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Abstract— Coordination of connected and automated vehicles
(CAVs) in a mixed traffic environment poses significant chal-
lenges due to the presence of human-driven vehicles (HDVs)
with stochastic dynamics and driving behavior. In earlier work,
we addressed the problem of platoon formation of HDVs led
by a CAV using a model-dependent controller. In this paper,
we develop a comprehensive model-agnostic, multi-objective
optimal controller which ensures platoon formation by directly
controlling the leading CAV without having explicit knowledge
of the trailing HDV dynamics. We provide a detailed exposition
of the control framework that uses instantaneous motion
information from multiple successive HDVs to enforce safety
while achieving the optimization objectives. To demonstrate
the efficacy of the proposed control framework, we evaluate its
performance using numerical simulation and provide associated
sensitivity and robustness analysis.

I. INTRODUCTION

The implementation of an emerging transportation system
with connected automated vehicles (CAVs) enables a novel
computational framework to better monitor the transportation
network conditions and make optimal operating decisions to
improve safety and reduce pollution, energy consumption,
and travel delays [1]. Recent efforts have reported several
optimal control approaches for coordination of CAVs at
different traffic scenarios such as on-ramp merging roadways
[2], roundabouts [3], [4], speed reduction zones [5], signal-
free intersections [6]-[10], and traffic corridors [11]-[13].
These approaches have focused on 100% CAV penetration
rates without considering human-driven vehicles (HDVs).
However, the existence of having a transportation network
with a 100% CAVs is not expected before 2060 [14].
Therefore, the need for a mathematically robust and tractable
control framework considering a mixed traffic environment
consisting of both CAVs and HDVs is essential. In reality,
HDVs pose significant modeling and control challenges to
the CAVs due to the stochastic nature of the human-driving
behavior, often emulated by the car-following models, see
[15]-[17]. Some approaches reported in the literature [3],
[18] have included the car-following models for coordinating
CAVs in a mixed environment, while others have been based
on reinforcement learning [19], [20].

In this paper, our research hypothesis is that, since we
cannot control the HDVs directly, we can control the CAVs
in a way to force the trailing HDVs to form platoons,
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and thus indirectly control the HDVs. In this context, we
focus on the problem of vehicle platoon formation in mixed
traffic environment by only controlling the CAVs within the
network. Although the problem of platoon formation has
been widely studied for 100% CAV penetration [21]-[23],
only limited efforts have been reported in the literature for
mixed traffic environment. Some of these approaches have
adopted adaptive cruise control for the CAVs [24]-[26] to
maintain platoon stability.

In this paper, we extend our previous work [27] by
introducing a multi-objective optimal control framework for
each CAV within the network subject to its state and control
constraints. The optimization objectives of the CAV are (a)
to form a platoon with the trailing HDVs, and (b) to improve
its fuel economy while achieving (a). Our proposed control
framework is model-agnostic, i.e., it does not require the
explicit knowledge of the HDVs’ car-following model, and
employs a receding horizon controller that uses a multi-
successor communication topology, i.e., reception of instan-
taneous motion information from multiple trailing HDVs, to
enforce safety while deriving and implementing the optimal
control input of the CAV. To the best of our knowledge, such
approach has not yet been reported in the literature to date.

The remainder of the paper proceeds as follows. In Section
II, we provide the modeling framework of the platoon for-
mation problem. In Section III, we develop a model-agnostic
constrained multi-objective optimal control framework for
the CAV for platoon formation. In Section IV, we evaluate
the performance of the proposed control framework using
numerical simulation and validate its effectiveness. Finally,
we draw concluding remarks and discuss potential directions
for future research in Section V.

II. PROBLEM FORMULATION

We consider a CAV followed by one or multiple HDVs
traveling in a single-lane roadway of length L € RT. We
subdivide the roadway into a buffer zone of length L, € RT,
where the HDVs’ state information is estimated, as shown
in Fig. 1 (top), and a control zone of length L. € Rt such
that L = L, + L., where the leading CAV is to be controlled
to form a platoon with the trailing HDVs, as shown in Fig.
1 (bottom). The CAV enters and leaves the control zone at
times t¢,tf € R*, respectively.

Let N ={1,...,N}, where N € N is the total number
of vehicles traveling within the buffer zone, be the set of
vehicles considered to form a platoon. Here, the leading
vehicle indexed by 1 is the CAV, and the rest of the trailing
vehicles in Nypy := AN\ {1} are HDVs. The objective
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of CAV 1 € N is to derive and implement the optimal
control input (acceleration/deceleration) such that a platoon
formation with the trailing HDVs in Aypy is completed

within the control zone of length L..

Since the HDVs do not share their local state information
with any external agents, we assume the presence of a coordi-
nator that gathers the state information of the trailing HDVss
traveling within the buffer zone. The coordinator, which can
be loop-detectors or comparable sensory devices, in turn,
transmits the HDV state information to the CAV at each time
instance ¢ € [t¢,¢/] using standard vehicle-to-infrastructure
communication protocol. We consider a standard double-
integrator model to represent the longitudinal dynamics of
each vehicle i € A within the network at time ¢ € [t¢,¢/] as

Pi(t) = vi(t), vi(t) = ui(?), M

where p;(t) € P;, v;(t) € V; and w;(t) € U; are the position
of the front bumper, speed and control input (acceleration

command) of each vehicle i € A/, respectively.
The speed v;(t) and control input u,(t) of each vehicle i €
N at time t € [t¢,¢/] are subject to the following constraints,

0 S Umin S (%3 (t) S VUmax, Umin S U (t) S Umax, (2)

where v, and vgax are the minimum and maximum
allowable speed of the considered roadway, respectively, and
Umin and Umax are the minimum and maximum acceleration
of each vehicle i € N, respectively.

Definition 1. The dynamic following spacing s;(t) between
vehicle 7 and (i — 1) € N is s;(t) = pv;(t) + so, where p €
R* denotes a desired safety time headway that each HDV
i € Nupv maintains while following its preceding vehicle
i—1€ N, and sp € RT is the standstill distance denoting
the minimum bumper-to-bumper gap at stop.

Definition 2. The headway Ap;(t) (see Fig. 2) and the
approach rate Av;(t) of vehicle i € A between two consec-
utive vehicles i, (i—1) € N are Ap;(t) = pi—1(t)—p:i(t)—I.
and Av;(t) = v;—1(t) — v;(t), respectively, where I, € RT
is the length of each vehicle i € V.

The rear-end collision avoidance constraint is

Api(t) > si(t), Vte [t°,t7]. 3)

In our modeling framework, we impose the following
assumptions.
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Fig. 1: A CAV (red) traveling with two trailing HDVs
(yellow), where the HDVs’ state information is estimated
(top scenario) by the coordinator within the buffer zone, and
the platoon is formed (bottom scenario) by controlling the
CAV at the control zone.
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Fig. 2: Predecessor-follower coupled car-following dynamic.

Assumption 1. For each vehicle i € N at time t = t¢,
none of the state, control and safety constraints in (2)-(3)
are active.

Assumption 2. No error or delay occurs during the commu-
nication between the CAV and the coordinator.

Assumption 1 ensures that the initial state and control
input of each vehicle ¢ € N are feasible. Assumption 2 may
be strong, but it is relatively straightforward to relax as long
as the noise in the measurements and/or delays is bounded.

The control input wu;(t) of each vehicle i € A in (1)
can take different forms based on the consideration of
connectivity and automation. For CAV 1 € A/, we derive and
implement the control input w;(¢) using the optimal control
framework discussed in Section III. For each HDV i € AMypv,
however, we consider a car-following model to represent the
predecessor-follower coupled dynamics (see Fig. 2), which
has the generic structure w;(t) = f(Ap;(t), Av;(t), vi(t)).
Here, f(-) represents the behavioral function of the car-
following model. In this paper, we consider that the HDVs’
behavioral function f is unknown to CAV 1.

Definition 3. The information set Z;(t) of CAV 1 €
N at time t € [fc,tf] is Il(t) = {p1:N(t),U1;N(t)},
where pl:N(t) = [pl(t),...,pN(t)}T and ’Ul;N(t) =
[v1(t), ..., on(®)]7.

Definition 4. A platoon formation is established at some
time tP € (t¢,t7) if for each vehicle i € N, the headway

Ap;(t) converges to an equilibrium headway Ap.,, and the
approach rate Awv;(t) converges to zero, i.e.,

Api(t) = Apeq, Apeq € RT, vt > tP, )
Avi(t) =0, vt >t ®)

Remark 1. In real-world applications, conditions (4)-(5)
might be too restrictive to establish a platoon formation.
Therefore, we relax these conditions and introduce the fol-
lowing root-mean-squared error based conditions to estab-
lish a platoon formation at some time t? € (t°,t7),

N
1
o1 2 (Api() — pap(t)? S eap,  VEH, (6a)
1=2

N
N Do)~ m®)? < e, V>, (6b)
i=1
where pa,(t) := 7Z§\]:2]$pi(t) and p,(t) = 72:?[:]1\,”"’@)

are the mean headway and mean speed of N vehicles,
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respectively, and enp and €, are the allowable deviation of
Ap;(t) and v;(t) from the equilibrium values Ap.q and veq,
respectively.

Next, we formally state the platoon formation problem in
mixed environment as follows.

Problem 1. Given the information set I,(t) for each time
t € [t¢,tT), the objective of the CAV 1 € N is to derive its
optimal control input ui(t) so that the each vehicle i € N
achieves a platoon formation (Definition 4) within the control
zone.

Remark 2. In our framework, CAV 1 derives its optimal
control input ui(t) by solving an optimal control problem
with the following objectives: (a) formation of platoon with
the trailing HDVs (Definition 4), and (b) improvement of its
fuel economy while achieving (a).

In this paper, we adopt a receding horizon control frame-
work with multi-successor communication topology to ad-
dress Problem 1. In what follows, we provide a detailed
exposition of the receding horizon control framework that
leads to an optimal platoon formation (Remark 2).

III. RECEDING HORIZON CONTROL

The basic principle of a receding horizon control is that,
the optimal control input sequence at current time instance is
obtained by solving an optimal control problem online with
the prediction horizon 7T}, and only implementing the first
element of the solved optimal control input sequence. Then
the horizon moves forward one step, and the above process
is repeated until the optimization horizon T}, is reached.

Remark 3. The exit time t¥ of CAV 1 from the control zone
depends on the nature of the optimal control input of CAV
1, and thus, it is not known a priori. Let t° be the time that
the CAV exits the control zone when cruising with a constant
speed inside the control zone. Then, t° = t¢ + #;) In our
previous work [27], we have shown that a platoon formation
with trailing HDVs can be achieved by non-positive control
trajectory of the CAV. Consequently, if we aim at forming
the platoon by considering the optimization horizon to be
Ty, = t® —t¢, then we can ensure that the platoon is formed
within the control zone.

For CAV 1, we aim to achieve the optimization objectives
outlined in Remark 2 while enforcing rear-end collision
avoidance constraint with its trailing HDV. To this end, the
adoption of the CAV dynamics in (1) is not sufficient; our
proposed control framework requires the consideration of an
augmented CAV dynamics model.

A. Augmented CAV dynamics

To capture the additional characteristics of the platoon
formation dynamics from the CAV’s control point of view,
our proposed control framework uses instantaneous motion
information from multiple successive HDVs. Hence, we
define two additional states as follows.

Definition 5. The head-to-tail gap of the platoon, e; 1 (t) and
the leader-follower gap, e 2(t) are e1 1(t) = p1(t) —pn (t)—
(N —1)l. and e 2(t) = p1(t) — p2(t) — l., respectively (see
Fig. 2).

The additional states e;1(f) and e; 2(t) enables the aug-
mentation of the CAV dynamics (1) with the following set
of equations, é11(t) = v1(t) —on(t), (7

él,z(t) = V1 (t) — U2(t). (8)

Remark 4. The consideration of the head-to-tail gap ey 1(t)
of the platoon enables the formulation of the objective
function for the platoon formation problem whereas the
leader-follower gap e 2(t) enables the enforcement of rear-
end collision avoidance constraint in (3), leading to a safe
platoon formation.

B. Discrete Time Formulation

To enable the application of discrete time receding horizon
control, we formulate the optimal control problem in discrete
time. Suppose, the optimization horizon T}, is discretized by
a sampling time interval 7 leading to discrete time instance k.
Assuming constant value of control input uq (k) during each
time step [k, (k+1)], we recast the augmented CAV dynamics
(1) and (7)-(8) as linear discrete-time state equations

prlk 1) = pu(k) + 0a(B)7 + g ()7, ©)
vi(k + 1) = vi(k) +u(k), (10
er1(k+1)=e11(k)+ (vi(k) —on(k))T + %ulrz, (11)

era(k+1) = era(k) + (o1 (k) — va(k))T + %un? (12)

We define the current state vector x(k), measured output
vector y; (k) and the measured disturbance vector wy (k) as

p1(k)
’U1(k)
. yi(k) = lel,l(k;)] , wi (k) = [i;f;((:))} .

£E1(k) = 1)1(](1)
61’2(]6)

61,1(k)
el,z(k)
The state-space representation of the discrete dynamic in (9)-
(12) is thus

Il(k + 1) = A.Z‘l(k‘) + Buul(k:) + wa1(k‘),
y1(k) = Ca1(k),

13)
(14)

where, the corresponding state matrix A, control matrix B,,
disturbance matrix B,, and output matrix C' can be computed
using (9)-(14). For the remainder of this paper, we drop the
subscript 1 denoting the CAV from the discrete state-space
model where it does not introduce ambiguity.

C. Prediction Model

In order to solve an online optimization within the pre-
diction horizon T}, the receding horizon controller requires
a prediction model to take into account the future possible
states. In general, the future system states are predicted based
on the model (13)-(14) and the current state information
x(k). Let us define the predicted state, predicted output,
control and disturbance vector given the prediction horizon
T, and control horizon T, as X(k + Tplk) = [2(k +
k), @k + 2|k),..., @(k + Tplk)T, Y(k + T, k) =
[G(k + 1|k), 9(k +2[k),...,5(k + T,|k)]T, Uk+T.) =
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[u(k), u(k +1),...,u(k +T. — 1)]T and W(k + T,) =
[w(k), wk+1),...,w(k + T, — 1)]*, respectively. Here
z(k +nlk), g(k + nlk), and wk+n—1),n=1,...,T),,
denote the predicted state, output and disturbance values
within the prediction horizon 7}, based on their value at the

discrete instance k, respectively.

The predictive state and associated performance vectors
of the receding horizon controller can subsequently be rep-
resented as

X(k+T,|k) = Az(k) + B U(k +T.) + BaW (k +T), (15)
Y (k + Tp|k) = Cax(k) + DuU(k + T.) + DaW (k 4+ T), (16)

where the predictive system matrices A, B, By, C and D
can be computed using the definitions above.

In our formulation, we consider that the measured dis-
turbance w(k) in (15)-(16) remains constant within the
prediction horizon T),. Therefore, we have w(k + n|k) =
w(k), n=1,...,T,. Consequently, the disturbance vector
can be computed as W(k + T,) = [w(k), - ,w(k)]T.
The inaccuracy in modeling the predicted disturbance vector
W (k+1T,) can be compensated by incorporating a feedback
scheme into the receding horizon optimization [28].

D. Objective Functions

Let us define ||z]|,, to be the M weighted norm of
an arbitrary vector z such that |z||,, := (:”Mz)z. In
order to drive each HDV’s state towards the equilibrium
platoon state, the primary aim of the CAV controller is
to minimize the squared error between the predicted out-
put g(k + nlk), n = 1,2,...,T,, and the correspond-
ing reference output. The first objective function thus
takes the form J; := %ZZ”:l lg(k +nlk)) — yr(k + n)||é,
where the reference output y,.(k) := [0, (N — 1)(so +
p[l 0]w(k)), 0]T and the positive semi-definite output
weight matrix Q := diag(qy,qe,,qe,) With the diago-
nal weight parameters g,, ge,, ge, corresponding to the
speed v1(k), head-to-tail gap e; 1(k) and leader-follower
gap e o(k), respectively. Since the measured disturbance
w(k) remains constant within the prediction horizon T},
and the reference output y,.(k) is an explicit function of the
measured disturbance w(k), the predictive reference output

yr(k + nlk), n = 1,...,T, remains constant within the
prediction horizon T, as well. Thus we have y,(k + n|k) =
yr(k), n=1,...,T,.

The second objective of the controller is to improve the
fuel economy of the CAV by minimizing the L?-norm of the
CAV’s control input. Hence, we have the second objective
function Jy = %22”21 lu(k +m — 1)H?2, where R :=
[w,] is the positive definite weight matrix on the control
input with positive weight parameter w,..

Finally, combining the above objective functions and using
the compact notations from (15)-(16), we have the final
objective function as follows

J:%Hf/(kJer\k)fYT (17)

" Lwwrm
o 2 MRS

where Y, = [y, (k), - ,y.(k)]T, and Q and R are weight
matrices.

E. Constraints

In our formulation, we consider the constraints on the
control input in (2), safety in (3), and CAV speed in (2)
associated with the physical limitation of the CAV dynamics,
passenger safety, and speed limit of the roadway, respec-
tively. The constraints in the context of the proposed receding
horizon control framework are thus given as

Umin S Uk +m — 1) < Umax, m=1,...,Tc, (18a)
e, i(k+n)>(N—1)so, n=1,...,Tp, (18b)
ei2(k+n)>s0, n=1,...,Tp, (18¢)
VUmin < V(k+n) < Umax, n=1,...,Tp. (18d)

F. The Optimal Control Problem

With the objective function (17), constraints (18), dynam-
ics model (9)-(12), and the information set Z;(k), k =
0,...,Ty at hand, the optimal control problem can finally
be written as

19)

min J,
U(k+Te)

subject to : (9) — (12), (18) and given Z; (k)

The optimal control problem in (19) can be transformed into
a standard quadratic programming problem and solved using
the active-set algorithm, see [28], [29]. It is possible to soften
the state constraints in (18) to facilitate the feasibility of the
solution of (19). However, significantly large penalty should
be incorporated into the objective function in (19) using a
dimensionless, non-negative slack variable to handle the soft
constraint violation, the exposition of which is outside the
scope of this paper and can be found in [29].

IV. SIMULATION RESULTS

To evaluate the performance of the proposed control
framework, we adopt the optimal velocity model (OVM)
[30] and the intelligent driver model (IDM) [17] to represent
the predecessor-follower coupled dynamics of each HDV
i € Ngpy. One of the simplest forms of the OVM car-
following model [30] is given as

ui(t) = a(Vi(d:(2), si(t)) — vi(t)),
Vi(0i(t), si(t)) = 5 (tanh(d;(t))+ tanh(s;(t))),

where 0;(t) := Ap;(t) — s;(t), and «, V;(9;(t), si(t)) and vy
denote the control gain representing the driver’s sensitivity
coefficient, the equilibrium speed-headway function and the
desired speed of the roadway, respectively. The IDM car-
following model [17] for HDV ¢ € Nypy has the following
structure

(20)

wo=o(1-(42)"- (38)). e
Api(t) = si(t) + %‘bw(t)’

where, a, b and ~ are the desired acceleration, comfort-
able braking and acceleration exponent, respectively. The
parameters for the car-following models and the receding
horizon controller considered in our numerical study can
be found in https://sites.google.com/view/ud-ids-lab/model-
agnostic-platoon. We conduct the simulation studies using
MATLAB R2020b/Simulink with the configuration of Intel
Core i7-6700 CPU @ 3.40 GHz. For the first case study,
a platoon formation for N = 4 vehicles is shown Fig. 3,
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Fig. 3: Platoon formation with OVM car-following model
(20) for N = 4, where the (a) position trajectory, (b)
vehicle headway, (c) speed trajectory and (d) the CAV control
trajectory are shown.
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Fig. 4: Platoon formation with IDM car-following model
(21) for N = 4, where the (a) position trajectory and (b)
vehicle headway, (c) speed trajectory and (d) the CAV control
trajectory are shown.

where the OVM model in (20) is considered for the trailing
HDVs. The leading CAV and trailing HDVs have randomly
selected initial position (Fig. 3(a)) and initial speed (Fig.
3(c)), respectively. The lead CAV implements the proposed
controller to complete the platoon formation operation near
50 s (according to Remark 1), and the vehicle headway (Fig.
3(b)) and speed (Fig. 3(c)) converge to some equilibrium
value. Additionally, none of the constraints in (18) were
violated as evident from the headway profile in Fig. 3(b),
speed profile in Fig. 3(c), and CAV’s control input trajectory
in Fig. 3(d), respectively. To validate the model-agnostic
nature of the proposed controller, we present a second case
study using the IDM model (21) (see Fig. 4) considering
the same initial conditions as in the previous case, which
yields similar result without violating any constraints in
(18), as shown in Figs. 4(a)-(d). It is interesting to note
that, we have monotonically increasing non-positive linear
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Fig. 5: Platoon formation with IDM car-following model (21)
for N = 4, where the sensitivity of the platoon formation
time under varying (a) prediction horizon T}, (b) control
horizon T, (c) sample time 7 and (d) desired time headway
p are illustrated.
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Fig. 6: Safe platoon formation with IDM car-following model
(21) for 6,7,8 and 9 vehicles.

optimal control input trajectory of the CAV in both of the
above cases (see Figs. 3(d) and 4(d)), which resembles a
typical energy-optimal control input trajectory derived using
standard Hamiltonian analysis [10], [31]. Note that, we can
consider a mixture of OVM and IDM car-following model
for the HDVs by appropriately selecting ea;, and ¢, in (6).

Figure 5 shows the sensitivity analysis of the proposed
control framework for N = 4 subject to varying controller
parameters T}, T, and 7, and IDM car-following parameter
p. Here, we use (6) to compute the platoon formation time.
Increasing T}, and 7 decrease the platoon formation time,
as shown in Figs. 5(a) and 5(c), respectively, whereas the
variation of 7, does not affect the platoon formation time,
as shown in Fig. 5(b). However, choosing appropriate T,
is essential to enforce the constraints in (18). Note that, the
parameters T}, and 7 can be tuned using Figs. 5(a) and 5(c) to
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form a platoon within the desired optimization horizon. The
platoon formation time under varying p, which represents
different driving behavior of the IDM model, is shown in Fig.
5(d). Here, the proposed framework is robust enough to form
a platoon within the optimization horizon 7}, = 65 s. In all of
the cases presented in Figs. 5(a)-(d), the proposed controller
enables platoon formation without violating any constraints
in (18). Finally, we investigate the robustness of the proposed
framework under different platoon size N = 6, 7, 8 and 9 as
shown in Fig. 6. The position trajectories in Fig. 6 indicates
that the CAV controller is able to form platoon within the
optimization horizon T3, = 65 s without violating any safety
constraint in (3).

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a constrained multi-objective
optimal control framework for platoon formation under a
mixed traffic environment, where a leading CAV computes
and implements its optimal control input to force the follow-
ing HDVs to form a platoon. We developed a model-agnostic
receding horizon control framework with a multi-successor
communication topology that solves in real time the optimal
control problem, and provided detailed sensitivity and ro-
bustness analysis using numerical simulation to validate the
performance of the proposed framework.

A direction for future research should extend the proposed
framework for optimal coordination of mixed vehicle platoon
in traffic scenarios such as on-ramp merging, urban intersec-
tion, etc. Ongoing research investigates the incorporation of
non-linear state-space representation and different communi-
cation topology to improve the controller performance.
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