 86

4.1 Boundary conditions and obstacle parameters that describe the
simulation environment. 114

4.2 Performance comparison of the generated trajectories. 115

4.3 Average velocity and travel time results for the 5 experiments. RMSE
is normalized by travel time for each CAV. 126

xi

LIST OF FIGURES

1.1 Our proposed flocking classification scheme for cluster and line
flocking. 6

2.1 Simulation result for the centralized case. Goals which minimize the
unconstrained trajectories are assigned to the agents once at t0i . . . 29

2.2 Simulation result for h = 1.30 m. The agents do not start with a
globally unique assignment, and several agents must re-route partway
through the simulation. Although the trajectories cross in space they
do not cross in time. 31

2.3 Simulation result for h = 0.75 m. Although the horizon for this case
is smaller than in Figure 2.2, the system dynamics happen to result in
more efficient trajectories overall. 32

3.1 Position vs time plot for the N = 136 CAVs over a 60 second window
of steady operation. Squares correspond to vehicles entering and
exiting the roadway; dash-dot lines correspond to on-ramps and
dotted lines correspond to off-ramps. 51

3.2 Position vs time plot for the N = 136 CAVs over the initial 60 second
transient. Squares correspond to vehicles entering and exiting the
roadway; dash-dot lines correspond to on-ramps and dotted lines
correspond to off-ramps. 51

3.3 A close up where 4 vehicles form a platoon near the on-ramp at 100
m. 52

3.4 Upwash velocity induced in the spanwise direction due to the wing tip
vortices. 59

3.5 Upwash force and moment curves calculated by integrating the
upwash velocity field along the wingspan at each point in the domain. 65

xii

3.6 The behavior of each UAV visualized as a switching system. The
feasible space of Problem 4 determines when the UAV should solve
the original or the relaxed optimal control problem. 67

3.7 Proposed control diagram that infers the upwash force and moment
imposed on the UAV by sampling signals from the onboard flight
controller. 69

3.8 A sequence of simulation snapshots over 40 seconds for N = 4 UAVs
initialized in a line formation . 71

3.9 Maximum, minimum, and mean cost experienced by the UAVs for the
duration of the simulation. A cost of zero corresponds to flying in
isolation. 73

3.10 A switching system that describes each boids’ feasible action space
based on whether the premise of Lemmas 7–9 are satisfied. 85

3.11 Boids circling and forming the initial flock at approximately t = 21
seconds; tails show 8 seconds of trajectory history. 87

3.12 Boids cruising to the south-east at approximately t = 85 seconds after
reaching the north-west wall and changing direction; tails show 8
seconds of trajectory history. 88

3.13 Left: apparent vacuole behavior exhibited by the boids the predator
approaches from behind. Right: vacuole behavior observed in
sand-eels, recreated from Pitcher and Wyche (1983). 89

3.14 Neighborhood size histogram for N = 15 boids during the 120 second
simulation with a predator. 90

4.1 Optimal trajectory (black) that avoids the obstacle (red). The
variable θ describes where the trajectory instantaneously contacts the
obstacle at time t1. 114

4.2 A schematic of the roundabout scenario. The highlighted control zone
continues upstream from the roundabout. 119

4.3 Estimated and actual arrival time for each vehicle over all
experiments. 127

xiii

4.4 Position trajectory for the third vehicle entering from path 2 in the
5th experiment. The lateral constraints are shown as vertical lines,
and the rear-end safety constraint is the hashed region. 128

xiv

ABSTRACT

An automation revolution is looming, and the explosive growth of these sophis-

ticated automated systems will only accelerate with the advent of industry 4.0, smart

cities, and the internet of things. These systems are characterized as “complex,” but

this is a nebulous term. While there is no consensus on what exactly defines a com-

plex system, it is generally understood that they share two characteristics: 1) complex

systems consist of agents, which interact with each other and the environment using

relatively simple rules, and 2) these interactions lead to emergent behavior, that is,

patterns at length and time-scales larger than any of the individual agents. There are

many examples of complexity and emergence in our everyday lives, such as flocks of

geese, genetic networks, and economies. Given this context, the objective of this disser-

tation is twofold: to provide short-term benefits for the design and analysis of robotic

multi-agent systems, and to enhance our general understanding of complex systems

and their emergent behaviors.

This dissertation adopts the view of emergence proposed by English cyberneti-

cian W. Ross Ashby in 1962. Ashby argued that large-scale patterns emerge when a

multi-agent system is driven into an equilibrium state. This definition of emergence is

particularly useful, as it provides a means to rigorously interrogate complex systems

using techniques from optimization and dynamical systems. Thus, this dissertation

proposes a constraint-driven optimization approach to generate emergence in multi-

agent systems, as well as a new technique to solve constrained optimal control prob-

lems quickly. The first contribution of this dissertation demonstrates that moving

agents to predefined goals, e.g., for a drone light show, is an example of a “medium

complexity” emergence problem—one that is challenging to solve by hand but is well

xv

within the capabilities of a digital computer. This result is extended in the second

contribution, a constraint-driven framework to bring groups of autonomous vehicles

into energy-minimizing configuration; this includes highway platooning, aerial V forma-

tions, and predator avoidance. This constraint-driven approach has many benefits: 1)

it is straightforward to interpret why an agent takes a particular action, 2) the system-

level behavior can be guaranteed by examining pairwise agent states, 3) the approach

is rigorous and data driven, and 4) agents can arbitrarily enter and leave the system,

subject to safety constraints. Finally, the third contribution is a novel technique

to generate optimal trajectories in real time. A näıve Matlab implementation of the

proposed algorithm outperforms two open-source state of the art solvers (OpenOCL,

which uses a C++ CasADi implementation, and ICLOCS2) by every metric.

In terms of broader impacts, this dissertation represents another union between

complex systems and control theory. The open questions raised by Ashby can be in-

terrogated directly through the engineering design process: emergent behavior is guar-

anteed when a multi-agent system reaches equilibrium, the “complexity” of a system

corresponds to the number of equilibrium points, and the “goodness” of a particular

emergent behavior corresponds to how well it achieves the desired outcome. It turns

out that dynamical systems, stability, and optimization are a natural language for

rigorous discussion of complex systems and emergent behavior.

xvi

Chapter 1

ENGINEERING COMPLEX SYSTEMS

In the case of all things which have several
parts and in which the totality is not, as it
were, a mere heap, but the whole is
something beside the parts...

Aristotle
Metaphysics (350 BCE)

We are living in the most interconnected and complex society ever witnessed by

humanity. Every aspect of our lives—finance, health, transportation, communication—

is subject to a torrent of global influences. Even the natural environment, the largest

complex system on earth, is being altered at unprecedented rates by human activity.

Now, more than ever, it is critical that we develop tools to help us understand the

behavior of these complex and interconnected systems. At the same time, an automa-

tion revolution is looming; the explosive growth of sophisticated automated systems

will only accelerate with the advent of industry 4.0, smart cities, and autonomy as a

service. A recent analysis suggests that, in the US, the robotics market has grown

by over 10% every year, and has seen less than 10% penetration so far; this is par-

ticularly true in industrial settings, where collaborative robots have had a significant

impact [1]. Furthermore, self-driving vehicles have been operating on our roads for

over ten years, and new research continues to push the frontiers of automated ground

and aerial vehicles for new modes of mobility. The objective of this dissertation, then,

is to provide short-term benefits in the design and analysis of multi-robot systems,

and long-term benefits by increasing our understanding of complex systems and their

emergent behaviors.

1

Complex systems are an intriguing topic which have been the subject of study

since at least the time of Aristotle. Yet, the term “complex system” is nebulous; there

is no general consensus on what it means for a system to be complex. However, it

is understood that complex systems share two characteristics. All complex systems

consist of agents, which interact with each other and the environment using relatively

simple rules. These interactions lead to emergent behavior in complex systems, that

is, unexpected patterns at length and time-scales that are much larger than the agents

and their local interactions. There are many examples of complexity and emergence

in our everyday lives; flocks of geese, schools of fish, genetic regulatory networks, and

financial systems.

Recent work on emergence in engineered systems uses a discussion of levels [2].

A complex system is said to exhibit emergent behavior if the large-scale patterns emerge

over much greater length and time scales than the local interactions between agents.

The ‘high level’ phenomena may also appear to follow a distinct set of rules compared

to the ‘low level’ agent behaviors; computer memory is an illustrative example of this

concept. In this case, the ‘low level’ is a collection of physical transistors, which operate

under the laws of physics. The transistors may be assembled into a ‘high level’ memory

chip; these chips operate on length and time scales that are orders of magnitude larger

than the transistors. At a higher level still is a digital processor, where the collective

states of many memory chips may be read from and written to thousands of times

per second to execute an instruction set. Whether a digital computer counts as an

emergent system, or if they are simply a result of increasing layers of abstraction, is a

hotly debated question [3].

This dissertation adopts a cybernetics (Greek kybernetes ‘to steer’ + Latin -ics

‘study’) emergence paradigm, particularly the interpretation proposed by the English

cybernetician W. Ross Ashby [4]. Cyberneticians in general, and Ashby in particular,

are interested in the behavior of dynamical systems (or “machines”) subject to feed-

back loops. Ashby proposes that any systems satisfying the following three conditions

2

will exhibit emergent behavior: 1) the system consists of multiple interacting

agents, 2) each agent has a local feedback control law, and 3) the system has

equilibria. In this case, a formal definition of emergence follows logically; wherever

the agents are initialized, the system will naturally converge to the subset of stable

equilibria—this is exactly the emergence of organization from low-level interactions!

While our understanding of nonlinear dynamical systems has expanded significantly

since Ashby’s time [5], these same principles still apply if we restrict our analysis to

attractive equilibria and their basins of attraction. This is also the approach taken the

dynamical systems literature, where emergence has been modeled using the equilibrium

states of chaotic attractors [6].

Ashby’s definition of emergence is both pragmatic and elegant. First, conver-

gence to an equilibrium point is straightforward to quantify, and the field of dynamical

systems is rich with results [5]. The convergence perspective also agrees with the no-

tion that many natural phenomena correspond to maxima and minima1; the free energy

principle [7], the principle of least action, and Gibbs free energy are all examples of sys-

tems moving toward energy-minimizing states in the natural world. Ashby’s definition

of emergence also implies following properties:

• most emergent behaviors are “bad,”

• good emergent behavior must be sought out, and

• what is meant by “good” must be clearly defined in every case.

In this sense emergence is not “strong” or “weak,” nor does it follow some set of in-

decipherable metaphysical laws [3]. Instead, the challenge with emergent systems is

a matter of scale; some systems (such as the digital computer) have trivially small

state and action spaces, while others (such as biological systems) have an incredibly

1 Leonhard Euler claimed that “Nothing takes place in the world whose meaning is not that of some
maximum or minimum.”

3

rich subspace of equilibrium points at multiple scales. Thus, one benefit from viewing

emergence as a problem of decentralized control, is the creation of “medium com-

plexity” problems. In these instances, the size of the state space and the richness of

the equilibrium points is too large to solve analytically, but they are still tractable to

analyze with the use of a digital computer.

This dissertation proposes a constrained optimization approach to generating

emergence in multi-agent systems which is rooted in Ashby’s definition of emergence.

Chapters 2 and 3 address problems in multi-agent formation control and flocking,

which are the simplest emergent behaviors with practical applications in the controls

community [8, 9]. In particular, Chapter 3 looks at energy-minimizing strategies for

fleets of autonomous ground and aerial vehicles; thus, the emergent behavior of the

system coincides with an energy-saving configuration of the agents. An optimization

approach to emergence also agrees with the properties of complex systems laid out by

Scott Page [10]; namely a system of agents which are interdependent (the agents are

decentralized), connected (the agents communicate and interact), adaptable (the agents

act using optimization), and diverse (Section 3.2 provides evidence that heterogeneity

improves performance). The next section presents background material, literature

gaps, and motivation for multi-agent flocking research. Much of the following material

was previously published in a review article,

• L.E. Beaver and A.A. Malikopoulos, “An Overview on Optimal Flocking,” in

Annual Reviews in Control, vol. 51, pp. 88–99.

1.1 Literature Overview

The most common complex system which is analyzed in the swarm robotics

literature is flocking. Generating emergent flocking behavior has been of particular in-

terest since Reynolds proposed three heuristic rules for multi-agent flocking in computer

animation [11]. Robotic flocking has been proposed in several applications including

mobile sensing networks, coordinated delivery, reconnaissance, and surveillance [8].

4

With the significant advances in computational power in recent decades, the control of

robotic swarm systems has attracted considerable attention due to their adaptability,

scalability, and robustness to individual failure [12]. However, constructing a swarm

with a large number of robots imposes significant cost constraints on each individual

robot. Thus, any real robot swarm must consist of individual robots with limited

sensing, communication, actuation, memory, and computational abilities. To achieve

robotic flocking in a physical swarm, we must develop and employ energy-optimal

approaches to flocking under these strict cost constraints.

One significant problem throughout the literature is the use of the term “flock-

ing” to describe very different modes of aggregate motion. The biology literature em-

phasizes this point [13], where the distinction of line flocking (e.g., geese) and cluster

flocking (e.g., starlings) is necessary. To this end, we believe it is helpful to partition

the engineered flocking literature into cluster and line flocking. As with natural sys-

tems, these modes of flocking have vastly different applications and implementations;

unlike biological systems, the behavior of engineering systems is limited only by the

creativity of the designer. Our proposed flocking taxonomy is shown in Fig. 1.1. As a

general rule, cluster flocking denotes behavior that emerges in service to a system-level

objective, e.g., forming an α-lattice or tracking a moving target. On the other hand,

line flocking occurs when agents exploit environmental interactions to minimize their

energy consumption, e.g., aerial upwash, drafting, and underwater currents.

A vast amount of literature exists that seeks to achieve cluster flocking under

Reynolds three flocking rules, (1) collision avoidance, (2) velocity matching, and (3)

flock centering [11]. In almost all cluster flocking applications, each individual agent

may only observe its direct neighbors at any particular instant in time, and therefore

each agent may only make partial observations of the total system state. Thus, many of

the approaches in the optimal cluster flocking literature rely on repeatedly simulating

the system, evaluating the global cost, and updating the agents’ control policies. This

5

Figure 1.1: Our proposed flocking classification scheme for cluster and line flocking.

makes artificial potential fields a particularly attractive solution, as they can be pa-

rameterized in a finite number of variables and are known to guarantee stable flocking

under very reasonable assumptions [8, 14]. However, it is well-known that potential

fields have several major drawbacks [15], including steady oscillations and exacerbating

deadlock in crowded environments. Despite these drawbacks, potential fields remain

the most popular and well-developed solution; their performance was demonstrated

in an outdoor experiment [16], where the potential fields were parameterized by 11

optimization variables that were selected using a genetic algorithm paired with a so-

phisticated simulation.

There are many other optimization-based approaches that employ Reynolds

flocking rules. One early technique uses a learning-based approach to select motion

primitives for individual agents [17]. Other work [18] formulates flocking as a dynamic

program to generate optimal trajectories for a swarm of quadrotors, where the agents

minimize their deviation from Reynolds flocking rules while tracking a global refer-

ence position. Metaheuristic algorithms, including Pigeon-inspired optimization [19]

and particle swarm optimization [20], design systems that optimally follow Reynolds

flocking rules. The effect of control input constraints for an optimal flocking controller

6

is studied in [21], and [22] considers both state and control constraints. An analysis

by [23] presents a mechanism for flocking agents to estimate their neighbors’ future

trajectories, and this predictive device to achieves Reynolds flocking under a fully con-

nected communication topology [24]. This work was extended to the decentralized

information case [25] and validated experimentally with outdoor flight tests [26]. It

has also been demonstrated that flocking behavior emerges when a system of agents

optimally track a moving virtual reference point [27]. An article by Quintero et al.

[28] applies dynamic programming to generate a swarm of aerial vehicles that circle

over a moving ground target. This brief snapshot demonstrates the richness of the

flocking literature, while also emphasizing that constraint-driven techniques have been

completely neglected outside of one recent conference paper [29].

The problem of line flocking has received significantly less attention. To min-

imize energy consumption during flight, the most straightforward method to achieve

line flocking may be to generate an optimal set of formation points based on the drag,

wake, and upwash characteristics of each agent. This effectively transforms the line

flocking problem into a formation reconfiguration problem, where each agent must

assign itself to a unique goal and reach it within some fixed time, as is the case in

[30]. However, a formation reconfiguration approach generally requires the formation

to be computed offline and does not necessarily consider differences between individual

agents (e.g., age, weight, size, and efficiency) or environmental disturbances. An alter-

native approach was recently taken to achieve the emergence of a peloton formation

in a team of ground vehicles [31]. The authors apply CFD analysis to estimate the

drag force imposed on each agent as a function of their separating distance; the agents

then use this information to minimize their expended energy via gradient descent. The

authors confirm the lack of research in this area, stating that “Previous work on the

application of cycling peloton behavior is nonexistent since this is the first attempt to

do such.”

Line flocking with aerial vehicles has received some attention; an early approach

7

to capture line flocking behavior in a robotic system with model predictive control [32]

uses a large multi-objective cost function. An analysis of the effect of upwash on

energy consumption in fixed-wing UAVs was recently presented [33]. The authors

demonstrate that the front and tail agents in a V formation have the highest rate of

energy consumption in the flock, and thus the lead and tail agents are the limiting factor

in total travel distance. The authors propose a load balancing algorithm based on a

root-selection protocol, where the highest-energy agents replace the lead and tail agents

periodically. The authors then demonstrate, in simulation, that periodic replacement

of the lead and tail agents significantly increases the total distance travelled by the

flock.

Limited research has also been done to explore the effect the environment,

through air and water currents, on the energy consumption of flocks. This has primar-

ily been addressed by analyzing how airplanes in the north Atlantic might rendezvous

to save energy by flocking and exploiting atmospheric currents [34–36]. Energy-optimal

flocking in the presence of strong background flows was investigated for underwater ve-

hicles in the presence of ocean currents [37]. In this work, the authors assume that the

background flow dominates the energy consumption of the agents, and therefore a tight

cluster of agents closely approximates the energy-optimal trajectory traced out by the

center of the flock. Thus, this problem can be reduced to finding the energy-optimal

path for the center of the flock, then using another algorithm e.g., Reynolds flocking,

to track the virtual reference point. Thus, while line flocking has great potential to

increase the efficiency of multi-agent systems, there have been few results published on

the topic—and to the best of our knowledge, Chapter 3 contains the first description

of a constraint-driven line flocking system.

With the background material of this dissertation in place, and several literature

gaps identified, the next section discusses the contributions of each chapter in detail.

8

1.2 Contributions

The work I have produced throughout my PhD can be roughly divided into

four categories: 1) decentralized control in the context of formation generation and

flocking, 2) the development of new techniques for constraint-driven control of multi-

agent systems, 3) a new methods to generate optimal trajectories in real time, and

4) building and programming our 1:25 scale testbed and fleet of 35 connected and

automated vehicles. My contributions to the first three categories make up Chapters

2–4 of this dissertation, and their summaries follow. I have not explicitly included

my contributions to the scaled testbed in this dissertation, as that work is primarily

concerned with robotic hardware and software architecture. For details on our scaled

testbed, see the following articles:

• [38] L.E. Beaver, B. Chalaki, A.M. Mahbub, L. Zhao, R. Zayas, A.A. Ma-
likopoulos, “Demonstration of a Time-Efficient Mobility System Using a Scaled
Smart City” in Vehicle System Dynamics, vol. 58, issue 5, pp. 787–804, 2020.

• [39] B. Chalaki, L.E. Beaver, A.M. Mahbub, H. Bang, and A.A. Malikopoulos,
“A Research and Educational Robotic Testbed for Real-Time Control of Emerg-
ing Mobility Systems: From Theory to Scaled Experiments,” in IEEE Control
Systems magazine (in press), 2022.

Goal Assignment as an Emergent Behavior

A common requirement for multi-agent systems is to move into a desired forma-

tion, which has become especially common with drone light shows in the entertainment

industry. However, due to cost constraints imposed on individual agents in a swarm,

e.g., limited computation capabilities, battery capacity, and sensing abilities, any effi-

cient control approach must take into account energy consumption. The task of moving

in a specified formation has been explored in the literature [12, 40, 41], however, achiev-

ing formations with minimum energy consumption during operation has not yet been

thoroughly investigated. In Chapter 2, we consider the problem of moving a collection

9

of agents into a predefined formation with the following contributions: 1) an equiva-

lence between the assignment problem and emergence as defined by Ashby, 2) a new

approach to decentralized goal assignment, 3) a guarantee that all agents converge to a

unique goal in finite time under reasonable assumptions about the initial conditions and

goal states, and 4) an optimization-based approach to goal selection, which minimizes

the expected energy consumption of the individual agents—particularly in the case of

dynamic moving goals. The contributions of Chapter 2 were previously published in

the following articles:

• [42] L.E. Beaver and A.A. Malikopoulos, “A Decentralized Control Framework
for Energy-Optimal Goal Assignment and Trajectory Generation” in 58th Con-
ference on Decision and Control, pp. 879–884, 2019.

• [43] L.E. Beaver and A.A. Malikopoulos, “An Energy-Optimal Framework for
Assignment and Trajectory Generation in Teams of Autonomous Agents” in Sys-
tems & Control Letters, vol. 138, April 2020.

• [44] H. Bang, L.E. Beaver, and A.A. Malikopoulos, “Energy-Optimal Goal As-
signment of Multi-Agent Systems with Goal Trajectories in Polynomials” in 29th
Mediterranean Conference on Control and Automation, pp 1228–1233, 2021.

Constraint-Driven Control of Multi-Agent Systems

A recent push in constraint-driven control has brought the idea of long-duration

autonomy to the forefront of multi-agent systems research [45]. For long-duration

autonomy tasks, robots are left to interact with their environment on timescales sig-

nificantly longer than what can be achieved in a laboratory setting. These approaches

necessarily emphasize safe energy-minimizing control policies for the agents, whose be-

haviors are driven by interactions with the environment. Chapter 3 expands on the

state of the art in constraint-driven control in four ways: 1) an original framework,

and several examples, for constraint-driven control in multi-agent systems, 2) suffi-

cient conditions on the local states of ground vehicles that guarantee the emergence of

platooning behavior, 3) the first article, to the best of our knowledge, demonstrating

10

how the physics of fixed-wing UAVs can be exploited for emergent energy-saving V

formations, and 4) a novel switching system architecture that preserves guarantees on

agent behavior recursive feasibility. The contributions of Chapter 3 were published in

the following articles:

• [46] L.E. Beaver and A.A. Malikopoulos, “Constraint-Driven Optimal Control
of Multiagent Systems: A Highway Platooning Case Study” in IEEE Control
Systems Letters, vol. 6, pp. 1754–1759, 2022.

• [47] L.E. Beaver and A.A. Malikopoulos, “Constraint-Driven Optimal Control
for Emergent Swarming and Predator Avoidance” (in review), arxiv 2203.11057.

• [48] L.E. Beaver, C. Kroninger, and A.A. Malikopoulos, “A Constraint-Driven
Approach to Line Flocking: The V Formation as an Energy-Saving Strategy” in
(in preparation).

Real-Time Optimal Control

As cyber-physical systems achieve higher autonomy levels, they will be forced

into complicated interactions with each other and the surrounding environment. These

systems must be able to react quickly to these disturbances and rapidly re-plan efficient

trajectories. For continuous-time systems, the optimality conditions take the form of

an ordinary differential equation; unfortunately, these equations are generally unstable

and take significant computational power and time to solve [49]. This challenge has

been partially resolved for differentially flat systems [50], where a bijective mapping

exists between the nonlinear system dynamics and an equivalent system with integrator

dynamics in the so-called “flat” space. In the overwhelming majority of cases, a de-

signer selects a set of basis functions [51], e.g., polynomials, Fourrier series, or splines,

to generate their optimal trajectory in the flat space; this approach can quickly yield

near-optimal trajectories for the system. In contrast, Chapter 4 presents an origi-

nal technique that separates the optimality conditions into two differential equations,

which can be solved independently using standard numerical methods. To the best of

our knowledge, the only corpus of work taking a similar approach was F. Chaplais and

11

N. Petit [52, 53], who proved that the optimality conditions ought to be separable in a

special case. However, the authors shifted their focus to solving constrained optimiza-

tion problems with saturation functions [54] and kernels [55], and a general separation

result has not been presented in the literature to date. Thus, the main contributions of

Chapter 4 are as follows: 1) an differential equation that is independent of the costates

(and thus numerically stable), which describes the optimal evolution of the state tra-

jectory and can algoritmically generate “optimal motion primitives,” 2) an equivalent

set of optimality conditions that describes how the system reacts to constraint ac-

tivations (i.e., transitioning between motion primitives), 3) a numerical example of

energy-optimal obstacle avoidance that significantly outperforms two open source op-

timal control libraries by every metric, OpenOCL [56] (a Matlab package backed by

the C++ CasADi library) and ICLOCS2 [57], and 4) experimental validation of an

unconstrained motion primitive being used to coordinate a system of connected and

automated vehicles at an unsignalized roundabout to eliminate stop-and-go driving.

The contributions of Chapter 4 were published in the following peer-reviewed articles:

• [58] B. Chalaki, L.E. Beaver and A.A. Malikopoulos, “Experimental Validation
of a Real-Time Optimal Controller for Coordination of CAVs in a Multi-Lane
Roundabout” 2020 Intelligent Vehicles Symposium, pp. 775–780, 2020.

• [59] L.E. Beaver, M. Dorothy, C. Kroninger, and A.A. Malikopoulos, “Energy-
Optimal Motion Planning for Agents: Barycentric Motion and Collision Avoid-
ance Constraints,” in 2021 American Control Conference, pp. 1040–1045, 2021.

• [60] L.E. Beaver and A.A. Malikopoulos, “Optimal Control of Differentially Flat
Systems is Surprisingly Simple” (in review), arXiv 2013.03339.

12

Chapter 2

GOAL ASSIGNMENT AS AN EMERGENT BEHAVIOR

Today we cannot see that the water flow
equations contain such things as the barber
pole structure of turbulence that one sees
between rotating cylinders. We cannot see
whether Schrödinger’s equation contains
frogs, musical composers, or morality—–or
whether it does not.

Richard Feynman
Lectures on Physics (1970)

In this chapter I present an original solution, based on [42–44], to the forma-

tion reconfiguration problem, i.e., how to move a collection of agents into a desired

formation. This problem is an excellent candidate for Ashby’s so-called “medium com-

plexity” problems—systems that are too complex to easily solved analytically, but

simple enough for a modern computer to simulate. The complexity comes from the

assignment of N agents to M ≥ N goals. This system satisfies the requirements laid

forth by Ashby [4] for a “medium complexity” emergence problem if one imagines a

global N ×Massignment matrix that is constructed from the collective decisions of

each agent:

1. The system consists of multiple interacting agents. Each row of the

assignment matrix is updated by the corresponding agent.

2. Each agent has a local feedback control law. Agents update their assigned

goal based on the local state of the system.

13

3. The system has attractive equilibria. There are NPM possible assignments

that assign each agent to a unique goal, and the system converges to one of them.

4. The state and action space must be sufficiently large. In this case, the

assignment matrix may initially take NCM possible values.

Thus, the assignment matrix precisely fits Ashby’s definition of a non-trivial emergent

system. Conveniently, the emergence of a feasible assignment in this system coincides

with the convergence of agents to goals; thus, the emergent behavior is also useful from

an engineering perspective. We can quantify the utility of any equilibrium by examining

relevant notions of cost, e.g., energy consumption, arrival time, or maximum jerk. I

present this analysis next, which has been edited from the original manuscript to fit

within this dissertation.

2.1 An Energy-Optimal Framework for Assignment and Trajectory Gen-

eration in Teams of Autonomous Agents

Swarms are typical complex system which have attracted considerable attention

in many applications, e.g., transportation, exploration, construction, surveillance, and

manufacturing. As discussed by Oh et al. [40], swarms are especially attractive due

to their natural parallelization and general adaptability. One of the typical multiagent

applications is creating desired formations. However, due to cost constraints on any real

swarm of autonomous agents, e.g., limited computation capabilities, battery capacity,

and sensing capabilities, any efficient control approach needs to take into account

the energy consumption of each agent. Moving agents into a desired formation has

been explored previously; however, creating this formation while minimizing energy

consumption is an open problem

Previous work [61] solves the assignment problem by imposing a priority order

on the agents using a centralized planner, with higher priority agents acting first.

In general, finding an optimal ordering is NP-Hard, and an optimal ordering is not

14

guaranteed to exist [62]. To reduce the complexity of ordering agents, much work

has been done to decentralize the ordering problem, including applying discretized

path-based heuristics [63] and reinforcement learning [64]. In contrast, the proposed

approach introduces a decentralized method of dynamically ordering agents that is

path independent and relies only on information directly observable by each agent.

Our approach only requires agents to make partial observations of the entire

system. This may lead to performance degradation relative to a centralized controller

with global knowledge, however, this is a fundamental feature of decentralized control

problems [65]. Other efforts have attempted to circumvent this issue with information

sharing, either directly [66, 67] or through decentralized auctioning [68]. However, these

approaches tend to require knowledge of the global communication graph, require a

significant number of communication rounds to reach a decision, or both. In contrast,

our approach embraces the partial observability of the system and exploits it to reduce

the computational load on each individual agent.

The main contributions of this work are: (1) a decentralized set of interaction

dynamics, which impose a priority order on agents in a decentralized manner, (2) an

assignment algorithm that exploits the unconstrained optimal trajectory of the agents,

and (3) guarantees on the stability of the proposed control policy.

In Section 2.1.1, we formulate the decentralized optimal control problem, and

we decompose it into the coupled assignment and trajectory generation subproblems.

In Section 2.1.2, we present the conditions which guarantee system convergence along

with the assignment problem. Then, in Section 2.1.3, we prove that these conditions

are satisfied by our framework and solve the optimal trajectory generation problem.

Finally, in Section 2.1.4, we present a series of MATLAB simulations to show the

performance of the algorithm, and we contextualize the results within the dissertation

in Section 2.2.

15

2.1.1 Problem Formulation

We consider a swarm of N ∈ N autonomous agents indexed by the set A =

{1, . . . , N}. Our objective is to design a decentralized control framework to move the

N agents into M ∈ N goal positions, indexed by the set F = {1, . . .M}. We consider

the case where N ≤ M , i.e., no redundant agents are brought to fill the formation.

This requirement can be relaxed by defining a behavior for excess agents, such as idling

[69]. Each agent i ∈ A follows double-integrator dynamics,

ṗi(t) = vi(t), (2.1)

v̇i(t) = ui(t), (2.2)

where pi(t) ∈ R2 and vi(t) ∈ R2 are the time-varying position and velocity vectors

respectively, and ui(t) ∈ R2 is the control input (acceleration/deceleration) over time

t ∈ [t0i , t
f
i] ⊂ R, where t0i and t

f
i are the initial and terminal time for agent i. Addition-

ally, each agent’s control input and velocity are bounded by

||vi(t)|| ≤ vmax, (2.3)

||ui(t)|| ≤ umax, (2.4)

where || · || is the Euclidean norm. Thus, the state of each agent i ∈ A is given by the

time-varying vector

xi(t) =

pi(t)

vi(t)

 , (2.5)

and we denote the global (system) state as

x(t) =


x1(t)

. . .

xN(t)

 . (2.6)

16

The energy consumption of any agent i ∈ A is given by

Ėi(t) =
1

2
||ui(t)||2. (2.7)

We select the L2 norm of the control input as our energy model since, in general,

acceleration/deceleration requires more energy than applying no control input. There-

fore, we expect that minimizing the acceleration/deceleration of each agent will yield

a proportional reduction in energy consumption. Our objective is to develop a decen-

tralized framework for the N agents to optimally, in terms of energy, create any desired

formation of M points while avoiding collisions between agents.

Definition 1. The desired formation is the set of time-varying vectors G = {p∗
j(t) ∈

R2 | j ∈ F}. The set G can be prescribed offline, i.e., by a human designer, or online

by a high-level planner.

In this framework, the agents are cooperative and capable of communication

within a neighborhood, which we define next.

Definition 2. The neighborhood of agent i ∈ A is the time-varying set

Ni(t) =
{
j ∈ A

∣∣∣ ∣∣∣∣pi(t)− pj(t)
∣∣∣∣ ≤ h

}
,

where h ∈ R is the sensing and communication horizon of each agent.

Agent i ∈ A is also able to measure the relative position of any neighboring

agent j ∈ Ni(t), i.e., agent i makes partial observations of the global state. We denote

the relative position between two agents i and j by the vector

sij(t) = pj(t)− pi(t). (2.8)

17

Each agent i ∈ A occupies a closed disk of radius R; hence, to guarantee safety for

agent i we impose the following constraints for all agents i ∈ A, j ∈ Ni(t), j ̸= i,

||sij(t)|| ≥ 2R, ∀t ∈ [t0i , t
f
i], (2.9)

h >> 2R. (2.10)

Condition (2.9) is our safety constraint, which ensures that no two agents collide. We

also impose the strict form of (2.9) pairwise to all goals in the desired formation, G.

Equation (2.10) is a system-level constraint which ensures agents are able to detect

each other prior to a collision.

In our modeling framework we impose the following assumptions:

Assumption 1. The state xi(t) for each agent i ∈ A is perfectly observed and there

is negligible communication delay between the agents.

Assumption 1 is required to evaluate the idealized performance of the gener-

ated optimal solution. In general, this assumption may be relaxed by formulating a

stochastic optimal control problem to generate agent trajectories.

Assumption 2. The energy cost of communication is negligible; the only energy con-

sumption is in the form of (2.7).

The strength of this assumption is application dependent. For cases with long-

distance communications or high data rates, the trade-off between communication and

motion costs can be controlled by varying the sensing and communicating radius, h,

of the agents.

To solve the desired formation problem, we first relax the inter-agent collision

avoidance constraint to decouple the agent trajectories. This decoupling reduces the

problem from a single mixed-integer program to a coupled pair of binary and quadratic

programs, which we solve sequentially. This decoupling is common in the literature

[68, 70], and usually does not affect the outcome of the assignment problem.

18

Next, we present some preliminary results before decomposing the desired for-

mation problem into the two subproblems, minimum-energy goal assignment and tra-

jectory generation.

2.1.1.1 Preliminaries

First we consider that any agent i ∈ A obeys double-integrator dynamics, (2.1)–

(2.2), and has an energy model with the form of (2.7).Then, we let the state and control

trajectories of agent i be unconstrained, i.e., relax (2.3), (2.4), and (2.9). In this case,

if i is traveling between two fixed states, the unconstrained minimum-energy trajectory

is given by the following system of linear equations:

ui(t) = ai t+ bi, (2.11)

vi(t) =
ai

2
t2 + bi t+ ci, (2.12)

pi(t) =
ai

6
t3 +

bi

2
t2 + ci t+ di, (2.13)

where ai,bi, ci, and di are constant vectors of integration. The derivation of (2.11)–

(2.13) is straightforward, and it explicitly derived in Chapter 4.

Thus, the energy consumed for any unconstrained trajectory of agent i ∈ A at

time t traveling towards the goal j ∈ F is given by

Ej
i (t) =

∫ tfi

t

||ui(τ)||2 dτ = (t3f − t3)
(a2i,x + a2i,y

3

)
+ (t2f − t2)

(
ai,x bi,x + ai,y bi,y

)
+ (tf − t)

(b2i,x + b2i,y
2

)
, (2.14)

where t ∈ [t0i , t
f
i], and ai = [ai,x, ai,y]

T , bi = [bi,x, bi,y]
T are the coefficients of (2.11).

Next, we present the interaction dynamics between agents. To resolve any

conflict between agents, we consider the following objectively measurable constants: 1)

19

neighborhood size, 2) energy required to reach a goal, and 3) agent index, which may

be arbitrarily assigned. Each of these quantities has an associated indicator function

for comparing two agents i, j ∈ A, j ̸= i,

1
N
ij (t) :=

1 |Ni(t)| > |Nj(t)|,

0 |Ni(t)| ≤ |Nj(t)|,
(2.15)

1
E
ij(t) :=

1 Ei(t) > Ej(t),

0 Ei(t) ≤ Ej(t),

(2.16)

1
A
ij(t) :=

1 i > j,

0 i < j.

(2.17)

Next, we define the interaction dynamics by combining (2.15) - (2.17) into a single

indicator function.

Definition 3. We define the interaction dynamics between any agent i ∈ A and

another agent j ∈ Ni(t), j ̸= i as

1
C
ij(t) = 1

N
ij (t) +

(
1− 1

N
ij (t)

)(
1− 1

N
ji (t)

)(
1
E
ij(t) +

(
1− 1

E
ij(t)

)(
1− 1

E
ji(t)

)
1
A
ij(t)

)
, (2.18)

where 1C
ij = 1 implies agent i has priority over agent j, and 1

C
ij = 0 implies that agent

j has priority over agent i.

The interaction dynamics are instantaneously and noiselessly measured and

communicated by each agent under Assumption 1. Whenever two agents have a con-

flict (i.e., share an assigned goal, or have overlapping assignments) (2.18) is used to

impose an order on the agents such that higher priority agents act first.

Remark 1. For any pair of agents i ∈ A, j ∈ Ni(t), j ̸= i, it is always true that

1
C
ij(t) = 1 − 1

C
ji(t), i.e., the outcome of the interaction dynamics (2.18) is always

20

unambiguous, and therefore it imposes an order on any pair of agents.

Remark 1 can be proven by simply enumerating all cases of (2.15) - (2.17).

2.1.2 Optimal Goal Assignment

The optimal solution of the assignment problem must assign each agent to a goal

such that the total unconstrained energy cost, given by (2.14), is minimized. In our

framework, each agent i ∈ A only has information about the positions of its neighbors,

j ∈ Ni(t), and the goal positions prescribed by G. Agent i derives the goal assignment

using a binary matrix Ai(t), which we define next.

Definition 4. For each agent i ∈ A, we define the assignment matrix, Ai(t), as an

|Ni(t)| ×M matrix with binary elements. The elements of Ai(t) map each agent to

exactly one goal, and each goal to no more than one agent.

The assignment matrix for agent i ∈ A assigns all agents in Ni(t) to goals by

considering the cost (2.14). We discuss the details of the optimal assignment problem

later in this section.

Next we define the prescribed goal, which determines how each agent i ∈ A

assigns itself a goal.

Definition 5. We define the prescribed goal for agent i ∈ A as the goal assigned to

agent i by the rule,

pa
i (t) ∈

{
pk ∈ G | aik = 1, aik ∈ Ai(t), k ∈ F

}
, (2.19)

where Ai(t) is the assignment matrix, and the right hand side is a singleton set, i.e.,

agent i is assigned to exactly one goal.

Next, we present the goal assignment algorithm in terms of some agent i ∈ A.

However, as this framework is cooperative, each step is performed by all individuals

simultaneously.

21

In some cases, multiple agents may select the same prescribed goal. This may

occur when two agents i ∈ A, j ∈ Ni(t), j ̸= i have different neighborhoods and use

conflicting information to solve their local assignment problem. This motivates the

introduction of competing agents, which we define next.

Definition 6. For agent i ∈ A, we define the set of competing agents as

Ci(t) =
{
k ∈ Ni(t) | pa

k(t) = pa
i (t)
}
.

When
∣∣Ci∣∣ > 1 there are at least two agents, i, j ∈ Ni(t) which are assigned to

the same goal. In this case, all but one agent in Ci(t) must be permanently banned

from the goal pa
i (t). Next, we define the banned goal set.

Definition 7. The banned goal set for agent i ∈ A is defined as

Bi(t) =
{
g ∈ F

∣∣∣ pa
i (τ) = pg(τ) ∈ G,(∏

j∈Ci(τ),j ̸=i

1
c
ij(τ)

)
= 0, ∃ τ ∈ [t0i , t]

}
, (2.20)

i.e., the set of all goals which agent i ∈ A had a conflict over and did not have priority

per Definition 3.

Banning is achieved by applying (2.20) to all agents j ∈ Ci(t) whenever |Ci(t)| >

1. After the banning step is completed, agent i ∈ A checks if the size of Bi(t) has

increased. If so, agent i increases the value of tfi by

tfi = t+ T, (2.21)

where t is the current time, and T ∈ R>0 is a system parameter. This allows agent i a

sufficient amount of time to reach its new goal.

Next, each agent broadcasts its new set of banned goals to all of its neighbors.

Any agent who was banned from Ci(t) assigns itself to a new goal. However, this may

22

cause new agents to enter Ci(t) as they are banned from other goals. To ensure each

agent j ∈ Ni(t) is assigned to a unique goal, the assignment and banning steps are

iterated until the condition

∣∣Cj(t)∣∣ = 1, ∀j ∈ Ni(t), (2.22)

is satisfied. For a given neighborhood Ni(t), i ∈ A, some number of agents will be

assigned to the goal g ∈ F . After the first banning step, all agents except the one

which was assigned to goal g are permanently banned and may never be assigned to

it again. If additional agents are assigned to g, then this process will repeat for at

most N − 1 iterations. Afterwards every goal g will have at most one agent from

Ni(t) assigned to it. Thus, we will have |Cj(t)| = 1 for all j ∈ Ni(t) for every i ∈ A.

We enforce the banned goals through a constraint on the assignment problem, which

follows.

Problem 1 (Goal Assignment). Each agent i ∈ A selects its prescribed goal (Definition

5) by solving the following binary program

min
ajk∈Ai

{ ∑
j∈Ni(t)

∑
k∈F

ajkE
k
j (t)

}
(2.23)

subject to:

∑
j∈Ni(t)

ajk ≤ 1, k ∈ F , (2.24)

∑
k∈F

ajk = 1, j ∈ Ni(t), (2.25)

ajk = 0, ∀ k ∈ Bj(t), j ∈ Ni(t), (2.26)

ajk ∈ {0, 1}.

This process is repeated by each agent, i ∈ A, until (2.22) is satisfied for all j ∈ Ni(t).

23

As the conflict condition in Problem 1 explicitly depends on the neighborhood

of agent i ∈ A, Problem 1 may need to be recalculated each time the neighborhood

of agent i switches. The assignments generated by Problem 1 are guaranteed to bring

each agent to a unique goal; we show this with the help of Assumption 3 and Lemma

1.

Assumption 3. For every agent i ∈ A, for all t ∈ [t0i , t
f
i], the inequality

∣∣(F \⋃
j∈Ni(t)

Bj(t)
)
≥ |Ni(t)| holds.

Assumption 3 is a condition that is sufficient but not necessary to prove conver-

gence of our proposed optimal controller. Intuitively, Assumption 3 only requires that

one agent does not ban many agents from many goals. Due to the minimum-energy

nature of our framework, this scenario is unlikely; additionally, permanent banning

may be relaxed to temporary banning in a way that Assumption 3 is always satisfied.

Lemma 1 (Solution Existence). Under Assumption 3, the feasible region of Problem

1 is nonempty for agent i.

Proof. Let the set of goals available to all agents in the neighborhood of agent i ∈ A

be denoted by the set

Li(t) = {p ∈ F | p ̸∈ Bj(t), ∀j ∈ Ni(t)}. (2.27)

Let the injective function w : A → F map each agent to a goal. By Assumption 3,

|Ni(t)| ≤ |Li(t)|, thus a function w exists. As w is injective, the imposed mapping

must satisfy (2.24) and (2.25). Likewise, Li(t)
⋂
Bj(t) = ∅ for all j ∈ Ni(t). Thus, w

must satisfy (2.26). Therefore, the mapping imposed by the function w is a feasible

solution to Problem 1.

Next, we show that for a sufficiently large value of T the convergence of all

agents to goals is guaranteed.

24

Theorem 1 (Assignment Convergence). Under Assumption 3, for sufficiently large

values of the initial tfi and T , and if the energy-optimal trajectories for agent i ∈ A

never increase the unconstrained energy cost (2.14), then tfi must have an upper bound

for all i ∈ A.

Proof. Let {gn}n∈N be the sequence of goals assigned to agent i ∈ A by the solution of

Problem 1. By Lemma 1, {gn}n∈N must not be empty, and the elements of this sequence

are natural numbers bounded by 1 ≤ gn ≤ M . Thus, the range of this sequence is

compact, and the sequence must be either (1) finite, or (2) convergent, or (3) periodic.

1) For a finite sequence there is nothing to prove, as tfi is upper bounded by

tfi,initial +MT .

2) Under the discrete metric, an infinite convergent sequence requires that there

exists N ∈ N>0 such that gn = p for all n > N for some formation index p ∈ F . This

reduces to case 1, as tfi does not increase for repeated assignments to the same goal.

3) By the Bolzano-Weierstrass Theorem, an infinite non-convergent sequence

{gn}n∈N must have a convergent subsequence, i.e., agent i is assigned to some subset

of goals I ⊆ F infinitely many times with some constant number of intermediate

assignments, Pg, for each goal g ∈ I. Necessarily, I
⋂
Bi(t) = ∅ for all t ∈ [t0i , t

f
i] from

the construction of the banned goal set. This implies that, by the update method of

tfi , the position of all goals, g ∈ I must only be considered at time tfi .

This implies that the goals available to agent i, i.e., I = F \ Bi(t
f
i), must be

shared between n > 0 other periodic agents. Hence, at some time t1 a goal, g ∈ I,

must be an optimal assignment for agent i, a non optimal assignment at time t2 > t1

and an optimal assignment again at time t3 which corresponds to the Pg
th assignment.

25

As t3 > t2 > t1, the energy required to move agent i to goal g satisfies

Eg
i (t1) ≤ Ek

i (t1), (2.28)

Ek
i (t2) ≤ Eg

i (t2), (2.29)

Eg
i (t3) ≤ Ek

i (t3), (2.30)

for any other goal k ∈ I, k ̸= g. Therefore, for agent i to follow an energy optimal

trajectory under our premise, it must never increase the energy required to reach is

assigned goal, which implies

Eg
i (t1) ≥ Eg

i (t2), (2.31)

Ek
i (t2) ≥ Ek

i (t3), (2.32)

this implies

Ek
i (t1) ≥ Ek

i (t3), (2.33)

which is only possible if agent i simultaneously approaches all goals k ∈ I. This

implies that goals g and k are arbitrarily close, which violates the minimum spacing

requirements of the goals; therefore no such periodic behavior may exist.

Note that Theorem 1 bounds the arrival time of agent i ∈ A to any goal g ∈ F .

A similar bound may be found for the total energy consumed, i.e.,

Eg
i (t) ≤

1

2
(tfi,initial +MT) ·max

{
|umin|, |umax|

}2
.

Next, we formulate the optimal trajectory generation problem for each agent

and prove that the resulting trajectories always satisfy the premise of Theorem 1.

26

2.1.3 Optimal Trajectory Generation

After the goal assignment is complete, each agent must generate a collision-free

trajectory to their assigned goal. The trajectories must minimize the agent’s total

energy cost subject to dynamic, boundary, and collision constraints. The initial and

final state constraints for each agent i ∈ A are given by

pi(t
0
i) = p0

i , vi(t
0
i) = v0

i , (2.34)

pi(t
f
i) = pa

i (t
f
i), vi(t

f
i) = ṗa

i (t
f
i), (2.35)

where the conditions at tfi come from the solution of Problem 1.

Whenever an agent must steer to avoid collisions, we will apply the agent in-

teraction dynamics (Definition 3) to impose an order on the agents such that lower

priority agents must steer to avoid the higher priority ones. Thus, we may simplify the

collision avoidance constraint for agent i ∈ A to

||sij(t)|| ≥ 2R, ∀ j ∈ {k ∈ A | 1ik(t) = 0}, (2.36)

∀ t ∈ [t0i , t
f
i],

which will always guarantee safety for all agents.

We may then formulate the decentralized optimal trajectory generation problem.

Problem 2. For each agent i ∈ A, find the optimal control input, ui(t), which min-

imizes the energy consumption of agent i and satisfies its boundary conditions and

safety constraints.

min
ui(t)

1

2

∫ tfi

t0i

||ui(t)||2 dt (2.37)

subject to: (2.1), (2.2), (2.34), (2.35), and (2.36).

27

By imposing an order on the agents, we can show that the solution of Prob-

lem 2 will always satisfy the premise of Theorem 1. First, Lemma 2 shows that an

unconstrained trajectory must never increase the energy required to reach a goal.

Lemma 2. For any agent i ∈ A, following the unconstrained trajectory, the energy

cost (2.14) required to reach a fixed goal g ∈ F is not increasing.

Proof. We may write the derivative of (2.14) along an unconstrained trajectory as

dEg
i (t)

dt
= lim

δ→0

1

δ

(∫ tfi

t+δ

||ui(τ)||2dτ −
∫ tfi

t

||ui(τ)||2dτ

)

= − lim
δ→0

1

δ

∫ t+δ

t

||ui(τ)||2dτ, (2.38)

which is never positive. Therefore, (2.14) is never increasing.

Next, we introduce Theorem 2, which proves the premise of Theorem 1 is always

satisfied by any trajectory which is a feasible solution to Problem 2.

Theorem 2. If a solution to Problem 2 exists for all agents, then Theorem 1 is satisfied

as long as Assumption 3 holds.

Proof. The case when any agent i ∈ A is moving with an unconstrained trajectory is

covered by Lemma 2, so we focus on the case when any of the safety constraints are

active.

Let K ⊆ A be a group of agents which all have their safety constraint active over

some interval t ∈ [t1, t2]. By Definition 3, there exists some i ∈ K such that 1C
ij(t) = 1

for all j ∈ K, j ̸= i. Therefore, agent i satisfies Lemma 2 and always moves toward its

assigned goal by Theorem 1.

Next, consider agent j ∈ V \ {i} such that 1c
jk(t) = 1 for all k ∈ K \ {i}.

As agent j may never be assigned to the same goal as i, there must exist some time

tj < min{tfi , t
f
j } such that |sij(tj)| > 2R by the goal spacing rules. Thus, agent j

28

will move with an unconstrained trajectory for all t ∈ [tj, t
f
j]. The above steps can be

recursively applied until only a single agent remains, which follows an unconstrained

trajectory for some finite time interval. This satisfies the premise of Theorem 1.

The precise approach to generating optimal trajectories for the agents is omitted

for brevity; it is discussed in Chapter 4 of this dissertation. Next, we present simulation

results that validate our proposed control algorithm.

2.1.4 Simulation Results

To provide insight into the behavior of the agents, a series of simulations were

performed withM = N = 10 agents and a time parameter of T = 10 s. The simulations

were run for t = 20 s or until all agents reach their assigned goal, whichever occurred

later. The center of the formation moved with a velocity of vcg = [0.15, 0.35] m/s; the

leftmost and rightmost three goals each move with an additional periodic velocity of

[0.125 cos 0.75t, 0] m/s relative to the formation. Videos of the simulation results can

be found at https://sites.google.com/view/ud-ids-lab/omas.

0 1 2 3 4 5

X Position [m]

0

1

2

3

4

5

6

7

8

9

Y
 P

os
iti

on
 [m

]

Figure 2.1: Simulation result for the centralized case. Goals which minimize the
unconstrained trajectories are assigned to the agents once at t0i .

29

https://sites.google.com/view/ud-ids-lab/omas

The minimum separating distance between agents, total energy consumed, and

maximum velocity for the unconstrained solutions to Problem 2 are all given as a

function of the horizon in Table 2.1. The energy consumption only considers the

energy required to reach the goal, which, in this case, was significantly lower than the

energy required to maintain the formation. The trajectory of each agent over time is

given in Figures 2.1–2.3 for varying sensing horizon values. Although the trajectories

may appear to cross in Figures 2.1–2.3, they are only crossing in space and not in time.

Table 2.1: Numerical results for N=10 agents and M=10 goals for various sensing
distances.

h [m] min. separation energy tf Total Bans
[cm] [J/kg] [s]

∞ 25.25 0.85 20 0
1.60 1.64 1.10 20 4
1.50 1.60 1.17 20 24
1.40 2.01 1.96 23.3 31
1.30 0.33 1670 26.05 36
1.20 0.65 866 25.35 34
1.10 1.05 5370 26.85 40
1.00 1.96 7609 30.65 35
0.95 3.12 3149 25.05 27
0.75 1.37 6.87 20 35
0.50 0.27 692.0 26.65 35

The performance of our algorithm is strongly affected by how much information

is available to each agent. This is a function of the sensing horizon, initial states of the

agents, and the desired formation shape. Generally, better overall performance requires

the agents to have more information. However, it is not apparent what information

is necessary; in fact, the results in Table 2.1 generally show no correlation between

energy consumption and sensing horizon.

The trade-off for more information is in the computational and sensing load

imposed on each agent. As an agent observes more of the system (via sensing, commu-

nication, or memory), the computational burden to solve the assignment and trajectory

30

generation problems also increases. However, this computational cost does not neces-

sarily result in improved system performance, as demonstrated in Table 2.1.

0 1 2 3 4 5 6

X Position [m]

0

2

4

6

8

10

Y
 P

os
iti

on
 [m

]

Figure 2.2: Simulation result for h = 1.30 m. The agents do not start with a globally
unique assignment, and several agents must re-route partway through the
simulation. Although the trajectories cross in space they do not cross in
time.

31

0 1 2 3 4 5

X Position [m]

0

1

2

3

4

5

6

7

8

9

Y
 P

os
iti

on
 [m

]

Figure 2.3: Simulation result for h = 0.75 m. Although the horizon for this case is
smaller than in Figure 2.2, the system dynamics happen to result in more
efficient trajectories overall.

2.2 Concluding Remarks

This chapter framed goal assignment as a “medium-complexity” problem of

emergence. The decentralized nature of the problem stems from the fact that the

agents only require global information about the goal positions. While the system is

guaranteed to converge under Assumption 3, this in general too restrictive; there is

no way to verify that the assumption holds without simulating the evolution of the

system! As a remedy, we proposed an event-driven assignment mechanism in [44],

which implies Assumption 3.

Theorem 3. Let each agent i ∈ A be assigned to an initial goal j ∈ F . If, after

the initial assignment, agent i only updates its assignment when j ∈ Bi, i.e., when i

becomes banned from j, then Problem 1 always has a solution.

Proof. When an agent i is banned from a goal k ∈ F , then some agent in A must be

assigned to goal k for all future time. Let C = |
⋃

i∈A Bi|. Then, one feasible solution

32

to Problem 1 is to assign, at most, N − C remaining agents to the M − C unbanned

goals.

Thus, once the system is initialized, Theorem 1 guarantees that all agents will

converge to a unique goal position in finite time. Viewing emergence through the lens

of an engineering design problem also enables us to precisely describe the “goodness”

of an equilbrium point using engineering design principles; in this case, the energy

required for each agent to reach its assigned goal. This raises further questions: given

the nonmonotonic results in Table 2.1, what alternative set of interaction rules might

yield improved system performance? Do the agents require more information to make

optimal decisions when the sensing horizon is smaller, or do these results show that

the agents may be receiving unnecessary information? Note that this non-monotonicity

property is not resolved using the event-driven assignment [44]. The idea of energy-

minimizing agents is further addressed in Chapter 3, where the agent interactions are

specifically designed to drive the system into an energy-minimizing configuration.

33

Chapter 3

CONSTRAINT-DRIVEN CONTROL FOR MULTI-AGENT SYSTEMS

You insist that there is something a machine
cannot do. If you tell me precisely what it is
a machine cannot do, then I can always make
a machine which will do just that.

John von Neumann
Public Lecture (1948)

This chapter builds off the results of Chapter 2, which demonstrate how emer-

gent behavior can be achieved by driving agents to equilibrium points. This chapter

achieves this using constraint-driven control, a declarative control policy wherein the

system is constrained to a feasible domain and a measure of performance is designed to

optimally select a control action at each time instant [71]. This is in contrast to a pro-

cedural policy, such as PID or LQR, where a feedback control law is explicitly defined

by a designer a priori. In particular, I present material from two articles [47, 48] that

push agents to energy-minimizing equilibrium points; the third article [47] expands this

approach to minimize the locomotive energy of the agents subject to a greater number

of constraints.

A significant recent trend in the constraint-driven control literature is the con-

cept of ecologically-inspired robotics [45]. In ecologically-inspired robotics, each in-

dividual is presumed to interact with their environment on timescales significantly

longer than what can be achieved in a laboratory setting. These approaches neces-

sarily emphasize safe energy-minimizing control policies for the agents, where agents

minimize their control effort subject to the environment, task constraints, and safety.

34

The ecologically-inspired robotics paradigm has been applied to many multi-agent con-

trol problems in simulations and experiments [29, 59, 72], and shows great promise for

long-duration autonomy tasks.

As an extension of ecologically-inspired robotics, the first two articles in this

chapter push a collection of agents into an energy-minimizing configuration by con-

sidering their aerodynamic interactions. The first case considers a fleet of connected

and automated vehicles (CAVs) traveling on a highway [47], where agents may unex-

pectedly enter or exit the system at prescribed on and off ramps. In particular, each

CAV can save energy by exploiting the low-pressure aerodynamic wake of the preced-

ing CAV; the resulting analysis also yields sufficient conditions for when a CAV will

join a platoon. In the second article [48], a fleet of uncrewed aerial vehicles (UAVs)

maximize the aerodynamic benefit received from their neighbors’ upwash. This leads

to the emergence of stable V formations, which reduces the total energy cost of the

entire system. We also prove that V formations are unstable if each UAV greedily

minimizes its experienced drag force.

In addition to the energy-saving aspect, it is also necessary to demonstrate

recursive feasibility, i.e., that each agent has a non-empty set of feasible actions at

each time instant. The third article in this chapter [48] proposes a new approach to

guaranteeing recursive feasibility for constraint-driven problems. Most existing work

[29, 45, 72] introduces slack variables on constraints that are not critical to safety;

this ensures that a safe actions can always be selected with a corresponding penalty

in the objective function. However, such approaches are not fundamentally different

than simply moving the constraints back into the objective function, which defeats

the purpose of using constraint-driven techniques. Other articles introduce additional

“compatibility constraints ” to guarantee solution existence [73], however, we expect

this approach to grow prohibitively conservative as the number of constraints increases.

Still more results look for “minimum violating” solutions [74], whereas the constraint

relaxation technique always prioritizes safety. The constraint relaxation approach is

35

fundamentally similar to an article on multi-agent control barrier functions [75], which

proposes a transition to a “safe mode” of operation when no feasible control inputs

exist; the results in this chapter take this idea to its logical conclusion. We demonstrate

that this approach yields an equivalent switching system, which is easy to interpret

while still admitting strong guarantees on the system-level behavior and the safety of

individual agents.

Finally, each of the articles in this chapter demonstrates how constraint-driven

control is a rigorous data-driven technique. Since the behavior of each agent is encoded

using constraints, each agent must use information about the state of its neighborhood

and the local environment to determine the set of feasible actions. This results in an

easy to interpret solution, where a designer must only examine the switching system

and active constraints to understand the the behavior of each agent. The following

sections are composed of three articles [46–48], which have been lightly edited to fit

within this dissertation.

3.1 Constraint-Driven Optimal Control of Multi-Agent Systems: A High-

way Platooning Case Study

3.1.1 Introduction

In this section, we propose a constraint-driven approach to generate emergent

platooning behavior in a fleet of connected and automated vehicles operating in high-

way conditions. Platooning behavior has been of particular interest due to the high

potential for energy savings over long distances [76–78], thus we believe that platoon

formation for long-distance highway travel is a natural fit for constraint-driven control.

There are several approaches to optimal platoon formation in the literature. In one ex-

ample, the authors sought to optimally position differential drive robots in an echelon

formation such that energy lost to drag was minimized [31]. Reynolds’ flocking rules

were applied to highway vehicles in [79], which sought to minimize energy consumption

while maintaining a desired speed. Energy-efficient flocking was also proposed for a

36

system of flying robots in R2 [32]. Previous approaches either construct a large multi-

objective optimization problem to determine the next control action, or they apply

sub-optimal consensus algorithms to reach a drafting configuration. A recent review

of these techniques is presented in [9].

Our approach, in contrast to existing work, is constraint-driven. In our frame-

work, agents seek to expend as little energy as possible subject to a set of task and

safety constraints. This set-theoretic approach to control is interpretable, i.e., the

cause of an agent’s action can be deduced by examining which constraints become

active during operation. By examining the conditions that lead to an empty feasible

space, our framework also addresses when a vehicle should break away to form a new

platoon or overtake the preceding vehicle. Our approach is totally decentralized, and

thus it is well-suited to “open systems,” where agents may suddenly enter or leave.

We allow vehicles to arbitrarily enter or exit the system as long as their initial state is

feasible and no other vehicles’ safety constraint is violated. This also allows vehicles to

keep their final destination and arrival time private, which has the secondary benefit

of guaranteeing privacy for all vehicles and their passengers.

The remainder of the section is organized as follows. In Section 3.1.2, we formu-

late the platoon formation problem, and in Section 3.1.3, we present our decentralized

constraint-driven control algorithm. Finally, in Section 3.1.4, we validate our results

by simulating 60 vehicles, where vehicles randomly enter and leave the road network

while the total number of vehicles is not known a priori.

3.1.2 Problem Formulation

We consider a set of CAVs traveling in a single-lane roadway. In particular, we

consider an open transportation system that contains N(t) ∈ N CAVs indexed by the

set N (t) = {0, 1, 2, . . . , N(t)− 1}, where t ∈ R is time and vehicle i ∈ N (t) \ {0} is in

the aerodynamic wake of vehicle i− 1. We denote the state of each CAV i ∈ N (t) by

xi(t) =
[
pi(t), vi(t)

]T
, where pi(t), vi(t) ∈ R are the longitudinal position and speed of

37

vehicle i on its current path respectively. Each vehicle obeys the second-order dynamics

ṗi(t) = vi(t),

v̇i(t) = ai(t) = ui(t)− Fi

(
vi(t), p̂i(t)

)
, (3.1)

where ai(t) is acceleration, ui(t) is forward force imparted through the tires, Fi

(
vi(t), p̂i(t)

)
is the aerodynamic drag force acting on the vehicle, and p̂i(t) is the relative position

of CAV i, which we formally define later. The objective of each vehicle is to minimize

the effect of the external drag force, i.e.,

Ji(vi(t), p̂i(t)) =
1

2
Fi

(
vi(t), p̂i(t)

)2
. (3.2)

By minimizing the external drag force of each vehicle, we have direct benefits in energy

consumption. Each vehicle i is subject to state and control constraints, i.e.,

0 < vmin ≤ vi(t) ≤ vmax, (3.3)

amin ≤ ai(t) ≤ amax, (3.4)

where (3.3) is the lower and upper speed limit and (3.4) is the maximum safe deceler-

ation and acceleration.

We index the vehicles in descending order, i.e., pi(t) < pj(t) for all i > j, i, j ∈

N (t). Note, when a vehicle enters or exits the system, the CAVs can communicate

to re-sequence themselves. To simplify our notation, we introduce the relative state

coordinates.

38

Definition 8. For each vehicle i ∈ N (t), the relative states and control action are,

p̂i(t) =

pi(t) if i = 0,

pi(t)− pi−1(t) if i > 0,

(3.5)

v̂i(t) =

vi(t) if i = 0,

vi(t)− vi−1(t) if i > 0,

(3.6)

âi(t) =

v̇i(t) if i = 0,

v̇i(t)− v̇i−1(t) if i > 0.

(3.7)

Note that in this coordinate system p̂i(t) < 0 for i > 0. While our approach does not

impose a reference frame, it may be practical for a physical vehicle to measure (3.5) -

(3.6) directly, i.e., by using a proximity sensor. In that case, it may be advantageous

for each vehicle to consider its current state as the center of a moving reference frame.

To guarantee safety we impose the following safety constraint,

p̂i(t) + δ ≤ 0, i ∈ N \ {0}, (3.8)

where δ ∈ R>0 is the minimum safe bumper-to-bumper following distance. However,

näıvely satisfying (3.8) may still lead to unsafe scenarios and collisions. Consider the

case when v̂i(t) is very large and vehicle i − 1 applies ai−1(t) = amin. To guarantee

vehicle i never ends up in an unsafe scenario, we impose an augmented safety constraint

that guarantees sufficient stopping distance,

gsi (vi, p̂i, v̂i) =


p̂i(t) + δ if v̂i(t) ≤ 0,

p̂i(t) + δ + v̂i(t) ·
(

vmin−vi(t)
amin

)
+ v̂i(t)

2

2amin
if v̂i(t) > 0,

(3.9)

for i ∈ N \{0}. The case when v̂i(t) > 0 in (3.9) is derived for CAV i by assuming i−1

39

applies the maximum braking force until vi−1(t) = vmin at some time t1 and cruises

with ai−1(t) = 0, for t ≥ t1. Then, (3.9) allows CAV i sufficient stopping distance

to brake at amin and maintain p̂i(t) + δ = 0. Note that the quadratic v̂i(t) term is

zero when v̂i(t) = 0 and increases up to a maximum at v̂i(t) = vmax − vmin. Thus,

satisfaction of (3.9) always implies (3.8).

Finally, each vehicle i ∈ N (t) has a terminal time tfi , which corresponds to the

time that vehicle i will exit the system, e.g., take an exit off the highway. The value

of tfi is known only to vehicle i and is not shared with any other vehicle. This also

ensures the privacy of vehicle i’s destination. To ensure vehicle i reaches its destination

by time tfi , we impose an arrival deadline constraint,

(
Si − pi(t)

)
−
(
tfi − t

)
vi(t) ≤ 0, (3.10)

where Si is the position that i will exit the system, e.g., via an off-ramp. The ar-

rival deadline constraint (3.10) ensures that vehicle i can reach its final destination by

cruising at a constant speed.

Our objective in this section is the formation of platoons for long-duration auton-

omy, e.g., long-distance highway conditions. Therefore, once vehicle i joins a platoon,

i.e., v̂i = 0 and p̂i + δ = 0, other techniques, such as control barrier functions [80] and

consensus approaches [81], can be used to maintain the platoon. To minimize (3.2) for

our long-duration autonomy task, we impose the following assumptions.

Assumption 4. We neglect the effects of wind, and assume the air has constant

properties. For vehicle i ∈ N \ {0} the drag force is zero at Fi

(
0, p̂i(t)

)
, increasing in

vi(t), and decreasing in p̂i(t). For vehicle i = 0 the drag force is zero at Fi

(
0, p̂i(t)

)
,

increasing in vi(t), and constant in p̂i(t).

Assumption 4 is the crux of our analysis, as it determines the signs of the

derivatives of the cost function. This assumption is not restrictive, and it can be relaxed

if the partial derivatives of Fi can be calculated or measured. Different forms of Fi

40

will result in different vehicle behavior, and this can be interpreted as a data-driven

forcing function. For physical systems containing wind, eddies, and other turbulent

effects, Fi may be thought of as an average or filtered drag force; sensing the average

aerodynamic forces between vehicles in real time is an active area of ongoing research

[82].

Assumption 5. The drag acting on vehicle i is only a function of the states of vehicles

i and i− 1 for i ∈ N \ {0}, and there are no external noise or disturbances.

Assumption 6. Communication between CAVs occurs instantaneously and noise-

lessly.

Assumptions 5 and 6 idealize the environment in which the vehicles are oper-

ating to simplify the analysis. Assumption 5 may be relaxed by expanding the drag

model to include a time-varying component and additional interaction forces. Like-

wise, Assumption 6 can be relaxed by including delays, noise, and packet loss in a

communication model. If the disturbances and delays are bounded, then Assumption

6 can be relaxed by shrinking the set of feasible actions using standard techniques,

e.g., control barrier functions and differential inclusions [83]. However, we believe this

adds significant analytical complexity without changing the fundamental results of our

analysis.

Assumption 7. Each vehicle i ∈ N (t) is equipped with a low-level controller that

can track the desired acceleration, ai(t), by controlling the forward force applied to the

CAV through ui(t).

Assumption 7 allows us to derive the kinematic motion of each CAV without

directly considering the applied drag force. This enables us to generate an analytic

closed-form optimal trajectory for each vehicle without the numerical challenges asso-

ciated with boundary-layer fluid dynamics. This assumption can be relaxed by con-

sidering robust tracking, e.g., control barrier functions, or online learning to estimate

and compensate for the aerodynamic interactions.

41

3.1.3 Optimal Control with Gradient Flow

We employ gradient flow to generate the control input for each vehicle. This

a gradient-based optimization technique, wherein each vehicle’s control action is a

gradient descent step. This technique has been used successfully to control multi-agent

constraint-driven systems [75, 84]. Our motivation for gradient flow is twofold: first,

planning a trajectory through a fluid boundary layer in real time requires significantly

more computational power than what is available to a CAV. Second, the exit time of

the preceding vehicle is an unknown quantity, and so each vehicle cannot quantify the

trade-off between accelerating to draft the preceding vehicle versus the energy savings

of drafting. Thus, we take a conservative approach where no vehicle will increase its

energy consumption while traveling on the highway. This approach yields conditions

for when platooning is an appropriate strategy in addition to how the platoon should

be formed.

As a first step, we define the set of safe control inputs and show that it satis-

fies recursive feasibility [85]. For the remainder of the analysis, we omit the explicit

dependence of state variables on t when no ambiguity arises.

Definition 9. For each vehicle i ∈ N \ {0}, the set of safe control inputs is

As
i (vi, p̂i, v̂i) =

{
a ∈ R : amin ≤ a ≤ amax,

vi = vmax =⇒ a ≤ 0

vi = vmin =⇒ a ≥ 0

gsi = 0 =⇒ d

dt
gsi ≤ 0

}
, (3.11)

where gsi is the rear-end safety constraint (3.9), and d
dt
gsi ≤ 0 can be achieved through

the control action, ai(t). The safe set ensures the state, control, and safety constraints

of vehicle i are always satisfied.

Theorem 4. (Recursive Feasibility) For any vehicle i ∈ N \ {0}, if the variables

42

p̂i(t), v̂i(t), vi(t) satisfy (3.3) and (3.9) at time t1 ∈ R, then the set As
i is non-empty for

all t ≥ t1.

Proof. To prove Theorem 4, we show that a feasible control input always exists in the

worst case scenario for vehicle i. Let v̂i(t0) ≥ 0 and ai−1(t) = amin for t ∈ [t0, t1) such

that vi−1(t1) = vmin and ai−1(t) = 0 for t ≥ t1. We take the time derivative of (3.9),

which yields

v̂i(t) + v̂i(t) ·
(
− ai(t)

amin

)
+ âi(t)

(vmin − vi(t)

amin

)
+
(v̂i(t) âi(t)

amin

)
. (3.12)

Over the interval [t0, t1), vi(t) > vmin, and thus ai(t) = amin is a feasible control action.

This implies that âi(t) = 0, and evaluating (3.12) implies

v̂i(t) + v̂i(t)
(
− 1
)
= 0, (3.13)

i.e., (3.12) is identically zero, which implies that (3.9) is constant. Next, consider the

interval [t1, t2) such that ai(t) = amin for t ∈ [t1, t2) and vi(t) = vmin for t ≥ t2. Thus,

ai(t) = amin is a feasible control action, and evaluating (3.12) implies

v̂i(t)− v̂i(t) + vmin − vi(t) + v̂i(t) = 2v̂i(t)− 2v̂i(t)

= 0, (3.14)

which is identically zero over the entire interval. This implies that (3.9) is constant.

Finally, for t > t2, ai(t) = 0 is a feasible control action, which implies that âi(t) = 0,

v̂i(t) = 0, and (3.9) is constant. Therefore, (3.9) is constant for all t > t1 in the

worst-case scenario and As
i ̸= ∅ for all t ≥ t1.

Next, before deriving our energy-minimizing constraint, we present the unique

equilibrium point that minimizes the energy consumption of each CAV i ∈ N (t). For

43

the lead vehicle, i.e., i = 0, the drag force is minimized at v0 = 0 and increasing in v0

by Assumption 4. It is trivial to show that the lead vehicle’s energy consumption is

minimized at v0(t) = vmin. For a following vehicle, i.e., i > 0, the Karush-Kuhn-Tucker

(KKT) conditions yield

L = F 2 + µv(vmin − vi) + µp(p̂i + δ), (3.15)

∂L

∂vi
= 2FFv − µv = 0, (3.16)

∂L

∂p̂i
= 2FFp̂ + µp = 0, (3.17)

∂L

∂µv
= vmin − vi = 0, (3.18)

∂L

∂µp
= p̂i + δ = 0, (3.19)

where the subscripts v, p̂ refer to the partial derivative of F with respect to vi(t) and

p̂i(t), respectively, and p̂i(t) + δ = 0 is implied by (3.9) when vi(t) = vmin. Given

Assumption 4, we can determine the signs of the partial derivatives, which implies

vi = vmin, p̂i = −δ, (3.20)

µv = 2F
∂F

∂vi
> 0, µp = −2F

∂F

∂p̂i
> 0. (3.21)

Thus, CAV i > 0 minimizes its energy consumption by following CAV i − 1 at speed

vmin and distance p̂i(t) = δ. Note that, as Fi is strictly increasing in vi and strictly

decreasing in p̂i, thus the platooning formation corresponds to the unique minimum-

energy configuration of the N CAVs.

Finally, to minimize the drag force imposed on each vehicle, we implement

gradient flow by requiring the time derivative of the cost functional (3.2) to be negative

semidefinite for each vehicle i ∈ N (t). For vehicle i = 0 this implies

J̇i =
∂F
(
vi(t), p̂i(t)

)
∂vi(t)

ai(t) ≤ 0, (3.22)

44

which, by Assumption 4, implies that

ai(t) ≤ 0 for i = 0. (3.23)

For vehicle i > 0, Assumption 4 implies

J̇i =

(F Fv)

(F Fp̂)

 ·

ai(t)
v̂i(t)

 ≤ 0. (3.24)

Expanding (3.24) yields

F Fv ai(t) + F Fp̂ v̂i(t) ≤ 0, (3.25)

which can be solved for ai(t) using the signs of the partial derivatives imposed by

Assumption 4,

ai(t) ≤
|Fp̂|
Fv

v̂i(t). (3.26)

Thus, in order for CAV i to form a platoon with i − 1, we must have v̂i(t) >

0. Intuitively this makes sense, if v̂i(t) < 0 then p̂i(t) is decreasing (increasing the

drag force) and i must decelerate to achieve an equivalent decrease in the drag force.

Likewise, v̂i(t) > 0 implies that p̂i(t) is increasing (decreasing the drag force) and i

may accelerate without increasing the overall drag force.

Note that, consistent with multi-agent control barrier functions [75], it is possible

that imposing (3.26) and the set of safe control inputs (Definition 9) on each vehicle

admits no feasible solutions. In particular, this occurs when

vi(t) = vmin and
|Fp̂|
Fv

(
vmin − vi−1(t)

)
< 0, (3.27)

ai(t) ≤
|Fp̂|
Fv

v̂i(t) < amin. (3.28)

45

Similar conditions arise when imposing the deadline constraint on CAV i. Taking the

time derivative of (3.10) yields,

−vi(t) + vi(t)− ai(t) ≤ 0, (3.29)

which implies i must apply ai(t) ≥ 0 when (3.10) is active. It is possible that vehicle i

cannot jointly satisfy the deadline, safety, and drag force constraints. In particular, if

either of

Si − pi(t)− (tfi − t) vi(t) = 0 and
|Fp̂|
Fv

v̂i(t) < 0, (3.30)

Si − pi(t)− (tfi − t) vi(t) = 0 and gsi = 0, v̂i(t) > 0, (3.31)

is satisfied, then no control action can guarantee drag minimization, safety, and arrival

time simultaneously. Thus, if CAV i > 0 satisfies (3.27) - (3.30), it must fall back

and become the lead CAV of its own platoon. CAV i will re-initialize itself as index

0 of a new platoon, and all following CAVs j > i will be re-initialized as j − i. This

platoon will operate independently as long as any of (3.27) - (3.30) are satisfied for the

vehicle physically ahead of this CAV on the road. The same test may be applied to

determine when two platoons ought to merge into a single platoon. Similarly, if (3.31)

is satisfied, then CAV i is unable to achieve its deadline without violating rear-end

safety. This affords at least 2 possibilities for CAV i, 1) move into a passing lane to

overtake the preceding vehicle, or 2) relax the deadline constraint until i becomes the

lead CAV of a platoon. Resolving this conflict depends on the geometry of the roadway

and application of interest and is beyond the scope of this paper. Thus, (3.27) - (3.31)

determine whether platooning is an appropriate strategy for CAV i.

In addition to the above challenges that arise from the task constraint, selecting

an energy-minimizing control law that satisfies (3.11) and (3.26) is, in general, insuf-

ficient to generate emergent platooning behavior. This fact is demonstrated in [86],

which shows that only minimizing energy consumption is not a stable configuration for

46

selfish energy-minimizing agents. As an illustrative example, consider the case where

the initial states of the vehicles are randomly selected from the set of feasible states

such that each CAV i ∈ N \{0} is in the wake of vehicle i−1. This implies a transient

period for i, where vi−1(t) > vmin. To generate a platoon, we would like to have CAV

i achieve and maintain v̂i(t) > 0. We can consider two cases, for the first case let

v̂i(t
0
i) > 0, then i can maximize its energy savings by selecting ai(t) = amin. However,

this may lead to a situation where v̂i(t) = 0 and p̂i(t) + δ < 0, i.e., the vehicles do not

form a platoon. Thus, vehicle i ought to apply a small, feasible deceleration such that

v̂i(t) > 0 is maintained. In the second case let v̂i(t
0
i) ≤ 0, then i ought to decelerate as

little as possible, i.e., (3.26) should be a strict equality. Then, if CAV i − 1 applies a

large deceleration, it is possible that v̂i(t) > 0 in the future, and i will be able to join

the platoon. The solution of the following optimization problem can accomplish this

behavior.

Problem 3. For each CAV i ∈ N \ {0}, such that (3.27) and (3.28) are not satisfied,

generate the control action that solves

min
ai(t)

1

2
ai(t)

2

subject to:

ai(t) ∈ As
i

(
vi(t), p̂i(t), v̂i(t)

)
,

ai(t) ≤
|Fp̂|
Fv

v̂i(t),(
Si − pi(t)

)
− vi(t) (t

f
i − t) = 0 =⇒ ai(t) ≥ 0.

Note that each vehicle must solve Problem 3 to determine its control input at

each time step. In this case, the feasible region is compact, and the solution can be

derived offline by determining the upper and lower bound on the feasible space of

Problem 3. The optimal solution is the feasible value closest to 0. Next, we present

our main results that characterize sufficient conditions for platoon formation.

47

Lemma 3. For any vehicle i ∈ N (t) at any time t ∈ R, the control action that solves

Problem 3 is upper bounded by 0.

Proof. For vehicle i = 0, (3.23) implies ai(t) ≤ 0.

For vehicle i > 0, let α1 = sup
{
As

i

}
, let α2 =

|Fp̂|
Fv
v̂i(t), and let α = min{α1, α2},

i.e., α is the smallest upper bound of Problem 3’s feasible space. For the case when

α ≤ 0, the solution of Problem 3 is upper bounded by 0. For the case when α > 0 the

lower bound of Problem 3 is

β =

amin if vi(t) ̸= vmin,

0 if vi(t) = vmin,

(3.32)

thus β ≤ 0 < α. This implies that any control action ai(t) > 0 incurs a higher cost

than ai(t) = 0, which is a feasible action in this case. Thus, the solution of Problem 3

is always upper bounded by zero.

Theorem 5. For two CAVs i, i − 1 ∈ N (t) the initial condition vi(t
0
i) > vi−1(t

0
i)

guarantees that i and i − 1 will form a platoon as long as tfi and tfi−1 are sufficiently

large and the deadline constraint for i does not become active.

Proof. First, consider the case when the rear-end safety constraint does not become

active. Assume v̂i(t1) < 0 at some t1 > t0i . Continuity of v̂i(t) implies that there

is at least one non-zero interval of time [t0, t1] such that âi(t) < 0 and v̂i(t) ≥ 0 for

t ∈ [t0, t1]. Over any such interval, v̂i(t) ≥ 0 implies that ai(t) = 0 is a feasible control

action. Furthermore, Lemma 3 implies ai−1(t) ≤ 0, which implies that âi(t) ≥ 0. This

contradicts âi(t) < 0, therefore no such interval can exist and v̂i(t) > 0 for all t > t0i as

long as the safety constraint does not become active.

48

Next, consider the case when only the rear-end safety constraint is active, i.e.,

(3.9) is strictly equal to zero. In this case, solving (3.9) for v̂i(t) yields

v̂i(t) = vi(t)− vmin −
[(
vi(t)− vmin

)2
+ 2|amin|

(
p̂i(t) + δ

)] 1
2
, (3.33)

where p̂i(t) + δ ≤ 0, and thus (3.33) implies v̂i(t) ≥ 0 when p̂i(t) + δ < 0. Thus,

v̂i(t) is positive and decreasing and only reaches zero when p̂i(t) + δ = 0, i.e., platoon

formation occurs.

Theorem 5 is a sufficient condition for platooning, and can be recursively applied

at any time t0 to guarantee the convergence of any sequence of vehicles satisfying

vi(t0) < vi+1(t0) < · · · < vi+k(t0) for k ∈ N. We also note that platooning may occur

when vi(t0) > vi+1(t0), in particular if vehicle i decelerates sufficiently fast such that

vi(t1) < vi+1(t1) for some t1 > t0. In this case, Theorem 4 can be applied at t = t1 to

guarantee platoon formation.

Finally, the behavior of the front CAV i = 0 depends on the context of the

platooning problem. The lead CAV may select any trajectory satisfying ai(t) ≤ 0 and

vi(t) ≥ vmin under our framework. For example, following ui(t) = 0 could minimize

transient energy operation while the drag force slows the vehicle down to the mini-

mum speed. Alternatively, to facilitate platoon formation, it may be practical to select

ai(t) = amin to reach the minimum speed as fast as possible. We apply the latter ap-

proach in the next sections to demonstrate emergent platoon formation in a simulated

and physical experiment.

3.1.4 Simulation Results

To validate our proposed control approach, we simulated a road 1750 m long with

3 on and off ramps. The on-ramps were located at 100, 600, and 1100 m, and the off-

ramps were at 500, 1000, and 1500 m. We simulated the flow of traffic over 140 seconds,

49

and we introduced vehicles to the system with a random delay T ∼ U
(
0.5, 1.5

)
seconds.

For each CAV i, we selected its initial and exit positions from a uniform distribution

over the four possible locations, i.e., the three on-ramps and an initial position of of

pi(t
0
i) = 0. Similarly, i may exit the highway at a distance of pi(t

f
i) = 1750 or at any

off-ramp beyond pi(t
0
i). After selecting its initial position, we discarded any CAV that

could not simultaneously satisfy (3.3), (3.4), and (3.9) for itself and the vehicle behind

it. This approach resulted in N = 136 vehicles entering the highway over 140 seconds,

yielding an average inflow of 3500 vehicles per hour.

We selected the arrival time for each vehicle after determining its feasible initial

state. For each CAV i, we drew the arrival time tfi from the uniform distribution,

tfi ∼ U
(Si − pi(t

0
i)

vi(t0i)
,
Si − pi(t

0
i)

vmin

)
, (3.34)

which guaranteed satisfaction of the deadline constraint (3.10) at t0i . In the case that

CAV i later was unable to achieve its deadline, i.e., (3.30) or (3.31) became active,

we relaxed the deadline constraint. In particular, when i satisfied (3.30) or (3.31) we

removed the deadline constraint from Problem 3 for i. If i later became the leader

of a platoon, we relaxed the drag minimization constraint (3.26) and required i to

accelerate until the deadline constraint (3.10) was satisfied. This achieved a balance

between energy-minimization and deadline satisfaction while guaranteeing safety, and

it circumvented the additional challenges of overtaking in a multi-lane highway envi-

ronment.

The vehicle trajectories are presented in Figs. 3.1 and 3.2, which show the

dynamic formation and break-up of platoons as vehicles enter and exit the system over

two 60 second windows of the simulation. Figs. 3.3 show a zoomed in region of Fig.

3.1 where vehicles entering at the 100 m on-ramp form a platoon at approximately 175

m. For further supplemental diagrams and videos see: https://sites.google.com/

view/ud-ids-lab/cdp.

50

https://sites.google.com/view/ud-ids-lab/cdp
https://sites.google.com/view/ud-ids-lab/cdp

Figure 3.1: Position vs time plot for the N = 136 CAVs over a 60 second window
of steady operation. Squares correspond to vehicles entering and exiting
the roadway; dash-dot lines correspond to on-ramps and dotted lines
correspond to off-ramps.

Figure 3.2: Position vs time plot for the N = 136 CAVs over the initial 60 second
transient. Squares correspond to vehicles entering and exiting the road-
way; dash-dot lines correspond to on-ramps and dotted lines correspond
to off-ramps.

51

Figure 3.3: A close up where 4 vehicles form a platoon near the on-ramp at 100 m.

52

3.2 A Constraint-Driven Approach to Line Flocking: The V Formation as

an Energy-Saving Strategy

3.2.1 Introduction

Generating emergent flocking behavior has been of particular interest since

Reynolds proposed three heuristic rules for multi-agent flocking in computer animation

[11]. In aerial systems, the main energy savings comes from upwash, i.e., trailing re-

gions of upward momentum in the slipstream, which followers exploit to reduce induced

drag and energy consumption. Flocking to minimize energy consumption is known as

line flocking in the engineering literature [9], and it is named on the biological behavior

of geese, pelicans, etc [13].

The simplest method to achieve a V formation may be to generate an optimal

set of formation points based on the aerodynamic characteristics of each agent. This

effectively transforms the line flocking problem into a formation reconfiguration prob-

lem, where each agent must assign itself to a unique goal and reach it within some

fixed time, as is the case in [30]. The physical effects of V formation flight were ex-

plored in a recent article [33], where the authors demonstrate that the leading and

trailing agents consume energy at a significantly higher rate. This implies that these

agents are the limiting factor in the total distance traveled, and the authors propose

a formation-reconfiguration scheme based on a load-balancing protocol. However, a

formation reconfiguration approach generally requires the formation to be computed

offline, and while some articles consider agent heterogeneity (e.g., age, weight, size,

and efficiency) [87], this has not yet been explicitly considered in a flocking problem.

Furthermore, the formation points must be recalculated online if an agent enters or

leaves the system, or if there are significant changes in the ambient environment.

An alternative approach, line flocking is a data-driven control technique that

involves measuring (or modeling) the aerodynamic and hydrodynamic interactions be-

tween agents so that they may dynamically position themselves to save energy. This is

53

achieved for aerial vehicles in R2 using a model predictive control approach [32]. The

authors construct a multi-objective optimization problem that minimizes speed differ-

ences, maximizes upwash benefit, and minimizes the field of view occlusion between

agents. This work demonstrates that solving this multi-objective optimization problem

yields emergent V formations, even when the agents are initialized randomly. A recent

review of related optimal flocking techniques is presented in [9].

Our approach, in contrast to existing work, is constraint-driven. In our frame-

work, agents seek to travel as efficiently as possible subject to a set of task and safety

constraints. This set-theoretic approach to control is interpretable, i.e., the cause of

an agent’s action can be deduced by examining which constraints become active dur-

ing operation. By examining the conditions that lead to an empty feasible space, our

framework also addresses the problem of constraint compatibility, i.e., how each agent

ought to behave when the intersection of all its constraints is the empty set. Our

approach is totally decentralized, and thus it is well-suited to “open systems,” where

agents may suddenly enter, leave, or experience failure.

In this work we describe anseroids (anserine-oid, meaning ‘goose-like’) that

generate dynamic echelon and V formations without any knowledge of the total number

of agents in the system, and which are not given any information about the desired

formation shape. To the best of our knowledge, the only result similar to ours is

[32], which uses particle swarm optimization combined with model predictive control

to solve an optimal control problem. However, their approach depends on a multi-

objective optimization problem with four components, and they provide no guarantees

on the emergence of flocking behavior. This work was also explored in a reinforcement

learning context in [88], which provides conditions for V formations not to occur.

Our contributions are as follows: (1) The first (to the best of our knowledge)

optimal control algorithm that guarantees emergent V formations as a means of energy

savings, (2) a physics-based flocking model where agent decisions are driven by the

environment, (3) an interpretable switching system architecture that describes the

54

optimal behavior of each UAV, and (4) compelling that shows energy savings is an

increasing function of flock diversity.

The remainder of the section is organized as follows. In Section 3.2.2, we discuss

our notation and present the dynamics of our problem. Next, we present our optimal

control problem and guarantees on its behavior in Section 3.2.3. Finally, in Section

3.2.4, we validate our results by simulating 4 UAVs in a 2D plane, where the vehicles

are initialized to form a vertical line.

3.2.2 Problem Formulation

3.2.2.1 Note on Notation

Most references on optimal control, e.g., [89, 90], consider centralized problems.

Thus, directly adopting their notation may lead to ambiguities about the state space

of a decentralized problem. To relieve this tension, we take the following approach for

an agent with index i: endogenous variables, e.g., the position of agent i, are written

without an explicit dependence on time, while exogenous variables, e.g., the position of

agent j as measured by agent i, are written with an explicit dependence on time. This

notation is common in the applied mathematics literature [91], and makes it explicitly

clear how functions evolve with respect to the state (e.g., state dynamics) and how

they evolve with respect to time (e.g., external signals measured by the agent).

3.2.2.2 System Dynamics

We consider a fleet ofN ∈ N fixed-wing uncrewed aerial vehicles (UAVs) indexed

by the set A = {1, 2, . . . , N}. We denote the state of each UAV i ∈ A by

xi :=

pi

θi

 , (3.35)

55

where pi ∈ R2 is the UAV’s position and θi ∈ R is the UAV’s velocity and heading

angle. Each UAV obeys unicycle dynamics,

ṗi =

vi cos θ
vi sin θ

 ,
θ̇i = ωi,

(3.36)

where vi ∈ R>0 and ωi ∈ R are the linear and angular speed of UAV i. We impose the

actuation constraints,

|ωi| ≤ ωmax,

0 < vmin ≤ vi ≤ vmax,
(3.37)

where ωmax is the maximum turning rate and vmin < vmax correspond to the minimum

and maximum air speed.

Finally, the total drag force acting on UAV i has the form,

Fi(xi, t) = C1v
2
i +

C2

v2i
− L

vi
W (pi, t) (3.38)

where C1, C2 ∈ R>0 capture the profile and self-induced drag that include the drag

coefficient, air density, and wing area. The function W : R2 × R → R describes the

scalar upwash field, which we formally define in Section 3.2.3. We impose the following

assumptions on our system.

Assumption 8. Each UAV is equipped with a low-level flight controller that can track

the sequence of control actions.

Assumption 9. The UAVs are operating in still air with constant aerodynamic prop-

erties.

We employ Assumptions 8 and 9 to determine the behavior of the system in

idealized conditions, and they are not restrictive on our analysis. In particular, apply-

ing adaptive and robust control techniques, such as control barrier functions [75] or

56

Gaussian Processes [92], can be used to overcome the resulting model mismatch.

Assumption 10. Collision avoidance between UAVs in A can be neglected.

Generally, vee formations have significant space between individuals without op-

portunities for collisions between agents [33, 87]. Thus, we impose Assumption 10 to

focus the scope of our work on the emergence of the vee formation. Furthermore, aero-

dynamic effects disincentive UAVs from approaching too closely, and collision avoidance

can always be guaranteed by introducing pairwise collision avoidance constraints [59].

Assumption 11. There exists a global heading angle θg and a small tolerance ϵ ∈ R>0

such that |θi − θg| < ϵ for all UAVs i ∈ A.

We impose Assumption 11 to simplify our analysis of the aerodynamics. First,

it allows us to consider spanwise cuts of the domain, which reduces our analysis from

2D to 1D. Second, it allows us to model the wake as a scalar field centered on each

UAV instead of modeling the wake evolution numerically, i.e., using computational fluid

dynamics. This assumption is common in the multi-UAV literature [32, 33], although

it is usually not stated explicitly. We impose this assumption as a constraint in our

final control algorithm, and it can be interpreted as the “migratory urge” proposed

by Reynolds [11]; the direction θg could also be computed using consensus, and some

agents could simply separate themselves from the flock if Assumption 11 becomes too

restrictive.

3.2.2.3 Wake Model

Under Assumption 11, we model the wake of each UAV i ∈ A, as a scalar field

centered at pi and aligned with θi. Physically, the upwash field is a consequence of

the pressure difference between the top and bottom of the wing [93]. This induces a

vortex at the wing tips, which generates an upward velocity (i.e., upwash) far from the

wing and downward velocity (i.e., downwash) behind the wing. Classically the wingtip

vortices have been modeled using irrotational flow [33, 93]. However, this model is

57

known to cause nonphysical behavior at the wing tips, where the vertical air speed

approaches infinity. In this work we augment the irrotational vortex model with a

rotational core, which drives the velocity to zero at the wing tips. Namely, each vortex

induces the upwash velocity,

ui(r) =


Γ

2πr
if r ≥ r∗,

Ωr if r ≤ r∗,

(3.39)

where ui is the vertical airspeed, r is the distance to the vortex center, Γ is the circu-

lation of the irrotational vortex, Ω is the angular rotation speed of the rotational core,

and

r∗ =
(Γ

2πΩ

) 1
2
. (3.40)

Note that under Assumption 11, the induced velocity field has the form,

f(y) = ui(y − b)− ui(y + b), (3.41)

where y is a relative spanwise position and 2b is the wingspan. The upwash distribution

is shown in Fig. 3.4.

In the streamwise, i.e., longitudinal direction, the wing interactions quickly coa-

lesce into the two strong wingtip vortices. As the vortices move aft from the wing, their

influence approximately doubles. Modeling the streamwise behavior of the vortices is

a challenging problem; we adopt the approach of [32] using a gaussian function,

g(x) = 2 exp−(x− µ)2

2σ2
, (3.42)

where µ determines the location of maximum upwash benefit, σ determines the wake

of the length, x is the relative streamwise position,. Finally, we define the relative

distance vector,

sij(pi, t) = pi − pj(t), (3.43)

58

Figure 3.4: Upwash velocity induced in the spanwise direction due to the wing tip
vortices.

and combine (3.41) and (3.42) yields an expression for the magnitude of UAV j’s

upwash on i,

wj
i (pi, t) := f

(
sij(pi, t) · ŷ

)
· g
(
sij(pi, t) · x̂

)
, (3.44)

where x̂, ŷ are unit vectors aligned with and perpendicular to θg, respectively.

3.2.3 Optimal Feedback Controller

We employ gradient flow to generate the control input for each vehicle. This a

gradient-based optimization technique, wherein each vehicle’s control action is a gradi-

ent descent step, and this technique has been used successfully to control multi-agent

constraint-driven systems [46, 75, 84]. Our motivation for gradient flow is twofold:

59

first, it enables the UAVs to immediately react to their surroundings without the com-

putational and communication costs associated with decentralized trajectory planning

[9, 47]. Second, it allows the UAVs to operate in an open system, i.e., it allows UAVs

to be arbitrarily added and removed to the domain without a priori knowledge. We

impose the following pairwise assumption to simplify our analysis, and derive rigorous

guarantees on the UAVs behavior.

Assumption 12. For each UAV i ∈ A, there is at most one UAV j ̸= i such that the

upwash force wj
i (pi, t) is not negligible.

Intuitively, Assumption 12 requires the UAVs to be sufficiently ‘close’ to a V or

echelon formation. This makes our analysis tractable, as each UAV must only consider

the influence of its immediate leader. We extend the results of this section to the

general case in Section 3.2.4, where the UAVs are simulated in 2D space, where we do

not force 12 to hold.

First, we seek the control input vi that minimizes the drag force on UAV i ∈ A,

i.e.,
∂Fi

∂vi
= 2C1vi − 2

C2

v3i
+
L

v2i
Wi(pi, t) = 0. (3.45)

Rearranging terms and multiplying by v3i yields,

v4i +
L

2C1

Wi(pi, t)vi −
C2

C1

= 0. (3.46)

Remark 2. Note that (3.46) minimizes the drag experienced by UAV i ∈ A, which

generally maximizes the distance traveled by the UAV per unit of energy expended.

Alternatively, one could minimize the power lost to drag by considering the product

of (3.38) and vi; this minimizes the power lost to drag, which generally maximizes the

flight time of the UAV. The following analysis holds for both cases.

Lemma 4. There is a unique real positive speed that minimizes the drag experienced

by each UAV i ∈ A.

60

Proof. The optimal airspeed for UAV i is the solution to (3.46), a quadratic function

of vi with the discriminant

∆4 = −

(
256

C2

C1

+ 27
(
− L

2C1

Wi(pi, t)
)4)

> 0, (3.47)

which implies that (3.46) has two complex conjugate roots and two real roots. The

imaginary roots satisfy,

v2i + bvi + c = 0, b2 − 4c < 0, (3.48)

and thus c > 0 . Next, polynomial long division of (3.46) on (3.48) yields a quadratic

form for the real roots and additional conditions on a and b, i.e.,

v2i − bv + b2 − c = 0, (3.49)

2bc+
L

2C1

Wi(pi, t)− b3 = 0, (3.50)

c2 − b2c− C2

C1

= 0. (3.51)

Condition (3.51) implies,

c(c− b2) =
C2

C1

> 0, (3.52)

which implies c > b2. Finally, applying the quadratic equation to (3.49) yields,

vi =
b±

√
−3b2 + 4c

2
. (3.53)

Multiplying the two real roots yields,

1

4

(
4b2 − 4c

)
= b2 − c < 0. (3.54)

Thus, the two real solutions to vi have opposite signs, and (3.46) has exactly one real

positive solution.

61

Note that following the proof of Lemma 4 it is possible to derive the optimal

airspeed analytically, but that is beyond the scope of this paper. Our next result

characterizes how the upwash benefit affects the optimal airspeed of each UAV.

Lemma 5. The optimal airspeed of UAV i decreases when gaining an upwash benefit

and increases when experiencing an upwash cost.

Proof. Consider a UAV i ∈ A flying in isolation. In this case W (pi, t) = 0, and the

optimal airspeed arises when (3.45) is satisfied, i.e.,

v∗i =
(C2

C1

)1/4
. (3.55)

Substituting this into (3.45) and rearranging terms implies,

v4i − (v∗i)
4 = − L

2C1

viWi(pi, t). (3.56)

Thus, as vi > 0 from Lemma 4, Wi < 0 (upwash cost) implies vi > v∗i and Wi > 0

(upwash benefit) implies vi < v∗i .

Lemma 6. Under Assumptions 11 and 12, a flock of N > 2 agents flying at their

optimal airspeed is unstable if their upwash benefit does not change sign; after finite

time, the upwash benefit of each UAV approaches zero.

Proof. Let every UAV i ∈ A fly at their optimal airspeed v∗i , i.e., the speed that

minimizes (3.38). Without loss of generality, consider some UAV i satisfyingW (pi, t) >

0. Under Assumption 12 there exists exactly one UAV j such that wj
i (pi, t) > 0. By

definition, wj
i (pi, t) << wi

j(pi, t) due to the asymmetry of the upwash field. Thus,

either W (pi, t) > W (pj, t), or there exists some UAV k ∈ A such that wk
j (pk, t) =

wj
i (pi, t). Repeating the above process for a finite swarm size of N > 2 eventually

yields UAV f ∈ A, the front agent that recieves a reduced upwash benefit. Thus,

v∗f > v∗i , where v
∗
f is increasing, by Lemma 5; thus UAV f will satisfy W (pf , t) = 0 in

finite time, and this result holds for all UAVs in the system.

62

Theorem 6. Under Assumption 11, flying at the optimal air speed never leads to an

energy-saving emergent V formation for N > 2 UAVs.

Proof. Theorem 6 follows from Lemma 6 in the case that UAVs cannot change the sign

of their upwash benefit. The UAVs could maintain a V formation if they maintain a

lateral spacing of b, however, this configuration is unstable by Lemma 6. Thus, under

Assumption 12, the UAVs can only maintain this configuration by chattering around

the unstable equilibrium point—yielding no benefits in terms of energy savings.

Theorem 6 demonstrates that simply flying at the energy-optimal airspeed can

never lead to emergent line flocking! This highlights a significant shortcoming within

applying the robot ecology approach [94] to line flocking. Specifically, if each UAV

i ∈ A minimizes its acceleration subject to a constraint that matches v∗i as closely as

possible, then an energy-saving V formation can not occur. The same result holds if i is

constrained to maximize its upwash benefit [86] instead. Therefore, rather than mini-

mizing the “energy” spent to actuate by minimizing acceleration, we propose that each

agent ought to minimize its “locomotive power” expended through the cost function,

J(xi) =
(vi − v∗i
vmax − vmin

)2
+
(ωi

ωmax

)2
, (3.57)

where v∗i is the unique optimal airspeed (Lemma 4) and both cost components are

normalized. Employing the cost (??) is a subtle change, but it ends up playing a

critical role in the generation and stabilization of emergent V formations.

Next, we estimate the wake interaction of UAV j on i ∈ A using our simplified

aerodynamic model. To simplify our notation, we use the scalars xi and yi denote

the relative position of i with respect to j in the streamwise and spanwise directions,

respectively. First, we estimate how UAV i tends to roll due to the local flow field by

63

evaluating the integral,

mi(xi, yi, t) = g(xi)

∫ yi+b

yi−b

(ξ − yi)f(ξ)dξ. (3.58)

Similarly, we can estimate the lift induced on the wing through momentum transfer,

wi(xi, yi, t) = g(xi)

∫ yi+b

yi−b

f(ξ)dξ. (3.59)

Note that both (3.58) and (3.59) both have analytical closed-form solutions. The

irrotational flow far from the wing-tip is integrable, and it transitions to an affine

function near the wing tip. Taking the sum of (3.59) over all UAVs determines the

aggregate upwash effect on i,

Wi(pi, t) =
∑

k∈A\{i}

wk(pi, t),

Mi(pi, t) =
∑

k∈A\{i}

mk(pi, t),
(3.60)

where pi must be projected onto the streamwise and spanwise components of UAV k

to yield xi and yi. Note that (3.60) should be multiplied by a constant to compute

the upwash force in the correct units. However, as we only consider the sign of the

derivative of each term, any positive scaling factor is irrelevant to our analysis.

Next, we estimate the cost required for UAV i to maintain a constant altitude

and orientation in the presence of the upwash field. In particular, the UAV must

expend energy to counter-roll against a non-zero moment, and it must pitch upward

to counteract a negative upwash. This leads to an intuitive physics-based description

of the cost to flock,

Ei(pi, t) = κ|Mi(pi, t)| − Fi(pi, t), (3.61)

where κ is a system parameter that captures the tradeoff between the cost to roll and

64

Figure 3.5: Upwash force and moment curves calculated by integrating the upwash
velocity field along the wingspan at each point in the domain.

the cost to pitch upward. Finally, we require each UAV to satisfy,

Ėi(pi, t) ≤ 0, (3.62)

where Ei(pi, t) has a finite lower bound. Thus, each UAV is driven toward an equilib-

rium point where the energy lost through wake interactions is minimized, or equiva-

lently, the energy saved by flocking is maximized. Intuitively, the equilibrium points

occur where the upwash benefit dominates over the correcting moment. By inspection

of Fig. 3.5, this occurs slightly past the wingtips, which agrees with existing literature

[33, 87]. Explicitly finding the equilibrium points, and determining the values of κ

65

that enable emergent flocking behavior, is the subject of an article in preparation and

is beyond the scope of this dissertation. Supported by our prior analysis, we propose

Problem 4, which each UAV solves to determine its control input at each time instant.

Problem 4. Each UAV i ∈ A takes the optimal control input that optimizes,

min
vi,ωi

{(vi − v∗i
vmax − vmin

)2
+
(ωi

ωmax

)2}
subject to: (3.36), (3.37),

Ė(pi, t) ≤ 0

|θi − θg| ≤ ϵ,

where θg is the global heading angle (Assumption 11), which is selected a priori by a

designer.

It is possible for the feasible region of Problem 4 to become empty. This is

intuitive, for example, if a UAV overshoots the upwash peak; it cannot continue forward

and decrease Ė(pi, t), but it cannot travel slower than vmin. This is known as the

constraint compatibility problem, and it is well-studied in the set-theoretic control

community [29, 47, 73, 95]. Generally, the problem of constraint incompatibility has

been solved in the ecologically-inspired robotics literature by introducing slack variables

[29, 45]. However, this is not fundamentally different from moving the constraint into

the objective function to make it ‘soft.’ A foundational paper in multi-agent control

barrier functions proposed operating the system in two modes [95]: a nominal mode

where the agents solve the optimal control problem, and a ‘safe mode’ where the

agents come to a stop when the feasible space is empty. We take this approach to

its logical conclusion - when the feasible space of Problem 4 is empty, the controller

switches modes and solves a relaxed version of the problem. Note that determining the

conditions of constraint incompatibility for this system is ongoing work; the constraint

incompatibility problem and a derivation of an equivalent switching system is further

66

discussed in the final section of this chapter, and the switching system for this problem

is presented in Fig. 3.6.

Figure 3.6: The behavior of each UAV visualized as a switching system. The feasible
space of Problem 4 determines when the UAV should solve the original
or the relaxed optimal control problem.

When Problem 4 has no feasible solution, it is unreasonable to relax the con-

straints corresponding to the dynamics or control constraints; are options are to either

relax Ėi < 0 or |θi − θg| ≤ ϵ. We propose that the former should be relaxed to main-

tain Assumption 11; we present the relaxed optimal control problem with Problem 5,

followed by a result that shows such a relaxation only lasts for a finite time interval.

Problem 5. Each UAV i ∈ A takes the optimal control input that optimizes,

min
vi,ωi

{(vi − v∗i
vmax − vmin

)2
+
(ωi

ωmax

)2}
subject to: (3.36), (3.37),

|θi − θg| ≤ ϵ,

where θg is the global heading angle (Assumption 11).

If UAV i has a feasible initial state, it is trivial to show that the control action

vi = max
{
min

{
v∗, vmax

}
, vmin

}
,

ωi = 0,
(3.63)

67

is the optimal solution to Problem 4. Thus, Problem 5 is a ‘safe state’ that retains

some structure of the original problem, i.e., it doesn’t require the UAVs to come to a

complete stop or travel at vmin. Next, we prove that each UAV will only need to solve

Problem 5 for a finite amount of time before the constraint can be un-relaxed.

Corollary 1. Any UAV will only solve Problem 5 for a finite interval of time before

switching back to Problem 4.

Proof. Corollary 1 follows trivially from Lemma 6; any UAV i will satisfy Wi = 0 after

a finite amount of time such that Ė = 0 for all control actions.

3.2.3.1 Implementation

We foresee two major issues when solving Problem 4 on a real system. The first

is a sensing issue, namely determining the value of Mi and Wi for each UAV i ∈ A.

Our proposed solution is to rely on Assumption 8, i.e., that the UAV is equipped with

a low-level tracking controller. At the tracking level, the upwash force and induced roll

act as disturbances on UAV. By monitoring the roll and pitch signals, it is possible

to infer the upwash force and induced moment. Thus, we propose that the flocking

cost Ei and the optimal airspeed v∗i can be inferred by sampling the low-level control

signals, as demonstrated in Fig. 3.7.

The second issue is information-theoretic, namely calculating the time derivative

of Ei for each UAV i ∈ A. The gradient can be implied from periodic measurements,

but it also has a time-varying component, i.e.,

Ė =
∂E

∂t
+
∂E

∂pi

ṗi, (3.64)

where the non-smooth points in dE
dp

can be handled with differential inclusions [96].

Each UAV i can estimate ∂E
∂pi

, and ṗi is known, but i must also have knowledge

of vj to compute ∂Ei

∂t
. Similarly, UAV j must have knowledge of vi to compute

∂Ej

∂t
;

68

Figure 3.7: Proposed control diagram that infers the upwash force and moment im-
posed on the UAV by sampling signals from the onboard flight controller.

this is the fundamental problem of simultaneous actions in decentralized control. One

popular approach is to use a consensus protocol to estimate ∂E
∂t
, e.g., ADMM [97], which

has shown some success in the flocking literature [98]. Alternatively, it is possible for

the agents to iteratively generate trajectories to converge on a locally optimal control

strategy, [26, 99]. To minimize the iterative and communication cost, we instead chose

to estimate Ė and demonstrate that the estimation error converges to zero. Each UAV

estimates Ė by predicting control action of nearby agents. Starting at the front of the

flock, each UAV i updates its control action, which all other UAVs store. Thus, the

front UAV assumes that each of the followers moves at a constant speed [78], while the

following UAVs can dynamically react to the control action of the leader. Ties in the

sequence of updating are arbitrarily broken by vehicle index. This UAV sequencing

69

strategy is supported by Assumption 12 and the fact that each vehicle is primarily

affected by the wake of the vehicle in front of it. We demonstrate that the system,

under this update scheme, approaches a steady V formation in the following section.

3.2.4 Simulation Results

To demonstrate the performance of our control algorithm we simulate a system

of N = 4 UAVs Using data for the RQ-11 Raven [100] and the update scheme pro-

posed in Section 3.2.3.1. The Raven weighs 18.7 N, with a 1.4 m wing span and a

nominal speed of 12 m/s. Approximating the density of air as ρ = 1.2 kg/m3 yields

the irrotational vortex strength using the Kutta-Joukowski theorem [93],

Γ =
L

2bρu
=

18.7

1.2 · 1.2 · 9
≈ 1.3 m2/s. (3.65)

We expect r∗ to be ≈ 5% of the span length (e.g., [32] uses 5.4%); thus we select

r∗ = 0.054 m. This implies,

Ω =
Γ

2π(r∗)2
≈ 70 m/s2. (3.66)

Next, we select C2 = C1 = 1. We initialize the UAVs in a vertical line with

an initial orientation of θG = 0 and a center-to-center spacing of 3b = 2.1 m. We

present a sequence of simulations in Fig. 3.8, which demonstrates how the agents

initially coalesce to maximize their upwash benefit, begin to align in the north-eastern

direction, and eventually form a V formation.

To quantify the impact of the V formation, we selecte κ = 1 and calculated

the cost functional Ei for each UAV i ∈ A at each time step. We present the total

cost, the maximum cost, minimum cost, and terminal cost for each UAV in Table 3.1.

Note that a cost of zero corresponds to the agent flying in isolation; while the UAVs

do occasionally experience a positive cost during the initial transient, the total cost

for each UAV shows significant energy savings. The instantaneous cost is presented

70

Figure 3.8: A sequence of simulation snapshots over 40 seconds for N = 4 UAVs
initialized in a line formation

in Fig. 3.9, which shows the minimum, maximum, and mean velocity of the system.

The system-level cost is the mean cost multiplied by by N = 4 agents. Finally, we can

see that the cost remains relatively constant for the last 10 seconds of the simulation,

implying the UAVs have reached a steady-state configuration.

3.2.5 A Note on Heterogeneity

One serendipitous result of this work is evidence that introducing heterogeneity

has the potential to further improve the fuel consumption of all UAVs. Theorem 5

demonstrates that any UAV gaining an upwash benefit has a lower optimal speed than

when flying in isolation. However, each UAV must match the speed of the UAV in

front of it to maintain the formation. Thus, if UAVs toward the front of the flock have

71

UAV 1 UAV 2 UAV 3 UAV 4

Total Cost -2.5 -11.2 -65.1 -46.5
Max Cost 0.2 6.9 4.5 0.6
Min Cost -0.5 -5.6 -8.4 -4.4

Terminal Cost 0 -0.1 -0.1 -2.0

Table 3.1: The energy cost for each UAV, including the total cost over the entire
period, the maximum and minimum instantaneous value of the cost, and
the cost value of the final time step.

a lower (isolated) optimal speed, the following UAVs can expend less energy while

still maintaining the flock’s shape. This heterogeneity could be introduced through

the mechanical and aerodynamic design of the agents, but the most straightforward

approach is to have UAVs with reduced mass, e.g., less fuel or a smaller payload, move

toward the front of the formation; a smaller mass requires less lift to maintain a constant

height, which reduces the induced drag—and thus reduces the optimal airspeed.

72

Figure 3.9: Maximum, minimum, and mean cost experienced by the UAVs for the
duration of the simulation. A cost of zero corresponds to flying in isola-
tion.

3.3 Constraint-Driven Optimal Control for Emergent Swarming and Preda-

tor Avoidance

3.3.1 Introduction

In this section, we derive a distributed control algorithm that induces cluster

flocking in a multi-agent system. Prior work has primarily relied on reinforcement

learning to achieve predator avoidance, including a multi-level approaches [101] and

policy sharing [17, 102]. Traditional control approaches tend to achieve swarming

behavior by implementing Reynolds flocking rules using potential fields [9]. These

approaches have two major drawbacks. First, they inevitably drive agents into a regular

73

lattice formation [8], which is not conductive to swarming. Second, potential fields are

known to cause steady oscillation in agent trajectories and exacerbate deadlock in

constrained environments [15].

In contrast to existing approaches, we propose a biologically-inspired approach

based on an analysis of sand-eel schools in the presence of predators [103] built on our

previous work with set-theoretic control [59, 104, 105], where we embed inter-agent

and environmental interactions as state and control constraints in an optimal control

problem. Our set-theoretic approach has the advantage of being interpretable, i.e., the

cause of an agents’ action can be deduced by examining which constraints are currently

active. Our technical results are closely related to the control barrier function (CBF)

literature, particularly multi-agent CBFs [75]. However, our approach does not require

the constraints to be encoded as sub-level sets of a continuous function—we work with

the sets directly. We also propose a solution to the open problem of constraint incom-

patibility through an event-triggered constraint relaxation scheme. Finally, we present

a mapping between constraint-driven control and switching systems, which provides a

rigorous and interpretable description of each boids’ behavior. The contributions of this

section are: 1) a decentralized optimal control algorithm that yields emergent swarming

behavior (Problem 6), 2) an event-triggered scheme to selectively relax constraints and

guarantee feasibility (Lemmas 7–9), 3) a rigorous mapping between constraint-driven

control and switching systems (Definition 12), and 4) simulation results demonstrating

emergent cluster flocking and predator avoidance behaviors (Section 3.3.4).

The remainder of the section is organized as follows. In Section 3.3.2, we for-

mulate the cluster flocking problem and discuss our working assumptions. In Section

3.3.3, we derive our optimal control policy, derive the safe action sets, and map the

problem to a switching system. Finally, in Section 3.3.4, we validate our results in two

simulations with 15 boids; the first demonstrates emergent cluster flocking, and the

second demonstrates predator avoidance.

74

3.3.2 Problem Formulation

We consider a set of N ∈ N boids indexed by the set B = {1, 2, . . . , N}. Each

boid i ∈ B obeys second-order integrator dynamics,

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(3.67)

where pi(t),vi(t) ∈ R2 correspond to the position and velocity of each boid, and

ui(t) ∈ R2 is the control input. We also impose the state and control constraints,

pi(t) ∈ P , (3.68)

ui(t) ∈ U , (3.69)

where P ⊂ R2 is a non-empty intersection of half-planes and U = {u ∈ R2 : ||u||∞ ≤

umax} ensures the boids’ do not exceed their maximum control input. We employ the

infinity norm to simplify our mathematical exposition; however, the norm does not

impose any restrictions in our approach.

We account for interactions between boids using Voronoi tessellation [106]. Un-

der this approach, each boid is considered the center of a Voronoi cell. We define the

Voronoi set V(t)⊂B×B to contain (i, j) and (j, i) when the Voronoi cells i and j share

a common edge. Equivalently, the set V(t) is the Delaunay triangulation of the boids’

positions.

Definition 10 (Voronoi Neighborhood). The neighborhood of each boid i ∈ B is the

set,

Ni(t) :=
{
j ∈ B : (i, j) ∈ V(t)

}
, (3.70)

where boid i can receive information, via communication or sensing, with any other

boid j ∈ Ni(t).

As with k−nearest neighbors, the sensing radius of a Voronoi neighborhood may

75

grow unbounded in general. Similar to past work [104, 107], we do not presume the

boids possess infinite sensing capabilities; rather that Definition 10 describes the inter-

actions between boids over their relatively small separating distances. One potential

solution is to only consider Voronoi neighbors that are within a fixed sensing range

[106], although results from biology demonstrate that this is, in general, unnecessary

[108].

Our objective is to generate emergent swarming behavior, such that the boids

remain close to their neighbors to avoid predators [13, 102, 103]. To achieve an ag-

gregate swarming motion, we implement a variation of the disk flocking constraint

proposed in [104]. First, we determine the neighborhood center for each boid i ∈ B,

ci(t) =
1

|Ni(t)|
∑

j∈Ni(t)

pj(t). (3.71)

Note that Definition 10 guarantees |Ni(t)| > 0. We use the neighborhood center to

construct the relative position vector,

ri(t) := pi(t)− ci(t). (3.72)

Finally, to achieve swarming, we require each boid i to approach and remain within a

distance R ∈ R>0 of the neighborhood center, i.e.,||ri(t)|| −R if ||ri(t)|| ≤ R,

||ṙi(t)||
umax

ui(t) · ri(t) + ṙi(t) · ri(t) if ||ri(t)|| > R,

≤ 0.

Note that the first case is trivially satisfied, i.e., the boid must remain within the disk

while inside the disk. Thus, we write

||ri(t)|| > R =⇒
||ṙi(t)||
umax

ui(t) · ri(t) + ṙi(t) · ri(t) ≤ 0. (3.73)

76

We emphasize that our objective is not to trap boid i within the disk of radius R

centered at ci(t). Instead, we expect the switching neighborhood topology and dynamic

motion of ci(t) to drive the swarming behavior. Additionally, the form of (3.73) is

inspired by energy-saving techniques in [109]. Note that when boid i travels in the

“correct” direction, i.e., ṙi(t) · r < 0, the control action ui(t) can take some values in

the same direction as ri(t). However, when boid i is traveling in the “wrong” direction,

i.e., ṙi(t) · ri(t) > 0, the control action ui(t) must be at least partially opposed to ri(t)

to drive boid i toward ci(t).

Next, inspired by the empirical data collected on sand-eels [103], we model the

predator as a ball of radius Γ. We define the relative distance vector between each

boid i and the predator as,

di(t) := pi(t)− oi(t), (3.74)

where oi(t) is the position of the predator at time t. To ensure predator avoidance,

we select a value of Γ larger than the diameter of the predator and employ a similar

constraint to repel the boids,

||di(t)|| < Γ =⇒

− ||ḋi(t)||
umax

ui(t) · di(t)− ḋi(t) · di(t) ≤ 0. (3.75)

With the constraints defined, our next objective is to design an optimal control problem

such that the individual boid motion generates emergent swarming behavior. To this

end, we impose the following assumptions on our system.

Assumption 13. Each boid is equipped with a low-level controller that is capable of

tracking the control input.

Assumption 14. Communication and sensing between the boids occurs instanta-

neously and noiselessly.

We impose Assumptions 13 and 14 to simplify our analysis and understand

77

how the system performs in the ideal case. Assumption 13 is common for trajectory

generation problems, and it can be relaxed by introducing robust control terms or a

safety layer, e.g., using a control barrier function [110]. Similarly, Assumption 14 can

be relaxed by including time delays and uncertainty explicitly in the formulation and

applying stochastic [66] or robust [92] control techniques.

Assumption 15. The boids have sufficient vertical space to avoid collisions between

each other without an explicit collision-avoidance constraint.

Assumption 15 is common in 2D swarming applications [102, 111]. Furthermore,

it has been thoroughly demonstrated that adding an extra dimension of motion can

significantly reduce the likelihood of collisions [68].

3.3.3 Solution Approach

We employ constraint-driven control to generate the control input for each boid.

This is an optimization approach wherein the desired behavior of each boid is encoded

as a constraint in an optimal control problem. This technique has been used success-

fully to control multi-agent systems [46, 75, 84]. Each boid solves the optimal control

problem reactively, i.e., they take an action at each time-instant without a planning

horizon. Our motivation for this is twofold: first, it overcomes the computational and

communication costs associated with decentralized trajectory planning [9]. Second, it

allows boids to freely enter and leave the domain, e.g., due to operating constraints,

mechanical failure, or predation, as the constraint boundaries are a function of the local

system state. For the remainder of our exposition, we omit the explicit dependence of

state variables on t when no ambiguity arises.

We start with the position constraint (3.68), which is not an explicit function

of the control input. Let k = 1, 2, . . . ,M index the M hyperplanes that define the

boundary of P . Each hyperplane k = 1, 2, . . . ,M consists of a normal vector n̂k ∈ R2

78

and offset bk ∈ R; the signed distance to the surface of hyperplane k is,

dik = pi · n̂k + bk, (3.76)

for boid i ∈ B. Note that our convention assumes the normal vector nk points away

from the feasible region P . To guarantee constraint satisfaction, we require the deriva-

tive of (3.76) to be non-positive when the constraint is active, i.e.,

pi · n̂k + bk = 0 =⇒ vi · n̂k ≤ 0. (3.77)

This safety constraint (3.77) can be achieved by using a stopping distance constraint

for each k = 1, 2, . . . ,M [46],

gik =
(
pi · n̂k + bk

)
+ α

(
vi · n̂k

)2
2umax

≤ 0, (3.78)

where α ∈ R>0 is a parameter that determines the stopping distance. Note that (3.78)

trivially satisfies (3.77). This leads to our definition of the safe action set.

Definition 11 (Safe Action Set). For each boid i ∈ B at time t, the safe action set is,

As
i :=

{
ui ∈ R2 : ||ui||∞ − umax ≤ 0,

(
pi · n̂k + bk

)
+ α

(
vi · n̂k

)2
2umax

= 0 =⇒

vi · n̂k

(
1 +

α

umax

(ui · n̂k)
)
≤ 0,

∀k = 1, 2, . . . ,M
}
.

In our approach, we constrain the boids to remain within an axis-aligned rectan-

gular domain, i.e., P is constructed from two pairs of parallel hyperplanes that intersect

at right angles.

With the safe action set and constraints defined, each boid i also requires a

79

notion of performance to select the “best” control input. Following the ecologically-

inspired paradigm [45] would suggest minimizing the norm of the control input; this

arguably yields a minimum effort policy. However, we have previously demonstrated

that selecting an appropriate objective function is critical to achieve a desired emergent

behavior [46]. As discussed in [103], sand-eels tend to cruise at a constant speed of

approximately 2 body lengths per second. Thus, we require each boid to match an

optimal swimming speed, denoted ||v∗
i ||, as closely as possible, i.e.,

Ji
(
vi(t)

)
=
(
||vi(t)+ui(t)dt|| − ||vi

∗||
)2
. (3.79)

We interpret the optimal swimming speed as being bio-mechanically advantageous,

i.e., if J = ||ui|| minimizes energy consumption, then (3.79) corresponds to minimum-

power locomotion. Combining the cost (3.79) with the previously described constraints

yields the optimal control problem solved by each boid.

Problem 6. For each boid i ∈ B at time t, apply the control action that solves,

min
ui(t)

(
||vi(t) + ui(t)dt|| − ||vi

∗||
)2

subject to:

ui(t) ∈ As
i , (3.67), (3.73), (3.75).

Next, we present a result that guarantees recursive feasibility for the safe action

set.

Theorem 7. For a fixed value of α ≥ 1, if a boid i ∈ B satisfies (3.78) at some time t

for a rectangular domain P , then As
i satisfies recursive feasibility for all future time.

Proof. Let the rectangular domain P consists of four hyperplanes, indexed by k =

1, 2, 3, 4 such that n̂1 = −n̂3 and n̂2 = −n̂4. Without loss of generality, let vi · n̂1 > 0

and vi · n̂2 > 0. When the safety constraint (3.78) is not active, boid i may take any

80

action satisfying the control bounds (3.92). However, when (3.78) is active, we must

ensure its derivative is non-positive to guarantee safety. Taking the derivative of (3.78)

and combining terms yields,

ġik = vi · n̂k

(
1 +

α

umax

(
ui · n̂k

))
. (3.80)

We seek a control input such that ġik ≤ 0. For k = 1, 2, dividing by vi · n̂k > 0 yields

a condition on ui,

ui · n̂1 ≤ −umax

α
, ui · n̂2 ≤ −umax

α
. (3.81)

Similarly, for k = 3, 4, dividing by vi · n̂k < 0 implies,

ui · n̂3 ≥ −umax

α
, ui · n̂4 ≥ −umax

α
. (3.82)

Substituting n̂1 = −n̂3 and n̂2 = −n̂4 into (3.82) yields the conditions,

ui · n̂1 ≤
umax

α
, ui · n̂2 ≤

umax

α
. (3.83)

Thus, to guarantee gik is nonincreasing, the control input must satisfy (3.81) and (3.83),

i.e.,

ui · n̂1 ≤ −umax

α
≤ umax

α
, (3.84)

ui · n̂2 ≤ −umax

α
≤ umax

α
. (3.85)

This is satisfied by the candidate control action,

ui = −umax

α
n̂1 −

umax

α
n̂2, (3.86)

as n̂1 · n̂2 = 0 by definition. In our axis-aligned domain, the control constraint implies,

81

||ui||∞ = max

{
umax

α
,
umax

α

}
=

1

α
umax, (3.87)

which satisfies (3.69) for α ≥ 1. Finally, for the case that vi·n̂k = 0 for any k = 1, 2, 3, 4,

the corresponding derivative ġik = 0 for every control input.

Thus, given a feasible initial state, Theorem 7 guarantees that each boid’s trajec-

tory will remain feasible indefinitely if its control action is selected from As
i . However,

we require each boid to jointly satisfy the safety, swarming (3.73), and predator avoid-

ance (3.75) constraints to achieve emergent cluster flocking behavior. Thus, guarantee-

ing the recursive feasibility of As
i is insufficient to ensure a feasible control action exists.

The following results provide the explicit conditions for constraint incompatibility, i.e.,

when the set of feasible control actions becomes empty.

Lemma 7. For a boid i ∈ B, let k = 1, 2 index two perpendicular hyperplanes in the

rectangular domain such that vi · n̂k ≥ 0. Then, if (3.78) is strictly equal to zero and

||ri|| > Ri, there is no feasible action if none of the conditions,

||ṙi||

(


1

α−1

1

α−1

 (n̂1 · r̂i) +


1

1

α−1

α−1

 (n̂2 · r̂i)

)
≥ ṙi · r̂i, (3.88)

hold at time t for k = 1, 2.

Proof. Under the premise of Lemma 7, we must determine when the constraint,

||ṙi||
umax

ui · r̂i + ṙi · r̂i ≤ 0, (3.89)

(3.90)

82

is incompatible with As
i . First, ṙi = 0 satisfies (3.89) for any ui, thus, we may divide

(3.89) by ||ṙi|| and work with unit vectors for the remainder of the proof, i.e.,

1

umax

ui · r̂i + ˆ̇ri · r̂i ≤ 0. (3.91)

Next, we consider the control ui = −u1n̂1−u2n̂2. From the proof of Theorem 7, (3.69)

and (3.81) imply that u1 and u2 must satisfy,

1 ≥ u1
umax

≥ 1

α
, 1 ≥ u2

umax

≥ 1

α
. (3.92)

The swarming constraint (3.91) becomes,

u1
umax

(n̂1 · r̂i) +
u2
umax

(n̂2 · r̂i) ≥ ˆ̇ri · r̂i. (3.93)

The result follows from substituting the bounds (3.92) into (3.93).

Lemma 8. For a boid i ∈ B, let k = 1, 2 index two perpendicular hyperplanes in the

rectangular domain such that vi · n̂k ≥ 0. Then, if (3.78) is strictly equal to zero and

||di|| < Γ, there is no feasible action if none of the conditions,

||ḋi||

(


1

α−1

1

α−1

 (n̂1 · d̂i) +


1

1

α−1

α−1

 (n̂2 · d̂i)

)
≤ ḋi · d̂i, (3.94)

hold at time t for k = 1, 2.

Proof. The proof Lemma 8 is identical to Lemma 7, and thus we omit it.

Lemma 9. For a boid i ∈ B, let k = 1, 2 index two perpendicular hyperplanes in

the rectangular domain such that vi · n̂k ≥ 0. Then, if (3.78) is strictly equal to

83

zero, ||ri|| > Ri, and and ||di|| > Γ, there is no feasible control action if the linear

inequalities,  ||ṙi||n̂1 · r̂i ||ṙi||n̂2 · r̂i
−||ḋi||n̂1 · d̂i −||ḋi||n̂2 · d̂i

 u1

umax

u2

umax

 ≥

 ṙi · r̂i
−ḋi · d̂i


has no solution that also satisfies 1

α
≤ u1

umax
≤ 1 and 1

α
≤ u2

umax
≤ 1.

Proof. The proof of Lemma 9 is constructed by satisfying Lemmas 7 and 8 jointly.

The existing ecologically-inspired robotics literature suggests employing slack

variables to manage constraint incompatibility [29, 45]. However, it is unclear why one

would add slack to the predator avoidance constraint when the premise of Lemma 8

is not satisfied. For this reason, we use Lemmas 7–9 to selectively relax the predator

avoidance and swarming constraints; this implies an equivalent switching system that

completely describes the behavior of each boid. We define this system next.

Definition 12. Each boid i ∈ B can be modeled as a switching system with three

states: 1) Nominal, which considers all constraints; 2) Strained, which relaxes the

swarming constraint; and 3) Evasive, where the boid executes an evasive maneuver.

Boid i transitions between these states based on whether the premises of Lemmas 7–9

are satisfied at each time; this is described by Fig. 3.10.

Note that defining an appropriate evasive behavior when Lemma 8 holds, e.g.,

a fountain [112] or flash [103] maneuver, is beyond the scope of this work; in our

simulations (Section ??), we simply relax the predator-avoidance constraint. The

final step is to tune the system parameters, which we discuss, along with the simulation

results, in the following section.

3.3.4 Simulation

To validate our optimal control policy, we solved Problem 6 for N = 15 boids

over a 120 second time interval. Next, we present our simulation parameters and the

84

Figure 3.10: A switching system that describes each boids’ feasible action space based
on whether the premise of Lemmas 7–9 are satisfied.

physical intuition behind them, followed by simulations that demonstrate the desired

cluster flocking and predator avoidance behaviors. Additional details and simulation

videos can be found on the dedicated website of the original manuscript, https://

sites.google.com/view/ud-ids-lab/swarming.

Based on the information given in [103], we selected a diameter of 5 cm for

each boid, which implies an optimal speed of approximately 12.5 cm/s. Intuitively,

it is desirable for each boid i ∈ B to have a small actuation limit relative to the

desired speed. Each boid ought to approach its neighborhood center ci at a high

speed, overshoot it, and circle back toward ci in a wide arc. This circling motion will

also influence the topology of the Voronoi neighborhoods, which will further perturb

the flock. Ideally, these perturbations will push some boids to the edge of the flock to

counteract flock collapse [8]. Additionally, we select a square domain P that is large

enough for cluster flocking to occur. We summarize our simulation parameters in Table

3.2.

To simulate the swarming behavior, we initialize all boids at rest with random

initial positions within the domain P such that none overlap. At each time step,

85

https://sites.google.com/view/ud-ids-lab/swarming
https://sites.google.com/view/ud-ids-lab/swarming

Table 3.2: Simulation parameters used to generate swarming behavior.

Domain Size (m) v∗ (m/s) umax (m/s2) R (cm) Γ (cm)

6 0.125 0.1 2.5 25

we solve Problem 6 and may relax some constraints according to Definition 12. The

behavior of the swarm is visualized in Figs. 3.11 and 3.12, which show two time

snapshots from the simulation. Figure 3.11 shows the initial behavior of the boids

21 seconds into the simulation. Starting near the center of the domain, the boids

begin travelling in the north-western direction and exhibit a swirling motion. This is is

visible from their tails, which show 8 seconds of trajectory history. After reaching the

north-western hyperplane, the boids quickly turn around and travel to the south-east.

Figure 3.12 shows behavior qualitatively similar to the cruising behavior described by

[103], where their velocities are relatively constant in direction and magnitude.

Next, we introduce a simple predator model. The data in [103] implies that

individual sand-eels treat predators as a moving obstacles. In fact, they explicitly

state that “... the mackerel ate very few of the sand-eels throughout the duration of

the experiment ...”—implying that the predator avoidance behavior ought to emerge

without an antagonistic predator model. With this justification, our predator follows

a simple rule: orient toward the center of the boid flock and travel in a straight line

for 8 seconds. The predator moves 20% faster than the boids, and as such it is able

to pass through the swarm and influence its behavior. We found that 8 seconds was

a reasonable tradeoff to have the predator make several passes through the swarm

without requiring significantly more simulation time. As with the previous simulation,

the flock quickly formed and began cruising across the domain. The predator made

multiple passes through the swarm, and each time the boids avoided the predator and

quickly reformed. A simulation snapshot is presented in Fig. 3.13 near t = 52 s, where

the boids qualitatively exhibit the vacuole behavior seen in the sand-eel experiments

[103].

86

Figure 3.11: Boids circling and forming the initial flock at approximately t = 21
seconds; tails show 8 seconds of trajectory history.

Finally, we saved the size of each boids’ neighborhood (Definition 10) at each

time instant throughout the simulation. A histogram of neighborhood size is given in

Fig. 3.14 for the simulation containing the predator. The distribution of neighborhood

sizes approximates a discrete Weibull distribution, with 4 neighbors being the most

frequent. This supports existing results in the biology literature [108], which claims

that only considering 3–5 neighbors may be optimal for predator avoidance in 2D

swarms.

87

Figure 3.12: Boids cruising to the south-east at approximately t = 85 seconds after
reaching the north-west wall and changing direction; tails show 8 sec-
onds of trajectory history.

88

Figure 3.13: Left: apparent vacuole behavior exhibited by the boids the predator
approaches from behind. Right: vacuole behavior observed in sand-
eels, recreated from Pitcher and Wyche (1983).

89

Figure 3.14: Neighborhood size histogram for N = 15 boids during the 120 second
simulation with a predator.

90

3.3.5 Conclusion

In this chapter, we applied constraint-driven control to generate emergent be-

havior in three systems: highway platooning with CAVs, V formations with UAVs, and

swarming predator avoidance with 2D agents. In each case, we constructed an optimal

control policy to drive each agent to an equilibrium point—satisfying the definition of

emergence proposed by Ashby. This had additional benefits on system performance in

the first two cases, as the equilibrium points corresponded to energy-minimizing agent

configurations. Additionally, we proved that the control strategies satisfied recursive

feasibility, and thus the agents are capable of continuous operation indefinitely.

The concept of relaxing constraints to guarantee feasibility was generalized for

a larger system in the third article, in which the agents were subjected to safety, preda-

tor avoidance, and neighborhood constraints. Relaxing these constraints implied an

equivalent state machine formulation, which is easily interpretable while still allowing

for rigorous guarantees on the behavior individual agents and the overall system. The

first article also demonstrates how to derive global guarantees on system behavior from

the local agent interactions. The emergent behavior of each system was demonstrated

in simulation, and in the first case we validated that our data-driven approach han-

dles the addition and removal of agents from the system, subject to the hard safety

constraints.

There are many potential directions of future work in the domain for this work.

One intriguing direction is extending the analysis to competitive agents, e.g., bicycle-

riders, off-road vehicles, and multi-lane overtaking. Extensive simulations on larger

scale systems would also be of value, and may present useful insights on how the behav-

ior of individual agents can be adjusted to yield better system-level behavior. Finally,

experiments that replicate line flocking and swarming behavior with physical agents

would be of value, and may help to capture the magnitude of noise and disturbances

that each agent experiences. To this end, Chapter 4 presents an original technique that

quickly generates solutions to constrained continuous-time optimal control problems.

91

Chapter 4

REAL-TIME OPTIMAL CONTROL

One must wait for what cannot be hastened.

Anglo-Saxon Maxim
Exter Book (10th Century CE)

To round out this dissertation, this chapter contains a new technique to quickly

solve continuous-time constrained optimal control problems. For continuous-time sys-

tems, the optimality conditions take the form of an ordinary differential equation; un-

fortunately, these equations are generally unstable and take significant computational

power and time to solve due to numerical instabilities [49]. This presents a significant

challenge for multi-agent systems, and due the cost constraints on each agent, having

a fast and performant trajectory generation is a prerequisite for applying the results

of Chapters 2 and 3 to physical systems.

To solve constrained optimization problems in real time, we proposed a tech-

nique [59, 60] that exploits the property of differential flatness. According to the semi-

nal paper on differential flatness [50], a system is differentially flat if a diffeomorphism

between the original system dynamics an equivalent system with integrator dynamics

can be constructed using endogenous variables. This enables designers to construct

an optimal trajectory using integrator dynamics, and this optimal trajectory can be

mapped back to the original problem using the diffeomorphism. Although a necessary

and sufficient condition for differential flatness is not known to exist, many systems are

known to be differentially flat. This includes ground vehicles, tractor-trailer systems,

hopping robots, rigid body chains, satellites, cable towed systems, and many kinds of

aircraft [113].

92

In the overwhelming majority of cases, existing literature selects a set of pa-

rameterized basis functions in the flat space to generate optimal trajectories. This

includes polynomials [114], approximate Fourier series [51], and splines [115], which

can generate efficient trajectories quickly. In contrast, this chapter presents an original

technique that solves the optimality conditions numerically by exploiting the property

of differential flatness to build optimal motion primitives. The resulting trajectories

find better trajectories than existing techniques while using less computational power

and memory, and thus they are more suitable for real-time control of multi-agent sys-

tems.

Finally, this chapter is concluded by an excerpt from an article on the real-time

optimal control of connected and automated vehicles in our 1:25 scale robotic testbed

[39]. While this control method [116, 117] was developed independently from my work

on differential flatness, it is an excellent example of using the unconstrained optimal

motion primitive to generate trajectories in real time on a physical system. Imposing

the unconstrained motion primitive also has interesting consequences on the behavior

of the system, and gives useful insights on how urban networks might be changed to

further enhance the performance of connected and automated vehicles (CAVs).

4.1 Optimal Control of Differentially Flat Systems is Surprisingly Simple

4.1.1 Introduction

There is an increasing demand to push the boundaries of autonomy in cyber-

physical systems (CPS) using experimental testbeds [38, 39, 118, 119] and outdoor

experiments [16, 120]. As CPS achieve higher autonomy levels, they will be forced into

complicated interactions [121] with other agents [9] and the surrounding environment

[12]. These autonomous agents must be able to react quickly to their environment

and re-plan efficient trajectories. To this end, we propose a new method to simplify

real-time optimal trajectory planning by exploiting differential flatness.

A system is differentially flat if there exist a set of endogenous flat variables,

93

also called outputs, such that the original state and control variables can be written as

an explicit function of the flat variables and a finite number of their derivatives. This

yields an equivalent flat system that is completely described by integrator dynamics.

Differentially flat systems have garnered significant interest since their introduction

[50], and it has been shown that generating trajectories in the flat space can reduce

computational time by at least an order of magnitude [122]. Differentially flat systems

are closely related to feedback linearizable systems [123]; however, the standard control

techniques for flat systems are distinct from feedback linearization.

The overwhelming majority of research on trajectory generation with differen-

tial flatness uses collocation techniques, i.e., finding optimal parameters for a set of

basis functions in the flat output space. Under this approach, a designer selects an ap-

propriate basis function for their application, e.g., polynomial splines [114, 124], Bezier

curves [115], Fourier transforms [51], or piece-wise constant functions [125]. The pa-

rameters of these basis functions are optimally determined before they are transformed

back to the original coordinates of the nonlinear dynamical system, which yields the

optimal trajectory for the selected basis. A rigorous overview of this approach is given

in a recent textbook [126].

In contrast, our approach is classified as indirect as we seek a solution from

the optimality conditions. There is similar results for the so-called maximal inversion

approach [52, 53], which proves that the optimality conditions for a differentially flat

system can be separated into two parts—one describing the optimal state trajectory,

and the other describing the optimal costate trajectory. This result is significant, as the

general optimality conditions couple the evolution of the states and costates, which can

lead to significant numerical instabilities [49]. While the authors in [53] proved that the

optimality conditions are separable, in this paper, we provide the analytical form of the

ordinary differential equation that describes their evolution. Furthermore, the results

in [53] consider control-affine nonlinear systems. In contrast, in our approach, we do

not require affinity in the control. We also derive the optimal boundary conditions in

94

the flat output space, which, to the best of our knowledge, has not been addressed

in the literature to date. Finally, while recent work employs saturation functions to

handle trajectory constraints [54], we analyze the state and control constraints directly.

The main contributions of this paper are:

1. We present a set of ordinary differential equations that describe the evolution of

the costates as explicit functions of the state and control variables (Theorem 8).

2. We derive an equivalent set of optimality conditions that are independent of

the costates (Theorem 9). This independence property holds for interior-point

constraints (Section 4.1.3.2) and trajectory constraints (Section 4.1.3.3).

3. We derive equivalent boundary conditions for the state and control variables when

an initial or final state is left free or when the final time is unknown (Section

4.1.3.4).

4. We demonstrate a significant improvement in computational time and total cost

compared to general-purpose numerical solvers (Section 4.1.4).

The remainder of the section is organized as follows. In Section 4.1.2, we provide

the modeling framework and enumerate our assumptions before presenting our main

theoretical results in Section 4.1.3. Then, in Section 4.1.4, we provide an illustrative

example of controlling a double-integrator agent to avoid an obstacle and compare the

performance of our approach to existing off-the-shelf optimal control libraries. Finally,

we draw concluding remarks and present directions of future work in Section 4.3.

4.1.2 Problem Formulation

Consider the nonlinear dynamical system,

ẋ(t) = f
(
x(t),u(t)

)
, (4.1)

95

where x(t) ∈ Rn and u(t) ∈ Rm, n < m, are the state and control vectors, respectively,

and t ∈ R≥0 is time. A system is differentially flat if it satisfies the following definition.

Definition 13 (Adapted from [91]). The system described by (4.1) is said to be dif-

ferentially flat if there exists a vector y(t) = (y1(t), . . . , ym(t)), such that:

1. The variables yi(t), i = 1, . . . ,m and their time derivatives are independent.

2. There exists a smooth mapping σ from x(t), u(t), and a finite number of its

derivatives to y, i.e.,

y(t) = σ
(
x(t),u(t), u̇(t), . . . ,u(p)(t)

)
, (4.2)

for some p ∈ N.

3. The variables x(t) and u(t) can be expressed as smooth functions of y(t) and a

finite number of its time derivatives, i.e.,

x(t) = γ0
(
y(t), ẏ(t), . . . ,y(q)(t)

)
, (4.3)

u(t) = γ1
(
y(t), ẏ(t), . . . ,y(q)(t)

)
, (4.4)

for some q ∈ N.

Furthermore, σ, γ0, and γ1 are smooth mappings between the flat and original spaces,

thus, (4.2)–(4.4) constitute a diffeomorphism between the original and flat manifolds.

Note that the transformation between the original and output spaces achieved by

(4.2) uses only the state and control variables, along with a finite number of derivatives.

For this reason, differentially flat systems are also said to have endogenous feedback.

We impose the following assumptions for our analysis of the differentially flat

system presented in Definition 13.

96

Assumption 16. The trajectory of the system is contained in open set where the

functions (4.2)–(4.4) exist.

Assumption 17. The control actions in the original and flat spaces are upper and

lower bounded.

Assumption 16 is a standard assumption in the literature [127] since there are

no known algorithms that yield the mappings between the original and flat space [126].

Assumption 16 can be relaxed by constraining the trajectory to remain within a subset

where (4.2)–(4.4) are defined.

Assumption 17 is standard in optimal control [89], particularly for physical

systems where actuators are ultimately bounded by their physical strength or energy

consumption. This assumption can be relaxed by allowing the control input to take

the form of a Dirac delta function.

As an illustrative example of our approach, consider a unicycle traveling in the

R2 plane.

Example 1. Let x(t) = [px(t), py(t), θ(t)]
T be the state of a unicycle in the R2 plane,

where x(t) and y(t) denote the position, and θ(t) denotes the heading angle. Let

u(t) = [u1(t), u2(t)]
T be the vector of control actions, where u1(t) and u2(t) denote the

forward and angular velocity, respectively. Then, the dynamics are given by

ẋ(t) =


u1(t) cos

(
θ(t)

)
u1(t) sin

(
θ(t)

)
u2(t)

 . (4.5)

This system admits m = 2 differentially flat output variables, y(t) = [y1(t), y2(t)]
T =

[px(t), py(t)]
T [126]. The transformations (4.3) and (4.4) between the flat outputs and

97

original coordinates are 
px(t)

py(t)

θ(t)

 =


y1(t)

y2(t)

arctan2(ẏ2, ẏ1)

 , (4.6)

u1(t)
u2(t)

 =

√ẏ1(t)2 + ẏ2(t)2

ÿ2ẏ1−ẏ2ÿ1
ẏ22+ẏ21

 , (4.7)

which obey Assumption 16 for u1(t) ̸= 0.

Finally, consider a constrained optimal control problem for a system governed

by (4.1) under Assumptions 16 and 17.

Problem 7. Consider the differentially flat system with running cost L
(
x(t),u(t)

)
over the time horizon [t0, tf] ⊂ R≥0 and a final cost ϕ(x(tf),u(tf)). Determine the

optimal control input that minimizes the total cost, i.e.,

min
u(t)

ϕ
(
x(tf),u(tf)

)
+

∫ tf

t0
L
(
x(t),u(t)

)
dt

subject to: (4.1),

ĝ
(
x(t),u(t), t

)
≤ 0,

given: initial conditions, final conditions,

where the initial and final states may be fixed, a function of the state variables, or

left free. In addition, the function ĝ(x(t),u(t), t) defines a vector of state and control

trajectory constraints.

In what follows, we present our main results, which yield a set of sufficient

conditions for optimality that are only dependent on the state and control variables.

98

4.1.3 Main Results

4.1.3.1 Separability of the Optimality Conditions

We can convert Problem 7 into Brunovsky normal form using the flat output

variables y(t) ∈ Rm [127]. This yields a set of integrator chains starting from y(t),

ẏ
(j)
i (t) = y

(j+1)
i (t), i = 1, 2, . . . ,m, (4.8)

j = 0, 1, . . . , ki − 1,

where y
(j)
i (t) is the jth time derivative of base state yi(t) and ki ∈ N is the length of

the integrator chain for each base state. Next, we define equivalent state and control

vectors for the system in the flat output space.

Definition 14. The dynamics of the system in the flat output space consists of m

integrator chains of size ki for i = 1, 2, . . . ,m. The state vector s(t) and control vector

a(t) are

s(t) =
[
y1(t), . . . , y

(k1−1)
1 (t), . . . , y

(km−1)
m (t)

]T
, (4.9)

a(t) =
[
y
(k1)
1 (t), . . . , y

(km)
m (t)

]T
. (4.10)

Remark 3. For the unicycle system in Example 1, the flat state and control variables

are

s(t) =
[
y1(t), y2(t), ẏ1(t), ẏ2(t)

]T
, (4.11)

a(t) =
[
ÿ1(t), ÿ2(t)

]T
, (4.12)

which consists of two integrator chains, each with a length of ki = 2, for i = 1, 2.

Next, we apply (4.3) and (4.4) (Definition 13) to map Problem 7 to the flat

output space.

99

Problem 8. Find the cost-minimizing trajectory in the flat output space,

min
a(t)

Φ(s(tf), a(tf)) +

∫ tf

t0
Ψ
(
s(t), a(t)

)
dt

subject to: (4.8),

g
(
s(t), a(t), t

)
≤ 0,

given: initial conditions, final conditions,

where Φ, Ψ, g, and the boundary conditions are constructed by composing ϕ, L, ĝ,

and the original boundary conditions of Problem 7 with the inverse of (4.3) and (4.4).

Without loss of generality, we consider that g is an explicit function of at least one

component of the control variable in the remainder of this section. We prove that this

is eventually implied by Assumption 17 in Section 4.1.3.3.

Note that Problem 8 takes the nonlinearities of the original system dynamics and

moves them into the objective function and constraints. This can be advantageous for

optimal control problems, where satisfying kinematic constraints can lead to significant

numerical challenges.

Next, we present our first main result, which decouples the state and costates

for the Hamiltonian function associated with Problem 8.

Theorem 8. The costates λy
(j)
i for each base state i = 1, 2, . . . ,m and j = 0, 1, . . . , ki−

1 that correspond to Problem 8 are equal to

λy
(j)
i =

ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(j+n)
i

+ µTg
y
(j+n)
i

)
. (4.13)

Proof. We follow the standard process for solving optimal control problems [89, 90].

100

First, we construct the Hamiltonian for Problem 8,

H = Ψ(s(t), a(t)) + λT (t)I(s(t), a(t))

+ µTg
(
x(t),u(t), t

)
, (4.14)

where λ(t) is the vector of costates, I(s(t), a(t)) corresponds to the integrator dynamics,

defined by (4.8), g is a vector of inequality constraints, and µ is a vector of inequality

Lagrange multipliers. To simplify the notation, we omit the explicit dependence on

a(t), s(t), and t where it does not lead to ambiguity. The Euler-Lagrange equations

are

−λ̇T = Ψs + λT Is + µTgs, (4.15)

0 = Ψa + λT Ia + µTga, (4.16)

where the subscripts a and s correspond to partial derivatives with respect to those

variables. We simplify (4.15) by exploiting the integrator structure of I for each element

of s(t). This yields,

λ̇yi = −Ψyi − µTgyi , (4.17)

λ̇y
(j)
i = −Ψ

y
(j)
i

− λy
(j−1)
i − µTg

y
(j)
i
, (4.18)

for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , ki − 1}. Similarly, simplifying each column of

(4.16) yields

λy
(ki−1)
i = −Ψ

y
(ki)
i

− µTg
y
(ki)
i

, (4.19)

for each output i ∈ {1, 2, . . . ,m}. Note that (4.19) satisfies (4.13) for j = ki− 1. Next,

taking a time derivative of (4.19) and substituting it into (4.18) with j = ki − 1 yields

d

dt

(
Ψ

y
(ki)
i

+ µTg
y
(ki)
i

)
= Ψ

y
(ki−1)
i

+ µTg
y
(ki−1)
i

+ λy
(ki−2)
i ,

101

which implies,

λy
(ki−2)
i =−

(
Ψ

y
(ki−1)
i

+ µTg
y
(ki−1)
i

)
+
d

dt

(
Ψ

y
(ki)
i

+ µTg
y
(ki)
i

)
, (4.20)

which satisfies (4.13) for j = ki − 2. Taking repeated time derivatives of (4.20) and

substituting (4.18) completes the proof of Theorem 8.

Remark 4. For the unicycle system in Example 1, the covectors are

λy = −
(
ψẏ + µTgẏ

)
+
d

dt

(
ψa + µTga

)
, (4.21)

λy(1)

= −
(
ψa + µTga

)
. (4.22)

Applying Theorem 8 to the Euler-Lagrange equations yields an equivalent set of

optimality conditions that are independent of the costate variables, which we present

in Theorem 9.

Theorem 9. The optimal trajectory for the system described in Problem 8 satisfies

ki∑
n=0

(−1)n
dn

dtn

(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
= 0, (4.23)

for each integrator chain starting with the base state yi, i = 1, 2, . . . ,m.

Proof. By Theorem 8,

λyi =

ki∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
. (4.24)

102

Taking the derivative of (4.24) and substituting (4.17) yields,

λ̇yi = −Ψyi − µTgyi

=

ki∑
n=1

(−1)n
dn

dtn
(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
. (4.25)

This simplifies to

Ψyi + µTgyi +

ki∑
n=1

(−1)n
dn

dtn
(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
= 0, (4.26)

which proves Theorem 9.

Note that while we prove Theorem 9 for the flat output space, the diffeomor-

phism (4.3) and (4.4) can be composed with (4.23) to generate an equivalent optimality

condition in the original space. This implies that the state and costate dynamics can

always be separated, and that this property is independent of the coordinate system.

Remark 5. Applying Theorem 9 to Example 1 yields the optimality equation,

(
Ψp + µTgp

)
− d

dt

(
Ψv + µTgv

)
+
d2

dt2
(
Ψa + µTga

)
= 0.

Theorem 9 describes the evolution of the optimal state trajectory. When a

constraint becomes active, i.e., strictly equal to zero, discontinuities may occur in the

control action and the costates. Following the standard approach [89], these disconti-

nuities must satisfy a set of optimality conditions,

λ−T
= λ+T

+ πTNs, (4.27)

H+ −H− = πTNt, (4.28)

∂H−

∂a− =
∂H+

∂a+
= 0, (4.29)

103

where the superscripts − and + denote the instant in time just before and just after the

activation, respectively, π is a constant vector of Lagrange multipliers, N is a vector of

tangency conditions, which we rigorously derive in the following subsections, and the

subscripts s and t correspond to partial derivatives with respect to the state and time.

Equivalently, we interpret Theorem 9 as generating optimal motion primitives

for the system’s trajectory. Let g have c linearly independent rows, then µ is a c × 1

matrix. When a constraint gi, i = 1, 2, . . . , c does not influence the system trajec-

tory, we can equivalently state that µi(t) = 0. Therefore, we can generate 2c motion

primitives my setting combinations of elements in µ equal to zero. In this context,

the conditions (4.27)–(4.29) describe the optimal transition between different motion

primitives along the system’s trajectory. As an example, we present the optimality

conditions for the unconstrained trajectory next.

Corollary 2. The evolution of the optimal unconstrained trajectory obeys

ki∑
j=0

(−1)j
dj

dtj
Ψ

y
(j)
i

= 0. (4.30)

Proof. The result follows by substituting µ = 0 into (4.23).

In the following sections we analyze how the state trajectory is affected by the

activation of state and control constraints during operation. Note that the transi-

tion between optimal motion primitives can be written independently of the costate

dynamics by applying Theorem 8 to (4.27)–(4.29).

4.1.3.2 Interior-Point Constraints

First, we will consider the case where a set of state and/or control values are im-

posed at a single time instant. Let h
(
x(t1), t1

)
= 0 describe an interior point constraint

104

that is imposed at some time t1. We construct the tangency vector,

N
(
x(t), t

)
=

h(x(t), t)
t− t1

 , (4.31)

which guarantees constraint satisfaction when N
(
x(t1), t1

)
= 0. Note that if the

time t1 is unknown, then (4.31) is equal to h. The tangency vector (4.31) is directly

substituted into the optimality equations (4.27) and (4.28). Finally, applying Theorem

8 to (4.27)–(4.29) yields
∑m

i=1{ki−1}+1 equations that determine the optimal change

in a and its derivatives at t1. These equations are independent of the costate vectors.

Further manipulating (4.27)–(4.29) yields a useful pair of equations that are amenable

to finding an analytical solution. First, we substitute (4.14) into (4.28) and use (4.27)

to eliminate λ−,

(Ψ+ −Ψ−) + (µ+T
g+ − µ−T

g−)

+ λ+T
(I+ − I−) = πT

(
Nt +NsI

−). (4.32)

Note that, by definition, µTg = 0 along the optimal state-trajectory, thus we set those

terms equal to zero. Furthermore, the state trajectory is continuous under Assumption

17 and the integrator dynamics. Thus,

I+ − I− =

 0

a+ − a−

 . (4.33)

Applying Theorem 8 to (4.32) for the case j = ki − 1 and simplifying yields,

(Ψ+ −Ψ−) − (Ψa + µTga)
− · (a+ − a−)

= πT
(
Nt +NsI

+
)
. (4.34)

105

Following a similar process also implies,

(Ψ+ −Ψ−) − (Ψa + µTga)
+ · (a+ − a−)

= πT
(
Nt +NsI

−). (4.35)

4.1.3.3 Trajectory Constraints

Next, we consider the case where the state and/or control constraints imposed

on Problem 8 influence the trajectory of the system. To generate our optimal motion

primitive using Theorem 9, we first need to ensure our constraints are functions of

the state and control variables. Let hi
(
s(t), t

)
≤ 0 denote the i = 1, 2, ..., c state or

control constraints that are imposed on Problem 8. Note that hi may not explicitly

be a function of the control input. Under the standard approach [89], we require that

hi is at least qi−times differentiable, where qi is the minimum number of derivatives

required for any component of the control input to appear in dqi
dtqi

hi. To guarantee

satisfaction of the original constraint hi, we construct the tangency vector,

Ni(s(t), t) :=


hi
(
s(t), t

)
h
(1)
i

(
s(t), t

)
...

h
(qi−1)
i

(
s(t), t

)

 , (4.36)

and we define the constraint

gi
(
s(t), a(t), t

)
:= h

(qi)
i

(
s(t), a(t), t

)
. (4.37)

Thus, whenever hi
(
s(t), t

)
= 0 over a non-zero interval, we impose Ni

(
s(t), t

)
= 0

and gi

(
s(t), a(t)

)
= 0 over its interior to guarantee constraint satisfaction. This is

equivalent to satisfying the original constraint under Assumption 17 [89]. Note that,

if hi is explicitly a function of the control variable, q = 0 and Ni is a zero-element

106

vector. Furthermore, if the constraint is active over a zero-length interval, the problem

reduces to the analysis in Section 4.1.3.2 with an unknown activation time.

Finally, to construct the tangency matrix for the c constraints, we construct the

stacked tangency vector,

N
(
s(t), t

)
=


N1

(
s(t), t

)
N2

(
s(t), t

)
...

Nc

(
s(t), t

)

 , (4.38)

which accounts for all of the constraints that may influence the state and control trajec-

tory. As with the previous section, (4.27)–(4.29) determine the required instantaneous

change in the control variables and their derivatives for an optimal trajectory. Note

that, by construction,

πT Ṅ+ = 0, (4.39)

as Ni = 0 and g+
i = 0 when constraint i is active, and the corresponding πi = 0

otherwise. Thus, taking the full derivative implies,

πT Ṅ+ = πT
(
Nt +Ns · I+

)
= 0, (4.40)

by construction. Thus, applying (4.34) at the end of a constrained motion primitive

yields

(Ψ+ −Ψ−)− (Ψa + µTga)
− · (a+ − a−) = 0. (4.41)

This leads directly to our next result,

Corollary 3. If the system exits from or enters to an unconstrained motion primitive,

107

the optimal control input satisfies

Ψ+ −Ψ− −Ψ−
a (a

+ − a−) = 0, or (4.42)

Ψ+ −Ψ− −Ψ+
a (a

+ − a−) = 0, respectively. (4.43)

Proof. When the system exits from an unconstrained motion primitive, µ− = 0 and the

result follows by (4.41). When the system enters an unconstrained motion primitive,

µ+ = 0 and π = 0, thus the result follows by (4.34).

4.1.3.4 Boundary Conditions

The results of Sections 4.1.3.2 and 4.1.3.3 completely describe the evolution of

the system if the boundary conditions are known. Next, we extend this result to the

case that a boundary condition is unspecified by applying Theorem 8.

Corollary 4. Let the state y
(j)
i (t) for i ∈ {1, 2, . . . ,m} and j ∈ {0, 1, 2, . . . , ki − 1} be

unspecified at a boundary, i.e., it can be arbitrarily selected. There exists an equivalent

boundary condition that guarantees optimality of the system trajectory.

Proof. Without loss of generality, let the state variable y
(j)
i (t) be undefined at the final

time tf . Under the standard approach [89], the corresponding boundary condition

λy
(j)
i (tf) = 0 is required to guarantee optimality. Thus, by Theorem 8,

ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(j+n)
i

+ µTg
y
(j+n)
i

)∣∣∣
tf
= 0 (4.44)

is an equivalent boundary condition.

In practice, it is likely that Problem 8 will have boundary conditions defined

by functions of the state variables. This may arise from undefined state variables,

as with Corollary 4, or from mapping known boundary conditions to the flat output

108

space using Definition 13. Without loss of generality, let B(x(tf), tf) = 0 describe the

functional constraints at tf . This implies that [89]

λT (tf) =

(
∂Ψ

∂s
+ ν

∂B

∂s

)
t=tf

, (4.45)

B(x(tf), tf) = 0, (4.46)

where ν is a constant Lagrange multiplier that guarantees constraint satisfaction. Ap-

plying Theorem 8 to (4.45) results in a system of equations that guarantees constraint

satisfaction at the boundaries. Thus, the flat system is guaranteed to have m initial

and final conditions.

Finally, it’s possible that the boundary conditions are described at an unknown

terminal time. In this case, the optimal terminal time tf satisfies [89]

Ω =

[
∂Φ

∂t
+ ν

∂B

∂t
+
(∂Φ
∂s

+ νT ∂B

∂s

)
I+Ψ

]
t=tf

= 0. (4.47)

Thus, Problem 8 always corresponds to a two-point boundary value problem

with m initial conditions and m final conditions that are independent of the costates.

Furthermore, (4.47) can be employed to determine an unknown terminal time using

standard techniques [89]. Next, we present a numerical example for generating the

trajectory of a double-integrator system in real time.

4.1.4 Double-Integrator Example

In this section we consider an agent moving in R2 with the states,

x(t) =

p(t)
v(t)

 , (4.48)

109

where p(t) ∈ R2 is the agent’s position, and v ∈ R2 is the agent’s velocity. We consider

double-integrator dynamics,

ẋ(t) =

v(t)
u(t)

 , (4.49)

where u(t) ∈ R2 is the control action, which is bounded under Assumption 17. We

consider the objective,

J(x(t),u(t)) =
1

2
||u(t)||2, (4.50)

where the coefficient 1
2
simplifies the derivative of J without influencing the optimal

trajectory. This illustrative example is applicable to many mobile robots, including

those with unicycle dynamics (Example 1) and differential drive robots.

First, we apply Theorem 8, which yields the costates,

λv(t) = −u(t), (4.51)

λp(t) = u̇(t). (4.52)

Our objective is to move the system from a fixed initial state to a final position. If

the initial and final states do not activate any constraints, the corresponding boundary

conditions are

(
p(t0),p(tf)

)
=
(
p0,pf

)
, (4.53)(

v(t0),u(tf)
)
=
(
v0,0

)
. (4.54)

Note that the value of u(tf) is implied by (4.51).

Let the agent be circumscribed in a circle of radius R > 0, and let the environ-

ment contains c obstacles that are indexed by the set C = {1, 2, . . . , c}. Each obstacle

i ∈ C is centered at the point Oi ∈ R2 and has a radius Ri ∈ R>0. To guarantee safety,

110

we impose the constraints

hi
(
p(t)

)
= D2

i − p̂i(t) · p̂(t) ≤ 0, (4.55)

where Di := Ri+R is the minimum separating distance between the agent and obstacle

i and p̂i(t) := p(t)−Oi. We use the equivalent squared form of (4.55) to simplify its

time derivative. To simplify our analysis, we require obstacles to satisfy the spacing

constraints,

||Oi −Oj|| > Di +Dj, ∀i, j ∈ C, i ̸= j, (4.56)

||Oi − p0|| > Di and ||Oi − pf || > Di, (4.57)

These spacing constraints are not restrictive on our approach, (4.56) ensures that only

one obstacle avoidance constraint can become active at any instant in time, and (4.57)

ensure that no constraints are active at the initial or final time. The constraints that

we append to the Hamiltonian are the second derivative of (4.55),

gi

(
x(t),u(t)

)
:= u(t) · p̂i(t) + v(t) · v(t) ≤ 0. (4.58)

Applying Theorem 9 in this context yields 2 motion primitives that completely describe

the evolution of the system,

unconstrained: ü(t) = 0, (4.59)

safety constrained: ü(t) + µ̈(t)p̂i(t) = 0. (4.60)

Finally, we present Proposition 1, which describes the optimal transition between mo-

tion primitives.

Proposition 1. Continuity in the state variables, the 2m boundary conditions, the

tangency conditions, and the following equations are sufficient to guarantee optimality

111

when the system activates the safety constraint,

u(t−1) = u(t+1), (4.61)

p(t1) · v(t1) = 0, (4.62)

u̇(t−1) · v(t1) = u̇(t+1) · v(t1), (4.63)

The proof of Proposition 1 is presented in the Appendix. In the following

subsections we derive the equations of motion for each of the motion primitives.

4.1.4.1 Optimal Motion Primitives

Under our imposed obstacle spacing (4.56), we must only consider two possible

cases: no constraints influence the agent’s trajectory, or avoiding one obstacle influences

the agent’s trajectory.

Case I: Unconstrained Motion. When the safety constraint is not active,

the optimal control input is zero-snap, i.e., integrating (4.59) yields,

u(t) = 6at+ 2b, (4.64)

v(t) = 3at2 + 2bt+ c, (4.65)

p(t) = at3 + bt2 + ct+ d, (4.66)

where the constants of integration a,b, c,d are determined by the boundary conditions.

Thus, each unconstrained motion primitives introduces 8 unknowns.

Case II: Constrained Motion When the safety constraint is active, the tan-

gency conditions imply that

p̂(t) · v(t) = 0. (4.67)

112

Thus, taking the dot product of (4.60) with v(t) implies,

ü(t) · v(t) = 0. (4.68)

Applying integration by parts to (4.68) yields,

u̇(t) · v(t) = C +
1

2
u(t) · u(t), (4.69)

where C is a constant of integration. Similarly, taking a derivative of (4.55) yields,

u̇(t) · p(t) = −3u(t) · v(t). (4.70)

Note that, by Proposition 1, each term in (4.69) and the right-hand side of (4.70)

are both continuous. In addition, p̂(t) and v(t) constitute an orthogonal basis for

the system’s trajectory. Thus, the constrained motion primitive is completely deter-

mined by the state of the system the instant it transitions, and it introduces only two

unknowns—the entry and exit times.

Finally, for completeness, we must describe how the system transitions from

the constrained motion primitive to the unconstrained motion primitive. In this case

there are no active constraints, thus π = 0 in (4.27). Substituting (4.51) and (4.52)

into (4.27) implies continuity in u(t) and u̇(t), which, alongside continuity in the state,

determines the unconstrained trajectory. Next, we solve these reduced systems of

equations numerically and compare the performance to standard numerical solvers.

4.1.5 Numerical Simulation

To demonstrate the performance of our approach, we generated trajectories

for the double integrator agent around a single obstacle. The parameters describing

the simulation are presented in Table 4.1, and the optimal trajectory is annotated in

Fig. 4.1. For further details on our simulation approach, please see our public code

113

repository on github1.

p0 (m) v0 (m/s) pf (m) Oi (m) Di (m) tf − t0 (s)

(−2,−2) (0, 0) (1, 2) (0, 0) 1.25 10

Table 4.1: Boundary conditions and obstacle parameters that describe the simulation
environment.

Figure 4.1: Optimal trajectory (black) that avoids the obstacle (red). The variable
θ describes where the trajectory instantaneously contacts the obstacle at
time t1.

We apply the following steps to generate the optimal trajectory of the agent

around the obstacle:

1. Connect the boundary conditions with an unconstrained motion primitive.

2. If the unconstrained trajectory is infeasible, find the optimal trajectory assuming

the safety constraint is only activated instantaneously.

3. If the previous case is infeasible, find the optimal trajectory assuming the safety

constraint is activated over a non-zero interval.

1 https://github.com/UD-IDS-LAB/Flatness-Obstacle_Avoidance

114

https://github.com/UD-IDS-LAB/Flatness-Obstacle_Avoidance

The first step consists of solving a set of 8 linear equations to determine the

coefficients of the unconstrained motion primitive. This can be precomputed offline

and has a negligible computational cost as a consequence. In the second step, we assume

that the agent only contacts the obstacle instantaneously. The entire trajectory can

be parameterized by two variables, (θ, t1); Fig. 4.1 shows how θ defines the agent’s

trajectory relative to the obstacle. In the third step, we assume that the agent travels

along the constrained motion primitive over a non-zero interval of time. The entire

trajectory can be parameterized by three variables, (θ, t1, t2).

After each step, we check if the resulting trajectory satisfies the collision avoid-

ance constraint. If the initial unconstrained trajectory is infeasible, we use the time

and angle of the constraint violation to calculate an initial guess for (θ, t1) in Step 2. If

the trajectory generated in Step 2 is infeasible, we reuse the values of θ and t1, as well

as the earliest time that the constraint was violated, as an initial guess for (θ, t1, t2).

To demonstrate the performance of our approach, we generated the optimal state tra-

jectory for the agent in Matlab 2018b, using fmincon to solve the system of constrained

nonlinear equations. We simulated the system on a desktop computer (Intel I5-3570k

@3.4 GHz), and compared the performance to two general-purpose optimal control

packages [56, 57]. We averaged the computation time over 10 trials; note that existing

solvers use collocation methods, thus they require a large number of mesh points to

guarantee constraint satisfaction near the obstacle. In contrast, our solution only saves

the states at the boundary and motion primitives transitions. Table 4.2 demonstrates

that our algorithm generates a superior trajectory in less time and with fewer mesh

points stored in memory.

Approach Time Mesh Points Cost Max Violation

Proposed 34 ms 3 0.064 m/s3 0 m
ICLOCS2 1500 ms 35 0.080 m/s3 3× 10−4 m
OpenOCL 98 ms 35 0.080 m/s3 4× 10−15 m

Table 4.2: Performance comparison of the generated trajectories.

115

4.1.6 Proofs

Proof of Proposition 1. There are two cases when system can transition between the

constrained and unconstrained motion primitives.

Case I: Instantaneous Constraint Activation. In this case, the collision

avoidance constraint is only activated instantaneously at some unknown time t1. Fol-

lowing the analysis in Section 4.1.3.2, and given the obstacle spacing constraint (4.56),

we must only consider a single tangency equation,

N
(
x(t), t

)
=
[
D2 − p̂i(t) · p̂i(t)

]
. (4.71)

The boundary conditions yield 8 equations, which can satisfy the 8 unknowns that

describe one unconstrained motion primitive. When the safety constraint is activated

instantaneously, the agent transitions between unconstrained motion primitives. This

introduces 9 additional unknowns—the 8 coefficients of the new unconstrained motion

primitive and the unknown transition time, t1. Proposition 1 provides the correspond-

ing 9 equations: 4 from continuity in the state, 1 from (4.71), and 4 from (4.61)–(4.63).

Condition (4.61) follows trivially from substituting (4.51) and (4.52) into (4.27), which

yelds,

u+ − u− = 0, (4.72)

u̇+ − u̇− = 2pi(t1)π. (4.73)

Furthermore, (4.35) implies that

0 = −2πp̂(t1) · v(t1). (4.74)

This implies that either 1) π = 0 or 2) p(t1) ·v(t1) = 0. Assuming π = 0 implies that u̇

is continuous at t1, and thus both constrained motion primitives can be replaced with a

single unconstrained motion primitive. This contradicts our premise that a constraint

116

becomes active at t1. Therefore, the only possible solution is π ̸= 0. This implies that

p(t1) · v(t1) = 0, which also implies (4.63) by taking dot product of (4.73) with v(t1).

Case II: Transition to Constrained Motion Primitive. In this case, the

system transitions to a constrained motion primitive at t1, and it transitions back to

another unconstrained motion primitive at some time t2 > t1. Following the analysis

in Section 4.1.3.3, we must satisfy,

N
(
x(t), t

)
=

D2
i − p̂i(t) · p̂i(t)

v(t) · p̂i(t)

 = 0, (4.75)

g
(
x(t),u(t)

)
= u(t) · p̂i(t) + v(t) · v(t) = 0, (4.76)

over the open interval (t1, t2). Thus, (4.62) is true via the tangency conditions. Corol-

lary 3 implies,

||u(t+1)||2 − ||u(t−1)||2 − 2u(t−1) ·
(
u(t+1)− u(t−1)

)
= ||u(t+1)||2 + ||u(t−1)||2 − 2u(t+1) · u(t−1) = 0, (4.77)

which implies that u(t) is continuous at t1 [59]. Finally, substituting (4.52) into (4.27)

yields,

u̇(t−1) = u̇(t+1) + 2p̂(t1)π1π2, (4.78)

which implies (4.68) by dotting (4.78) with v(t1).

4.2 Experimental Validation of a Real-Time Optimal Controller for Coor-

dination of CAVs in a Multi-Lane Roundabout

In this section I present a subset of the analysis from an earlier paper [58], which

involves the optimal coordination of connected and automated vehicles in a multi-lane

intersection. The optimal control problem is identical to the previous example in 1D:

each vehicle uses double-integrator dynamics (4.49), their cost is the L2 norm of the

117

control input, and the final velocity is left free. Rather than generating the entire

constrained trajectory, the vehicles select the minimum final time tfi such that the

unconstrained trajectory is feasible; this is also a tradeoff between travel time and

energy consumption. This is in contrast to existing work, where the final time is

selected by a coordinator [117, 128], possibly with vehicle re-sequencing [129], and

each CAV generates its own feasible energy-minimizing trajectory.

4.2.1 The Roundabout Scenario

In this paper, we consider a multi-lane roundabout with three CAV inflows

and three areas where lateral collisions between CAVs may occur, as shown in Fig.

4.2. However, our proposed solution does not depend on the specific paths presented

in this work and can be applied in any scenario in a roundabout. To navigate the

roundabout, we define a control zone, which starts upstream from the roundabout

and ends at each roundabout exit (Fig. 4.2). The control zone has an associated

coordinator, which stores information about the geometry of the roundabout and the

trajectory information of each CAV in the control zone. The coordinator does not

make any decisions and only acts as a database.

Let Q(t) ⊂ N be the set of CAVs at time t ∈ R which are inside the control zone.

Upon entering the control zone at time t0i ∈ R, CAV i ∈ Q(t) retrieves the trajectory

information of every other CAV j ∈ Q(t) \ {i} and generates an energy-optimal safe

trajectory through the control zone. Then, CAV i broadcasts its trajectory to the

coordinator. Finally, when CAV i exits the control zone at time tfi , it is removed from

the set Q(t). A detailed discussion about the communication of the coordinator with

the CAVs is presented in [38, 39].

Definition 15. We define each lateral node with a unique index, n ∈ {1, 2, 3}, at each

area inside the roundabout where there might be a potential lateral collision (Fig. 4.2).

Definition 16. For each CAV i ∈ Q(t), we define Ni as the set of all lateral nodes on

the path of CAV i.

118

Figure 4.2: A schematic of the roundabout scenario. The highlighted control zone
continues upstream from the roundabout.

For instance, if CAV i is traveling along the path 1 (Fig. 4.2), the set of collision

nodes is Ni = {2, 3}.

Definition 17. For each CAV i ∈ Q(t), upon entering the control zone at time t0i , we

define the set of lateral nodes shared with each CAV j ∈ Q(t0i) \ {i} as,

Ci,j =
{
n | n ∈ Ni ∩Nj

}
. (4.79)

4.2.2 Vehicle Model and Constraints

Each CAV obeys double-integrator dynamics (4.49); the control input and speed

of each CAV i ∈ Q(t) at time t ∈ [t0i , t
f
i] are bounded by,

umin ≤ ui(t) ≤ umax,

0 < vmin ≤ vi(t) ≤ vmax,
(4.80)

119

where umin, umax are the minimum deceleration and maximum acceleration, and vmin,

vmax are the minimum and maximum speed limits respectively.

Definition 18. For any CAV i ∈ Q(t), if there exists a CAV k ∈ Q(t) which leads

CAV i, we define di(t) as the bumper-to-bumper distance from CAV k to CAV i. If no

such CAV k leads CAV i, then we let di(t) → ∞.

To guarantee no rear-end collision occurs between CAV i ∈ Q(t) and the pre-

ceding CAV k ∈ Q(t), we impose the following rear-end safety constraint,

di(t) ≥ δi(t), (4.81)

where δi(t) is the safe distance that depends on CAV’s speed,

δi(t) = γ + φvi(t), (4.82)

where γ, φ ∈ R are the standstill distance and reaction time, respectively.

For each CAV i ∈ Q(t), the distance to a node n ∈ Ni is denoted by the function

li : Ni → Pi. To guarantee lateral collision avoidance, we impose the following time

headway constraint for every CAV i ∈ Q(t),

∣∣p−1
i (li(n))− p−1

j (lj(n))
∣∣ ≥ th, (4.83)

∀n ∈ Ci,j, ∀j ∈ Q(t) \ {i},

where th ∈ R+ is the minimum time headway between any two vehicles entering node

n. Note that, as position is strictly-increasing for all t ∈ [t0i , t
f
i], the inverse position

(4.83) has a closed-form representation [121].

Remark 6. The lateral safety constraint (4.83) relaxes the first-in-first-out coordina-

tion policy for CAVs i, j ∈ Q(t), which is common in the literature.

120

Next, we formulate a decentralized optimal control problem for each CAV i ∈

Q(t) in order to minimize their energy consumption over the interval t ∈ [t0i , t
f
i].

Problem 9. When a CAV i ∈ Q(t) enters the control zone, it solves the following

optimal control problem:

min
ui(t)∈Ui

1
2

∫ tfi
t0i
u2i (t) dt,

subject to : (4.49), (4.80), (4.81), (4.83),

given pi(t
0
i), vi(t

0
i), pi(t

f
i).

As an alternative to the standard approach, we require each CAV to solve Prob-

lem 9 using the unconstrained motion primitive by selecting the minimum feasible tfi .

This has the advantage of guaranteed energy-optimality while being significantly easier

to implement on a real vehicle. We employ the optimal unconstrained motion primitive

(4.64)–(4.66), which yields,

pi(t) = ait
3 + bit

2 + cit+ di, (4.84)

vi(t) = 3ait
2 + 2bit+ ci, (4.85)

ui(t) = 6ait+ 2bi, (4.86)

with the boundary conditions

pi(t
0
i) = p0i , vi(t

0
i) = v0i , pi(t

f
i) = pfi , ui(t

f
i) = 0, (4.87)

where ui(t
f
i) = 0 results from the velocity being unspecified at tfi .

To derive an energy-optimal control input that can be computed in real time,

we seek to minimize the exit time of CAV i ∈ Q(t) from the control zone and impose

(4.84) - (4.86) as an energy-optimal motion primitive. This results in a new energy and

time-optimal scheduling problem [121].

121

Problem 10. When a CAV i ∈ Q(t) enters the control zone, it derives its minimum

travel time such that the resulting trajectory is unconstrained and does not violate any

state, control, or safety constraints.

min
ai,bi,ci,di

tfi ,

subject to: (4.80), (4.81), (4.83),

(4.84), (4.85), (4.86), (4.87).

The solution of Problem 10 yields the minimum tfi such that the generated

trajectory is the unconstrained optimal solution to Problem 9. Next, we provide the

assumptions we imposed in our approach on each CAV i ∈ Q(t).

Assumption 18. There are no errors or delays in the vehicle-to-vehicle and vehicle-

to-infrastructure communication.

Assumption 19. Vehicle-level control is handled by a low-level controller which can

perfectly track the trajectory generated by solving Problem 10.

The first assumption ensures that we address the deterministic case. It is rel-

atively straightforward to relax this assumption as long as the noise or delays are

bounded [92]. The second assumption is to decouple the motion planning and vehicle

control, which makes the problem tractable. By tuning the low-level controller, it can

be ensured that the prescribed trajectory is followed.

4.2.3 Analytical solution

We seek to transform Problem 10 into an equivalent formulation with a single

optimization variable. First, without loss of generality, we consider the domain of

Problem 10 to be t ∈ [0, tfi] and pi(t) ∈ [0, Si], where Si is the length of the control

122

zone corresponding to CAV i’s path. This results in a new set of boundary conditions,

pi(t
0
i = 0) = 0, vi(t

0
i = 0) = v0i , (4.88)

pi(t
f
i) = Si, ui(t

f
i) = 0. (4.89)

Next, we substitute (4.88) into (4.84) and (4.85), yielding

pi(t
0
i = 0) = di = 0, (4.90)

vi(t
0
i = 0) = ci = v0i , (4.91)

which must always hold for Problem 10. Next, we substitute (4.89) into (4.86), which

yields, ui(t
f
i) = 6ait

f
i + 2bi = 0. This implies that

ai = − bi

3tfi
. (4.92)

Next, we substitute (4.90)–(4.92) into (4.84), yielding

pi(t
f
i) = − bi

3tfi
tfi

3
+ bit

f
i

2
+ v0i t

f
i = Si. (4.93)

Hence, equation (4.93) simplifies to

bi =
3(Si − v0i t

f
i)

2tfi
2 . (4.94)

We may further simplify Problem 10 by finding a compact domain of feasible tfi

by considering the speed and control constraints. Let tfi,min and tfi,max denote the lower

bound and upper bound on tfi respectively, which is imposed by the state and control

constraints.

Proposition 2. For each CAV i ∈ Q(t), the lower bound on exit time of the control

123

zone, tfi,min, is computed as follows

tfi,min = min{tfi,umax
, tfi,vmax

}, (4.95)

where

tfi,umax
=

√
9(v0i)

2 + 12Siumax − 3v0i
2umax

, (4.96)

tfi,vmax
=

3Si

v0i + 2vi,max

. (4.97)

Proof. There are two cases to consider: Case 1: CAV i achieves its maximum control

input at entry of the control zone, when ui(t
0
i) = umax and ui(t

f
i) = 0. Case 2: CAV

i achieves its maximum speed at the end of control zone, as vi(t) is strictly increasing

and vi(t
f
i) = vmax.

In case 1, by (4.86), we have

ui(t
0
i = 0) = 2bi = umax. (4.98)

Substituting (4.94) into (4.98) and solving for tfi , yields the quadratic equation

umaxt
f
i

2
+ 3v0i t

f
i − 3Si = 0, (4.99)

which has two real roots with opposite signs, as tfi,1t
f
i,2 =

−3Si

umax
< 0. Thus, tfi,umax

> 0 is

computed by

tfi,umax
=

√
9(v0i)

2 + 12Siumax − 3v0i
2umax

. (4.100)

For case 2, by (4.85), we have

vi(t
f
i) =

ai
3
tfi

2
+
bi
2
tfi + v0i = vmax. (4.101)

124

Substituting (4.92) and (4.94) into (4.101) yields

vi(t
f
i) = 3

(−bi
3tfi

)
tfi

2
+ 2bit

f
i + v0i (4.102)

= bit
f
i + v0i =

3(Si − v0i t
f
i)

2tfi
+ v0i = vmax,

which simplifies to

tfi,vmax
=

3Si

v0i + 2vmax

. (4.103)

Thus, our lower bound on tfi is given by

tfi,min = min{tfi,umax
, tfi,vmax

}. (4.104)

Proposition 3. For each CAV i ∈ Q(t), the upper bound on exit time of the control

zone, tfi,max, is computed as follows

tfi,max =

ti,vmin
, if 9v0i

2
+ 12Siui,min < 0,

max{tfi,umin
, tfi,vmin

}, otherwise.

(4.105)

where

ti,vmin
=

3Si

v0i + 2vmin

, ti,umin
=

√
9(v0i)

2 + 12Siumin − 3v0i
2umin

. (4.106)

Proof. Similar steps to Proposition 2 can be followed to find the upper bound for tfi .

Note that when 9(v0i)
2 + 12Siumin < 0 there is no real value of tfi which satisfies all of

the boundary conditions simultaneously. In this case the lower bound is given by the

vmin case. The proof for the vmin case is identical to Proposition 3 and is omitted.

Finally, we may write an equivalent formulation of Problem 10, which optimizes

a single variable, tfi over a compact set [tfi,min, t
f
i,max].

125

Problem 11. When CAV i ∈ Q(t) enters the control zone it derives the minimum

exit time such that the resulting unconstrained trajectory does not violate any safety

constraints.

min
tfi

tfi ,

subject to: (4.81), (4.83),

(4.90), (4.91), (4.92), (4.94),

tfi ∈ [tfi,min, t
f
i,max].

4.2.4 Experimental Results

To validate our proposed controller in our scaled smart city, we collected several

pieces of data throughout five experiments. First, the position, speed, and a timestamp

for each CAV was streamed back to the mainframe at a rate of 20 Hz. Furthermore,

the state and time of each CAV entering the control zone were recorded, as well as

the computed and achieved exit time. These results are summarized in Table 4.3.

Note that the minimum speed of any CAV across all five experiments is 0.12 m/s (7

mph at full scale), which demonstrates that stop and go driving has been completely

eliminated. Additionally, the average CAV speed is 0.42 m/s (24 mph at full scale),

which implies that most CAVs are traveling near vmax and must apply minimal control

effort.

Table 4.3: Average velocity and travel time results for the 5 experiments. RMSE is
normalized by travel time for each CAV.
Experiment vmin [m/s] vavg [m/s] Travel Time RMSE

1 0.16 0.41 2.71%
2 0.27 0.45 1.54%
3 0.18 0.41 4.03%
4 0.12 0.43 1.92%
5 0.21 0.42 1.38%

The exit time data for each CAV is visualized in Fig. 4.3, where the grey bars

represent the feasible space of tfi , the wide black bars correspond with the solution of

126

Problem 11, and the thin red bars show the achieved exit time for each CAV. From

Table 4.3, the error between desired and actual exit time varies between 2− 4%. This

error comes from the CAV’s ability to track the desired trajectory and shows that

Assumption 19 is reasonable for well-tuned CAVs in our testbed.

0 5 10 15 20 25 30 35 40 45

Vehicle Index

5

10

15

20

25

T
im

e
[s

]

t
i
f desired t

i
f achieved

Figure 4.3: Estimated and actual arrival time for each vehicle over all experiments.

The position trajectory of an ego-CAV following path 2 is given in Fig. 4.4.

The ego-CAV’s position is denoted by the dashed red line, while the positions of two

other CAVs are represented by dotted black lines. The lateral collision constraints

are denoted by vertical black bars, and the rear-end safety constraint is the hashed

region on the graph. There are two other CAVs shown; one is on Path 3 and merges

in front of the ego-CAV at collision node 1 (Fig. 4.2) and the second CAV leads the

ego-CAV on path 2. Figure 4.4 demonstrates that although the trajectory generated

by the ego-vehicle may not violate any constraints, the actual trajectory violates the

127

rear-end safety constraint by a car length (0.2 m). However, at this speed, the rear-

end safety constraint requires a three-car length gap, so a robust control formulation

of Problem 11 could likely guarantee collision avoidance. This can also be seen in the

lateral collision avoidance constraint in Fig. 4.4, where a later CAV crosses node 3 in

a way that violates the time headway constraint (again, without leading to an actual

collision).

Figure 4.4: Position trajectory for the third vehicle entering from path 2 in the 5th
experiment. The lateral constraints are shown as vertical lines, and the
rear-end safety constraint is the hashed region.

4.3 Conclusion

This chapter presents an original technique to generate optimal trajectories

for differentially flat systems, which outperforms existing approaches by every metric.

First, we derived an optimality condition that describes the optimal state evolution

128

independently of the costates. Second, we applied Theorem 8 to derive additional

boundary conditions for the flat system, which, to the best of our knowledge, has not

yet been reported in the literature. Third, we proposed a motion primitive generator

in Theorem 9 and derived the conditions to optimally switch between different motion

primitives. Finally, we applied our results to a double-integrator system and generated

a minimum-control trajectory with 20% less energy consumption and 2.8 times faster

computational speed compared to the best existing solver. In addition, an earlier anal-

ysis on connected and automated vehicles [58] demonstrates how the resulting optimal

control problem can be further simplified down to a one dimensional system that can

be solved in real-time to control a multi-robot system. In fact, our most recent exper-

iment generated unconstrained trajectories in approximately 2 ms for traffic corridor

containing 15 CAVs [39].

There are several intriguing directions for future work. First, it is practical, for

given dynamics, to determine what functional forms of the objective guarantee that an

analytical solution to the motion primitive generator (4.23) exists. Another potential

direction for future research is to relax Assumptions 16 and 17 and derive similar

results for systems with singularities and unbounded actuation capabilities. Developing

a general-purpose numerical method for differentially flat systems is another potential

research direction, and implementing the solver on embedded hardware for multi-robot

experiments will likely yield fruitful insights. Finally, it is important to note that the

constraint violations seen in our experiment stem almost entirely from model mismatch

and tracking error; tackling this problem is critical for the application of flatness-based

methods to physical systems [130].

129

Chapter 5

CONCLUSIONS AND FUTURE WORK

I learned this, at least, by my experiment:
that if one advances confidently in the
direction of his dreams, and endeavors to live
the life which he has imagined, he will meet
with a success unexpected in common hours.

Henry David Thoreau
Walden (1854)

Now, more than ever, it is critical that we develop tools to help us understand the

behavior of the complex and interconnected systems that make up our everyday lives.

The contributions of the work presented in this dissertation look to advance the state-

of-the-art in constraint-driven control, and to bring multi-agent robotic systems one

step closer to physical realization. Additionally, this dissertation provides a rigorous

framework to analyze emergent phenomena in complex systems, and it provides some

insights in how these systems might be effectively designed and controlled.

In terms of engineering outcomes, this dissertation proposes a new framework

to control multi-agent systems, which provides strong guarantees on the safety of indi-

vidual agents and the behavior of the overall system. This framework is fundamentally

data-driven, in the sense that each agent’s actions are a function of external signals

produced by the environment and neighboring agents. In contrast to machine learning

techniques, constraint-driven control has strong safety and performance guarantees;

additionally, the behavior of each agent is interpretable, i.e., it is straightforward for

a designer to understand why an agent takes any particular action. Furthermore, this

130

dissertation demonstrates the deployment of the proposed algorithms in a real-time

control application using our 1:25 scale testbed for emergent mobility systems.

As for broader impacts, this dissertation represents another union between emer-

gence in complex systems and control theory. Using the definition of emergence given

by Ashby [4], it is straightforward to determine whether a multi-agent system will gen-

erate emergent behavior. The questions raised by Ashby can be interrogated directly

using the engineering design process; the “complexity” of a system corresponds to the

size of the sub-space containing all equilibrium points, and the “goodness” of a sys-

tem corresponds to how well the system achieves a particular objective function. In

fact, the language of dynamical systems, stability, and optimization seems particularly

well-suited for rigorous discussion of emergent behavior in complex systems.

5.1 Summary of Contributions

Chapter 2 presents work on the formation reconfiguration problem, where a

collection of agents must move into a desired formation. This problem is well-studied,

and there are many heuristic techniques to achieve a desired formation. Viewing this

problem through Ashby’s framework allows us to apply engineering design principles

directly to a problem of emergence. In particular, it allows us to weigh the benefits (in

terms of convergence time) versus the cost (in terms of communication and actuation)

of different interaction rules to achieve desirable emergence. The major contributions

of this chapter are:

1. An equivalence between the assignment problem and Ashby’s definition of emer-
gence.

2. A new, decentralzied approach to goal assignment.

3. A guarantee that all agents converge to a unique goal in finite time under rea-
sonable assumptions about the initial and goal states.

131

4. An optimization-based approach to goal selection, which minimizes the expected
energy consumption of the individual agents—particularly in the case of dynamic
moving goals.

Chapter 3 presents several contributions to constraint-driven control of multi-

agent systems. Constraint-driven techniques allow agents to optimally decide their

control action at each time-instant, but they also require guarantees that the space

of feasible actions is non-empty. While this may require additional effort in terms of

designing the appropriate constraints, it is not inherently more work than moving all of

the constraints into the objective and selecting appropriate weights to achieve a desired

behavior [131, 132]. The major contributions of this chapter are:

1. An original framework, with three examples, for constraint-driven control of
multi-agent systems.

2. Sufficient conditions on the local states of ground vehicles to guarantee the emer-
gence of platooning behavior at the system level.

3. The first article, to the best of our knowledge, demonstrating how the physics of
fixed-wing UAVs can be exploited to generate stable emergent V formations.

4. A novel switching system architecture, which is interpretable without sacrificing
the strong guarantees on safety and system-level behavior.

Chapter 5 proposes an original technique for the optimal control of constrained

continuous-time systems; increasingly more efficient techniques will be critical before

multi-agent systems can be deployed en masse. Additionally, for systems with differ-

entially flat dynamics, this method allows designers to plan exact trajectories using

a set of simplified dynamics. The results of this chapter are coordinate-independent,

which implies that the separation result is a fundamental property of differentially flat

systems—it is not just a result of the transformation. The major contributions of this

chapter are:

132

1. A differential equation that is independent of the costates, which can be used to
generate optimal motion primitives.

2. An equivalent set of optimality conditions that describe how the system reacts
to constraint activations.

3. A numerical example of energy-optimal obstacle avoidance that significantly out-
performs state-of-the-art open source optimal control libraries for one example.

4. Experimental validation of an unconstrained motion primitive being used to co-
ordinate a system of connected and automated vehicles at an unsignalized round-
about to eliminate stop-and-go driving.

5.2 Future Research Directions

While this dissertation provides some insights on multi-agent systems and emer-

gence, it also raises a number of compelling questions. From an engineering perspec-

tive, there are many unknowns that must be resolved before multi-agent and robotic

swarm systems become commonplace. First, the cost of individual robots must be

significantly reduced, either through Moore’s law or clever algorithms, to make multi-

agent systems cost-effective. Another interesting research direction is demonstrating

the benefit of line flocking with aerial vehicles; UAVs with broad wingspans traveling

in calm air show the most promise. A more theoretical question concerns emergence

in competitive games—how might the emergence of a peloton in a bicycle race occur?

This research direction seems amenable to a differential games approach, where Nash

equilibria correspond to the emergent behavior of the cooperative setting. Finally, can

an emergent system, as defined by Ashby, be abstracted to multiple layers? I have

demonstrated, for example, that individual vehicles can be abstracted to platoons;

might these platoons contain their own collection of equilibrium points, which can be

further abstracted to a general transportation network? Such an analysis would be

the greatest test of this dissertation’s framework, to find a class of systems that can

be repeatedly abstracted until only trivial equilibria remain. Or, in the tradition of

Richardson and De Morgan, “Systems with equilibria that describe their complexity,

their abstractions are the same, and so on to simplicity.”

133

BIBLIOGRAPHY

[1] Henrik Christensen, Nancy Amato, Holly Yanco, Maja Mataric, Howie Choset,
Ann Drobnis, Ken Goldberg, Jessy Grizzle, Gregory Hager, John Hollerbach,
Seth Hutchinson, Venkat Krovi, Daniel Lee, William D. Smart, Jeff Trinkle, and
Gaurav Sukhatme. A Roadmap for US Robotics – From Internet to Robotics
2020 Edition. Foundations and Trends in Robotics, 8(4):307–424, 2021.

[2] Susan Stepney, Fiona A.C. Polack, and Heather R. Turner. Engineering Emer-
gence. In Proceedings of the 11th IEEE International Conference on Engineering
of Complex Computer Systems, Stanford, CA, USA, 2006. IEEE Computer So-
ciety.

[3] Rick L. Sturdivant and Edwin K.P. Chong. The Necessary and Sufficient Con-
ditions for Emergence in Systems Applied to Symbol Emergence in Robots.
IEEE Transactions on Cognitive and Developmental Systems, 10(4):1035–1042,
12 2018.

[4] W Ross Ashby. Principles of the self-organizing system. Emergence: Complexity
and Organization, 6(2):102–126, 2004.

[5] Hassan K Khalil. Nonlinear systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, second edition edition, 1996.

[6] David V Newman. Emergence and Strange Attractors. Philosophy of Science,
63(2):245–261, 1996.

[7] Takamitsu Watanabe, Satoshi Hirose, Hiroyuki Wada, Yoshio Imai, Toru
Machida, Ichiro Shirouzu, Seiki Konishi, Yasushi Miyashita, and Naoki Masuda.
Energy landscapes of resting-state brain networks. Frontiers in Neuroinformat-
ics, 8(FEB), 2 2014.

[8] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. IEEE Transactions on Automatic Control, 51(3):401–420, 3 2006.

[9] Logan E. Beaver and Andreas A Malikopoulos. An Overview on Optimal Flock-
ing. Annual Reviews in Control, 51:88–99, 2021.

[10] Scott E. Page. Understanding Complexity, 2009.

134

[11] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

[12] Hyondong Oh, Ataollah Ramezan Shirazi, Chaoli Sun, and Yaochu Jin. Bio-
inspired self-organising multi-robot pattern formation: A review. Robotics and
Autonomous Systems, 91:83–100, 2017.

[13] Iztok Lebar Bajec and Frank H. Heppner. Organized flight in birds. Animal
Behaviour, 78(4):777–789, 10 2009.

[14] Herbert G. Tanner, Ali Jadbabaie, and George J. Pappas. Flocking in fixed and
switching networks. IEEE Transactions on Automatic Control, 52(5):863–868,
2007.

[15] Yoram Koren and Johann Borenstein. Potential Field Methods and their Inher-
ent Limitations for Mobile Robot Navigation. In Proceedings of the 1991 IEEE
International Conference on Robotics and Automation, 1991.

[16] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Tamás Nepusz, Agoston E
Eiben, and Tamás Vicsek. Optimized flocking of autonomous drones in confined
environments. Science Robotics, 3(20), 2018.

[17] Koichiro Morihiro, Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Mat-
sui. Emergence of Flocking Behavior Based on Reinforcement Learning. In
International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, pages 699–706, 2006.

[18] Chao Wang, Jian Wang, and Zhang Xudong. A Deep Reinforcement Learning
Approach to Flocking and Navigation of UAVs in Large-Scale Complex Environ-
ments. In 2018 IEEE Global Conference on Signal and Information Processing,
2018.

[19] Haibin Duan and Peixin Qiao. Pigeon-inspired optimization: A new swarm intel-
ligence optimizer for air robot path planning. International Journal of Intelligent
Computing and Cybernetics, 7(1):24–37, 2014.

[20] James Kennedy and Russell Eberhart. Particle Swarm Optimization. In Inter-
national Conference on Neural Networks, pages 1942–1948, 1995.

[21] Hande Celikkanat. Optimization of self-organized flocking of a robot swarm
via evolutionary strategies. In 23rd International Symposium on Computer and
Information Sciecnes, 2008.

[22] Huaxin Qiu and Haibin Duan. A multi-objective pigeon-inspired optimization
approach to UAV distributed flocking among obstacles. Information Sciences,
509:515–529, 1 2020.

135

[23] Hai Tao Zhang, Michael Zhiqiang Chen, Guy Bart Stan, Tao Zhou, and Jan M.
MacIejowski. Collective behavior coordination with predictive mechanisms. IEEE
Circuits and Systems Magazine, 8(3):67–85, 9 2008.

[24] Jingyuan Zhan and Xiang Li. Flocking of Discrete-time Multi-Agent Systems
with Predictive Mechanisms. In 18th IFAC World Congress, pages 5669–5674,
2011.

[25] Jingyuan Zhan and Xiang Li. Decentralized Flocking Protocol of Multi-agent
Systems with Predictive Mechanisms. In Proceedings of the 30th Chinese Control
Conference, pages 5995–6000, 2011.

[26] Quan Yuan, Jingyuan Zhan, and Xiang Li. Outdoor flocking of quadcopter
drones with decentralized model predictive control. ISA Transactions, 71:84–92,
11 2017.

[27] Benedetto Piccoli, Nastassia Pouradier Duteil, and Benjamin Scharf. Optimal
Control of a Collective Migration Model. Mathematical Models and Methods in
Applied Sciences, 26(2), 2016.

[28] Steven A.P. Quintero, Gaemus E. Collins, and Joao P. Hespanha. Flocking with
fixed-wing UAVs for distributed sensing: A stochastic optimal control approach.
In Proceedings of the American Control Conference, pages 2025–2031, 2013.

[29] Tatsuya Ibuki, Sean Wilson, Junya Yamauchi, Masayuki Fujita, and Magnus
Egerstedt. Optimization-Based Distributed Flocking Control for Multiple Rigid
Bodies. IEEE Robotics and Automation Letters, 5(2):1891–1898, 4 2020.

[30] Andre Nathan and Valmir C Barbosa. V-like Formations in Flocks of Artificial
Birds. Artificial Life, 14(2):197–188, 2008.

[31] R A R Bedruz, Jose Martin Z Maningo, Arvin H Fernando, Argel A Bandala,
Ryan Rhay P Vicerra, and Elmer P Dadios. Dynamic Peloton Formation Config-
uration Algorithm of Swarm Robots for Aerodynamic Effects Optimization. In
Proceedings of the 7th International Conference on Robot Intelligence Technology
and Applications, pages 264–267, 2019.

[32] Junxing Yang, Radu Grosu, Scott A. Smolka, and Ashish Tiwari. Love thy
neighbor: V-formation as a problem of model predictive control. In Leibniz
International Proceedings in Informatics, LIPIcs, volume 59, 2016.

[33] A. Mirzaeinia, M. Hassanalian, K. Lee, and M. Mirzaeinia. Energy conserva-
tion of V-shaped swarming fixed-wing drones through position reconfiguration.
Aerospace Science and Technology, 94, 11 2019.

136

[34] Gabriele Ribichini and Emilio Frazzoli. Efficient Coordination of Multiple Air-
craft Systems. In 4nd IEEE Conference on Decision and Control, pages 1035–
1040, 2003.

[35] Thomas Eliot Kent. Optimal Routing and Assignment for Commercial Formation
Flight. PhD thesis, University of Bristol, 2015.

[36] C M A Verhagen. Formation flight in civil aviation Development of a decentralized
approach to formation flight routing. PhD thesis, Delft University of Technology,
2015.

[37] Zhuoyuan Song, Doug Lipinski, and Kamran Mohseni. Multi-vehicle coopera-
tion and nearly fuel-optimal flock guidance in strong background flows. Ocean
Engineering, 141:388–404, 2017.

[38] Logan E. Beaver, Behdad Chalaki, A. M. Ishtiaque Mahbub, Liuhui Zhao, Ray
Zayas, and Andreas A. Malikopoulos. Demonstration of a Time-Efficient Mobility
System Using a Scaled Smart City. Vehicle System Dynamics, 58(5):787–804,
2020.

[39] Behdad Chalaki, Logan E. Beaver, A M Ishtiaque Mahbub, Heeseung Bang, and
Andreas A. Malikopoulos. A research and educational robotic testbed for real-
time control of emerging mobility systems: From theory to scaled experiments.
IEEE Control Systems Magazine, 2022 (in press).

[40] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent
formation control. Automatica, 53:424–440, 2015.

[41] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm
robotics: A review from the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[42] Logan E. Beaver and Andreas A Malikopoulos. A Decentralized Control Frame-
work for Energy-Optimal Goal Assignment and Trajectory Generation. In IEEE
58th Conference on Decision and Control, pages 879–884, 2019.

[43] Logan E. Beaver and Andreas A Malikopoulos. An Energy-Optimal Framework
for Assignment and Trajectory Generation in Teams of Autonomous Agents.
Systems & Control Letters, 138, April 2020.

[44] Heeseung Bang, Logan E Beaver, and Andreas A Malikopoulos. Energy-optimal
goal assignment of multi-agent system with goal trajectories in polynomials. In
2021 29th Mediterranean Conference on Control and Automation (MED), pages
1228–1233, 2021.

137

[45] Magnus Egerstedt, Jonathan N. Pauli, Gennaro Notomista, and Seth Hutchinson.
Robot ecology: Constraint-based control design for long duration autonomy.
Annual Reviews in Control, 46:1–7, 1 2018.

[46] Logan E. Beaver and Andreas A. Malikopoulos. Constraint-driven optimal con-
trol of multi-agent systems: A highway platooning case study. IEEE Control
Systems Letters, 6:1754–1759, 2022.

[47] Logan E. Beaver and Andreas A. Malikopoulos. Constraint-driven optimal con-
trol for emergent swarming and predator avoidance. arXiv:2203.11057 (in re-
view), 2022.

[48] Logan E Beaver, Christopher Kroninger, and Andreas A Malikopoulos. A
Constraint-Driven Approach to Line Flocking: The V Formation as an Energy-
Saving Strategy. In (in preparation), 2022.

[49] Arthur E. Bryson, Jr. Optimal Control-1950 to 1985. IEEE Control Systems
Magazine, 16(3):26–33, 1996.

[50] Michel Fliess, Jean Levine, Philippe Martin, and Pierre Rouchon. Flatness and
defect of non-linear systems: Introductory theory and examples. International
Journal of Control, 61(6):1327–1361, 1995.

[51] Oladapo Tolulola Ogunbodede. Optimal Control of Differentially Flat Systems.
PhD thesis, The University at Buffalo, 2020.

[52] F Chaplais and N Petit. Inversion in indirect optimal control: constrained and
unconstrained cases. In 46th IEEE Conference on Decision and Control, pages
683–689, 2007.

[53] François Chaplais and Nicolas Petit. Inversion in indirect optimal control of
multivariable systems. ESAIM: COCV, 14:294–317, 2008.

[54] Knut Graichen, Andreas Kugi, Nicolas Petit, and Francois Chaplais. Handling
constraints in optimal control with saturation functions and system extension.
Systems and Control Letters, 59(11):671–679, 11 2010.

[55] Pierre-Cyril Aubin-Frankowski. Estimation and control under constraints through
Kernel methods. PhD thesis, Mines ParisTech, Paris, 7 2021.

[56] Jonas Koenemann, Giovanni Licitra, and Moritz Politecnico, Mustafa AlpDiehl.
OpenOCL - Open Optimal Control Library. In Robotics Science and Systems,
2019.

[57] Yuanbo Nie, Omar Faqir, and Eric C Kerrigan. ICLOCS2: Try this Optimal
Control Problem Solver Before you Try the Rest;. In 2018 UKACC 12th Inter-
national Conference on Control (CONTROL), 2018.

138

[58] Behdad Chalaki, Logan E Beaver, and Andreas A Malikopoulos. Experimental
validation of a real-time optimal controller for coordination of cavs in a multi-lane
roundabout. In 31st IEEE Intelligent Vehicles Symposium (IV), pages 504–509,
2020.

[59] Logan E. Beaver, Michael Dorothy, Christopher Kroninger, and Andreas A Ma-
likopoulos. Energy-Optimal Motion Planning for Agents: Barycentric Motion
and Collision Avoidance Constraints. In 2021 American Control Conference,
pages 1037–1042, 2021.

[60] Logan E. Beaver and Andreas A Malikopoulos. Optimal Control of Differentially
Flat Systems is Surprisingly Simple. arXiv:2103.03339 (in review), 2022.

[61] Matthew Turpin, Nathan Michael, and Vijay Kumar. Concurrent Assignment
and Planning of Trajectories for Large Teams of Interchangeable Robots. In
2013 IEEE International Conference Robotics and Automation (ICRA), pages
842–848, Karlsruhe, Germany, 2013.

[62] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven Koenig.
Searching with Consistent Prioritization for Multi-Agent Path Finding. In 33rd
AAAI Conference on Artificial Intelligence, pages 7643–7650, 2019.

[63] Wenying Wu, Subhrajit Bhattacharya, and Amanda Prorok. Multi-Robot Path
Deconfliction through Prioritization by Path Prospects. In 2020 IEEE Interna-
tional Conference on Robotics and Automation, pages 9809–9815, 8 2020.

[64] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Ku-
mar, Sven Koenig, and Howie Choset. PRIMAL: Pathfinding via Reinforcement
and Imitation Multi-Agent Learning. IEEE Robotics and Automation Letters, 4
(3):2378–2385, 2018.

[65] H S Witsenhausen. A counterexample in stochastic optimum control. Siam
Journal of Control, 6(1):131–147, 1968.

[66] Aditya Dave and Andreas A Malikopoulos. Structural results for decentralized
stochastic control with a word-of-mouth communication. In 2020 American Con-
trol Conference (ACC), pages 2796–2801, 2020.

[67] Aditya Dave and Andreas A Malikopoulos. A dynamic program for a team of
two agents with nested information. In 2021 IEEE Conference on Decision and
Control (CDC), pages 3768–3773. IEEE, 2021.

[68] Daniel Morgan, Giri P. Subramanian, Soon-Jo Chung, and Fred Y. Hadaegh.
Swarm assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming. International Journal
of Robotics Research, 35(10):1261–1285, 2016.

139

[69] Matthew Turpin, Nathan Michael, and Vijay Kumar. CAPT: Concurrent assign-
ment and planning of trajectories for multiple robots. International Journal of
Robotics Research, 33(1):98–112, 2014.

[70] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal As-
signment and Trajectory Planning for Large Teams of Aerial Robots. Proceedings
of Robotics: Science and Systems, 37:401–415, 2013.

[71] Stephen P. Boyd and Lieven. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[72] Gennaro Notomista, Siddharth Mayya, Seth Hutchinson, and Magnus Egerstedt.
An optimal task allocation strategy for heterogeneous multi-robot systems. In
18th European Control Conference, pages 2071–2076, 6 2019.

[73] Wei Xiao, Calin A. Belta, and Christos G. Cassandras. Sufficient conditions for
feasibility of optimal control problems using Control Barrier Functions. Auto-
matica, 135, 1 2022.

[74] Lars Lindemann and Dimos V. Dimarogonas. Control barrier functions for signal
temporal logic tasks. IEEE Control Systems Letters, 3(1):96–101, 1 2019. ISSN
24751456. doi: 10.1109/LCSYS.2018.2853182.

[75] Li Wang, Aaron D. Ames, and Magnus Egerstedt. Safety barrier certificates
for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3):
661–674, 2017.

[76] A M Ishtiaque Mahbub and Andreas A Malikopoulos. A Platoon Formation
Framework in a Mixed Traffic Environment. IEEE Control Systems Letters
(LCSS), 6:1370–1375, 2021.

[77] S.D. Kumaravel, Andreas A Malikopoulos, and R. Ayyagari. Optimal coor-
dination of platoons of connected and automated vehicles at signal-free inter-
sections. IEEE Transactions on Intelligent Vehicles, pages 1–1, 2021. doi:
10.1109/TIV.2021.3096993.

[78] A M Ishtiaque Mahbub and Andreas A. Malikopoulos. Platoon Formation in
a Mixed Traffic Environment: A Model-Agnostic Optimal Control Approach.
Proceedings of 2022 American Control Conference, October 2022 (to appear).

[79] Danielle Fredette. Fuel-Saving behavior for Multi-Vehicle Systems: Analysis,
Modeling, and Control. PhD thesis, The Ohio State University, 2017.

[80] Yang Zhu and Feng Zhu. Barrier-function-based distributed adaptive control of
nonlinear CAVs with parametric uncertainty and full-state constraint. Trans-
portation Research Part C: Emerging Technologies, 104:249–264, 7 2019.

140

[81] Julien M. Hendrickx, Balázs Gerencsér, and Baris Fidan. Trajectory Conver-
gence From Coordinate-Wise Decrease of Quadratic Energy Functions, and Ap-
plications to Platoons. IEEE Control Systems Letters, 4(1):151–156, 1 2020.

[82] Andrea Tagliabue, Aleix Paris, Suhan Kim, Regan Kubicek, Sarah Bergbreiter,
and Jonathan P. How. Touch the wind: Simultaneous airflow, drag and inter-
action sensing on a multirotor. In IEEE International Conference on Intelligent
Robots and Systems, pages 1645–1652, 2020.

[83] Yousef Emam, Paul Glotfelter, and Magnus Egerstedt. Robust Barrier Functions
for a Fully Autonomous, Remotely Accessible Swarm-Robotics Testbed. In 58th
Conference on Decision and Control, pages 3984–3990, 2019.

[84] Gennaro Notomista and Magnus Egerstedt. Constraint-Driven Coordinated Con-
trol of Multi-Robot Systems. In Proceedings of the 2019 American Control Con-
ference, 2019.

[85] Johan Löfberg. Oops! I cannot do it again: Testing for recursive feasibility in
MPC. Automatica, 48:550–555, 2012.

[86] Mingming Shi and Julien M. Hendrickx. Are energy savings the only reason for
the emergence of bird echelon formation? ArXiv: 2103.13381, 3 2021.

[87] A. Mirzaeinia, F. Heppner, and M. Hassanalian. An analytical study on leader
and follower switching in V-shaped Canada Goose flocks for energy management
purposes. Swarm Intelligence, 14(2):117–141, 6 2020.

[88] Shouvik Roy, Usama Mehmood, Radu Grosu, Scott A. Smolka, Scott D. Stoller,
and Ashish Tiwari. Learning distributed controllers for V-formation. In 2020
IEEE International Conference on Autonomic Computing and Self-Organizing
Systems, pages 119–128. Institute of Electrical and Electronics Engineers Inc., 8
2020.

[89] A. E. Bryson, Jr. and Yu-Chi Ho. Applied Optimal Control: Optimization, Esti-
mation, and Control. John Wiley and Sons, 1975.

[90] I. Michael Ross. A Primer on Pontryagin’s Principle in Optimal Control. Colle-
giate Publishers, San Francisco, 2nd edition, 2015.

[91] Jean Lévine. On necessary and sufficient conditions for differential flatness. Ap-
plicable Algebra in Engineering, Communications and Computing, 22(1):47–90,
2011.

[92] Behdad Chalaki and Andreas A Malikopoulos. Robust learning-based trajectory
planning for emerging mobility systems. In 2022 American Control Conference
(ACC), 2022 (accepted) arXiv:2103.03313.

141

[93] John Anderson. Fundamentals of Aerodynamics. McGraw-Hill, New York, NY,
sixth edition edition, 2017.

[94] Magnus Egerstedt. Robot Ecology: Constraint-Based Design for Long-Duration
Autonomy. Princeton University Press, 2021.

[95] Jianan Wang and Ming Xin. Distributed optimal cooperative tracking control of
multiple autonomous robots. Robotics and Autonomous Systems, 60(4):572–583,
4 2012.

[96] Maŕıa Santos, Siddharth Mayya, Gennaro Notomista, and Magnus Egerstedt. De-
centralized Minimum-Energy Coverage Control for Time-Varying Density Func-
tions. In 2019 International Symposium on Multi-Robot and Multi-Agent Systems,
pages 155–161, 2019.

[97] Tyler H. Summers and John Lygeros. Distributed model predictive consensus
via the Alternating Direction Method of Multipliers. In 50th Annual Allerton
Conference on Communication, Control, and Computing, pages 79–84, 2012.

[98] Yang Lyu, Jinwen Hu, Ben M. Chen, Chunhui Zhao, and Quan Pan. Multivehicle
Flocking With Collision Avoidance via Distributed Model Predictive Control.
IEEE Transactions on Cybernetics, pages 1–12, 10 2019.

[99] Jingyuan Zhan and Xiang Li. Flocking of multi-agent systems via model pre-
dictive control based on position-only measurements. IEEE Transactions on
Industrial Informatics, 9(1):377–385, 2013.

[100] AeroVironment. Raven RQ-11B, 2021. URL https://www.avinc.com/images/

uploads/product_docs/Raven_Datasheet_07122021.pdf.

[101] Hung Manh La, Ronny Lim, and Weihua Sheng. Multirobot cooperative learning
for predator avoidance. IEEE Transactions on Control Systems Technology, 23
(1):52–63, 1 2015.

[102] Carsten Hahn, Thomy Phan, Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Emergent Escape-based Flocking Behavior using Multi-Agent
Reinforcement Learning. In Artificial Life Conference, pages 598–605, 2019.

[103] Tony J. Pitcher and Christopher J. Wyche. Predator-avoidance behaviours of
sand-eel schools: why schools seldom split. In Predators and Prey in Fishes,
pages 193–204, 1983.

[104] Logan E. Beaver and Andreas A Malikopoulos. Beyond Reynolds: A Constraint-
Driven Approach to Cluster Flocking. In IEEE 59th Conference on Decision and
Control, pages 208–213, 2020.

142

https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_07122021.pdf
https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_07122021.pdf

[105] Logan E. Beaver, Chris Kroninger, and Andreas A Malikopoulos. An Optimal
Control Approach to Flocking. In 2020 American Control Conference, pages
683–688, 2020.

[106] Benjamin T. Fine and Dylan A. Shell. Unifying microscopic flocking motion
models for virtual, robotic, and biological flock members. Autonomous Robots,
35(2-3):195–219, 10 2013.

[107] Emiliano Cristiani, Paolo Frasca, and Benedetto Piccoli. Effects of anisotropic
interactions on the structure of animal groups. Journal of Mathematical Biology,
62(4):569–588, 4 2011.

[108] M Ballerini, N Cabibbo, R Candelier, A Cavagna, E Cisbani, I Giardina,
V Lecomte, A Orlandi, G Parisi, A Procaccini, M Viale, and V Zdravkovic. Inter-
action ruling animal collective behavior depends on topological rather than metric
distance: Evidence from a field study. Proceedings of the National Academy of
Sciences of the United States of America, 105(4):1232–1237, 2008.

[109] Lifeng Zhou and Shaoyuan Li. Distributed model predictive control for multi-
agent flocking via neighbor screening optimization. International Journal of Ro-
bust and Nonlinear Control, 27(9):1690–1705, 6 2017.

[110] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista,
Koushil Sreenath, and Paulo Tabuada. Control barrier functions: Theory and
applications. In 2019 18th European Control Conference, ECC 2019, pages 3420–
3431. Institute of Electrical and Electronics Engineers Inc., 6 2019.

[111] Carsten Hahn, Fabian Ritz, Paula Wikidal, Thomy Phan, Thomas Gabor, and
Claudia Linnhoff-Popien. Foraging Swarms using Multi-Agent Reinforcement
Learning. In Artificial Life Conference, pages 333–340, 2020.

[112] Florian Berlinger, Paula Wulkop, and Radhika Nagpal. Self-Organized Evasive
Fountain Maneuvers with a Bioinspired Underwater Robot Collective. In 2021
IEEE International Conference on Robotics and Automation, pages 9204–9211.
Institute of Electrical and Electronics Engineers (IEEE), 10 2021.

[113] Richard M Murray, Muruhan Rathinam, and Willem Sluis. Differential Flatness
of Mechanical Control Systems: A Catalog of Prototype Systems. In ASME
International Mechanical Engineering Congress and Expo, 1995.

[114] Koushil Sreenath, Nathan Michael, and Vijay Kumar. Trajectory generation and
control of a quadrotor with a cable-suspended load - A differentially-flat hybrid
system. In IEEE International Conference on Robotics and Automation, pages
4888–4895, 2013.

[115] Mark B Milam. Real-Time Optimal Trajectory Generation for Constrained Dy-
namical Systems. PhD thesis, California Institute of Technology, 2003.

143

[116] Andreas A Malikopoulos. On team decision problems with nonclassical informa-
tion structures. IEEE Transactions on Automatic Control, 2022 (conditionally
accepted) arXiv:2101.10992.

[117] Behdad Chalaki and Andreas A Malikopoulos. An optimal coordination frame-
work for connected and automated vehicles in two interconnected intersections. In
2019 IEEE Conference on Control Technology and Applications (CCTA), pages
888–893, 2019.

[118] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low cost
scalable robot system for collective behaviors. In Proceedings of the 2012 IEEE
International Conference on Robotics and Automation, pages 3293–3298, 2012.

[119] Kathy Jang, Eugene Vinitsky, Behdad Chalaki, Ben Remer, Logan Beaver, An-
dreas A Malikopoulos, and Alexandre Bayen. Simulation to scaled city: zero-
shot policy transfer for traffic control via autonomous vehicles. In Proceedings of
the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages
291–300, 2019.

[120] A M Ishtiaque Mahbub and Andreas A Malikopoulos. Concurrent optimization
of vehicle dynamics and powertrain operation using connectivity and automation.
In SAE Technical Paper 2020-01-0580. SAE International, 2020.

[121] Andreas A Malikopoulos, Logan E Beaver, and Ioannis Vasileios Chremos. Op-
timal time trajectory and coordination for connected and automated vehicles.
Automatica, 125(109469), 2021.

[122] Nicolas Petit, Mark B Milam, and Richard M Murray. Inversion Based Con-
strained Trajectory Optimization. IFAC Proceedings Volumes, 34(6):1211–1216,
2001.

[123] Jean Lévine. On The Equivalence Between Differential Flatness and Dynamic
Feedback Linearizability. IFAC Proceedings Volumes, 40(20):338–343, 2007.

[124] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In IEEE International Conference on Robotics and Au-
tomation, pages 2520–2525, 2011.

[125] Bernd Kolar, Hubert Rams, and Kurt Schlacher. Time-optimal flatness based
control of a gantry crane. Control Engineering Practice, 60:18–27, 3 2017.

[126] Herbertt Sira-Ramirez and Sunil K. Agrawal. Differentially Flat Systems. CRC
Press, 1st edition, 2018.

[127] M. Van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and
absolute equivalence. In Proceedings of the IEEE Conference on Decision and
Control, volume 1, pages 326–332, 1994.

144

[128] Behdad Chalaki and Andreas A. Malikopoulos. An Optimal Coordination Frame-
work for Connected and Automated Vehicles in two Interconnected Intersections.
In 2019 IEEE Conference on Control Technology and Applications, Hong Kong,
2 2019. URL http://arxiv.org/abs/1903.00120.

[129] Behdad Chalaki and Andreas A. Malikopoulos. A priority-aware replanning and
resequencing framework for coordination of connected and automated vehicles.
IEEE Control Systems Letters, 6:1772–1777, 2022. doi: 10.1109/LCSYS.2021.
3133416.

[130] Melissa Greeff and Angela P Schoellig. Exploiting Differential Flatness for Ro-
bust Learning-Based Tracking Control using Gaussian Processes. IEEE Control
System Letters, 5(4):1121–1126, 2021.

[131] Inmo Jang, Hyo-Sang Shin, and Antonios Tsourdos. Anonymous Hedonic Game
for Task Allocation in a Large-Scale Multiple Agent System. IEEE Transactions
on Robotics, 34(6):1534–1548, 2018.

[132] Behdad Chalaki, Logan E Beaver, Ben Remer, Kathy Jang, Eugene Vinitsky,
Alexandre Bayen, and Andreas A Malikopoulos. Zero-shot autonomous vehicle
policy transfer: From simulation to real-world via adversarial learning. In IEEE
16th International Conference on Control & Automation (ICCA), pages 35–40,
2020.

145

http://arxiv.org/abs/1903.00120

Appendix A

REPUBLICATION PERMISSIONS

This appendix lists the articles that appear, partially or in full, in this disser-

tation. The articles are presented based on the publisher of the original article, and a

RightsLink page for each publisher follows.

Articles Previously Published by Elsevier:

• [9] L.E. Beaver and A.A. Malikopoulos, “An Overview on Optimal Flocking,” in
Annual Reviews in Control, vol. 51, pp. 88–99.

• [43] L.E. Beaver and A.A. Malikopoulos, “An Energy-Optimal Framework for
Assignment and Trajectory Generation in Teams of Autonomous Agents” in Sys-
tems & Control Letters, vol. 138, April 2020.

Articles Previously Published by IEEE

• [46] L.E. Beaver and A.A. Malikopoulos, “Constraint-Driven Optimal Control
of Multiagent Systems: A Highway Platooning Case Study” in IEEE Control
Systems Letters, vol. 6, pp. 1754–1759, 2022.

• [58] B. Chalaki, L.E. Beaver and A.A. Malikopoulos, “Experimental Validation
of a Real-Time Optimal Controller for Coordination of CAVs in a Multi-Lane
Roundabout” 2020 Intelligent Vehicles Symposium, pp. 775–780, 2020.

146

Home Help Email Support Sign in Create Account

© 2022 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
An overview on optimal �ocking
Author: Logan E. Beaver,Andreas A. Malikopoulos

Publication: Annual Reviews in Control

Publisher: Elsevier

Date: 2021

© 2021 Elsevier Ltd. All rights reserved.

Journal Author Rights

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 6/14/2022, 6:49 PM

147

Home Help Email Support Sign in Create Account

© 2022 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
Constraint-Driven Optimal Control of Multiagent Systems: A Highway
Platooning Case Study
Author: Logan E. Beaver

Publication: IEEE Control Systems Letters

Publisher: IEEE

Date: 2022

Copyright © 2022, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 6/14/2022, 6:47 PM

148

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Engineering Complex Systems
	1.1 Literature Overview
	1.2 Contributions

	2 Goal Assignment as an Emergent Behavior
	2.1 An Energy-Optimal Framework for Assignment and Trajectory Generation in Teams of Autonomous Agents
	2.1.1 Problem Formulation
	2.1.1.1 Preliminaries

	2.1.2 Optimal Goal Assignment
	2.1.3 Optimal Trajectory Generation
	2.1.4 Simulation Results

	2.2 Concluding Remarks

	3 Constraint-Driven Control for Multi-Agent Systems
	3.1 Constraint-Driven Optimal Control of Multi-Agent Systems: A Highway Platooning Case Study
	3.1.1 Introduction
	3.1.2 Problem Formulation
	3.1.3 Optimal Control with Gradient Flow
	3.1.4 Simulation Results

	3.2 A Constraint-Driven Approach to Line Flocking: The V Formation as an Energy-Saving Strategy
	3.2.1 Introduction
	3.2.2 Problem Formulation
	3.2.2.1 Note on Notation
	3.2.2.2 System Dynamics
	3.2.2.3 Wake Model

	3.2.3 Optimal Feedback Controller
	3.2.3.1 Implementation

	3.2.4 Simulation Results
	3.2.5 A Note on Heterogeneity

	3.3 Constraint-Driven Optimal Control for Emergent Swarming and Predator Avoidance
	3.3.1 Introduction
	3.3.2 Problem Formulation
	3.3.3 Solution Approach
	3.3.4 Simulation
	3.3.5 Conclusion

	4 Real-Time Optimal Control
	4.1 Optimal Control of Differentially Flat Systems is Surprisingly Simple
	4.1.1 Introduction
	4.1.2 Problem Formulation
	4.1.3 Main Results
	4.1.3.1 Separability of the Optimality Conditions
	4.1.3.2 Interior-Point Constraints
	4.1.3.3 Trajectory Constraints
	4.1.3.4 Boundary Conditions

	4.1.4 Double-Integrator Example
	4.1.4.1 Optimal Motion Primitives

	4.1.5 Numerical Simulation
	4.1.6 Proofs

	4.2 Experimental Validation of a Real-Time Optimal Controller for Coordination of CAVs in a Multi-Lane Roundabout
	4.2.1 The Roundabout Scenario
	4.2.2 Vehicle Model and Constraints
	4.2.3 Analytical solution
	4.2.4 Experimental Results

	4.3 Conclusion

	5 Conclusions and Future Work
	5.1 Summary of Contributions
	5.2 Future Research Directions

	BIBLIOGRAPHY
	A REPUBLICATION PERMISSIONS

