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My research interests span several fields, including analysis, optimization, and control of cyber-
physical (CPS) systems; decentralized stochastic systems, stochastic scheduling, and resource allo-
cation. The overarching goal of my research is to establish a rigorous theoretical framework aimed
at enhancing our understanding of the behavior of large scale, complex CPS systems and develop
decentralized control algorithms for making such systems able to learn to improve their perfor-
mance over time while interacting with their environment. As we move to increasingly complex
cyber-physical systems with an expanded feature space, fundamentally new approaches are needed
to understand the impact on system behavior of the interplay between subsystems of different phys-
ical processes, at different scales, or between decision points in an engineered system. The emphasis
is on applications related to connected and automated vehicles (CAVs), smart cities, and sociotech-
nical systems. My interest in developing control algorithms that could make systems able to learn
their optimal operation started early on, while I was still at graduate school, when I read an article
about the discrepancy between true fuel economy of a vehicle and the one posted on the window
sticker. The article was discussing the implications of the driver’s driving style on engine opera-
tion, and stated that the state-of-the-art control methods, by that time, consist of static controllers
which cannot optimize engine operation for different driving styles but only for predetermined ones.
This article provided inspiration that eventually led to forming the topic of my dissertation. In my
dissertation [1], I developed the theoretical framework [2–5] and control algorithms [6–8] that can
turn the engine of a vehicle into an autonomous intelligent system capable of learning its optimal
operation in real time while the driver is driving the vehicle. I modeled the evolution of the state of
the engine as a control Markov chain [9] and proved [10] that it eventually converges to a stationary
probability distribution deemed characteristic of the driver’s driving style. Through this approach,
the engine progressively perceives the driver’s driving style [11] and eventually learns to operate in
a manner that optimizes specified performance criteria, e.g., fuel economy, emissions with respect
to the driver’s driving style. The framework also allows the engine to identify the driver, and thus
it can adjust its operation to be optimal for any driver based on what it has learned in the past
regarding her/his driving style. The outcome of my dissertation research eventually led to a US
patent [12].

Moving to General Motors Research & Development as a Senior Researcher, I had the chance
to continue working on self-learning control for advanced powertrain systems. I led several projects
on autonomous intelligent propulsion systems and developed computational mathematical models
and control algorithms towards making highly energy-efficient and eco-friendly vehicles. I was a
member of the team that demonstrated successfully the implementation of self-learning control
algorithms [13] in two demo vehicles, Saturn Aura and Opel Vectra.

When I joined Oak Ridge National Laboratory (ORNL) as an Alvin M. Weinberg Fellow, al-
though the focus of my fundamental research interests remained the same, the emphasis of the
applications shifted from powertrain systems to vehicles, and then to CAVs. At ORNL, I had the
chance to work across different technical areas including stochastic optimal control [14–16], op-
timal design and power management control and routing of hybrid electric vehicles (HEVs) and
plug-in HEVs (PHEVs) [17–27], and driver’s feedback systems [28–30]. The latter eventually led
to a technology [31] that was licensed in SanTed Project Management LLC. I also contributed to
the solution of problems that included smart buildings aimed at optimizing energy system param-
eters to (1) improve sustainability, (2) facilitate cost-effective energy generation, and (3) allocate
demand optimally to different energy sources, e.g., solar, renewable, etc [32–34]. On the fundamen-
tal research front, I established the theoretical framework for the analysis and stochastic control



of complex systems consisting of interactive subsystems [35]. In particular, I developed a duality
framework and showed that the Pareto control policy minimizes the long-run expected average cost
criterion of the system while also presented a geometric interpretation of the solution and conditions
for its existence. I provided theoretical results showing that the Pareto control policy provides an
equilibrium operating point among the subsystems, and if the system operates at this equilibrium,
then the long-run expected average cost per unit time is minimized. This result implies that the
Pareto control policy can be of value when we seek to derive the optimal control policy for complex
systems online. Later on, and in my role as the Deputy Director of the Urban Dynamics Institute
at ORNL, I developed several initiatives with the goal to investigate how we can use scalable data
and informatics to enhance understanding of the environmental implications of CAVs and improve
transportation sustainability and accessibility. I contributed towards the development of a decen-
tralized optimal control framework whose closed-form solution exists under certain conditions, and
which, based on Hamiltonian analysis, yields for each vehicle the optimal acceleration/deceleration,
in terms of fuel consumption. The solution allows the vehicles to cross merging roadways without
creating congestion, and under the hard safety constraint of collision avoidance [36–40].

When I joined the University of Delaware, I established the Information and Decision Science
(IDS) Laboratory with the vision to advance the state of the art in the analysis, optimization, and
control of cyber-physical (CPS) networks. The overarching goal of the IDS Lab is to enhance our
understanding of the behavior of large scale, complex CPS networks consisting of multiple entities
(or agents). The emphasis is on applications related to emerging mobility systems and sociotech-
nical systems. Emerging mobility systems are typical CPS networks where the cyber component
(e.g., data and shared information through vehicle-to-vehicle and vehicle-to-infrastructure commu-
nication) can aim at optimally controlling the physical entities (e.g., CAVs, non-CAVs). A mobility
system encompasses the interactions of three heterogeneous dimensions: (1) transportation sys-
tems and modes, e.g., CAVs, shared mobility, and public transit integrated with advanced control
algorithms, (2) social behavior of drivers, operators (for autonomous vehicles), and travelers (or
pedestrians) interacting with these systems, and (3) information management of data available and
shared information. The constellation of these three dimensions constitutes a sociotechnical system
that should be analyzed holistically. The CPS nature of emerging mobility systems is associated not
only with technological and information management dimensions but also with human adoption (so-
cial dimension). My students and I, in conjunction with my collaborators, have made contributions
on the technological dimension of mobility systems by developing control algorithms for optimal
coordination of CAVs [41–72] and identifying potential research paths with connected autonomous
systems [73]. However, I came to realize that current methods analyze, design, and optimize a
mobility system without considering the social dimension resulting in systems that might not be ac-
ceptable by the drivers, travelers, and the public. In particular, one key research question that still
remains unanswered is “how can we develop an energy-efficient mobility system that can be widely
acceptable by drivers, travelers, and the public?” To address this question, my students and I are
taking the following research steps that combine the three aforementioned dimensions [74–76]: (1)
explore how advanced control technologies in conjunction with Big Data from vehicles and infras-
tructure can improve the efficiency of transportation systems and modes, e.g., eliminate stop-and-go
driving, reduce congestion; (2) investigate public attitudes toward emerging transportation systems
and identify the human behavioral and emotional responses to systems such as CAVs and shared
mobility, and (3) address the negative rebound effects of improving the efficiency of transportation
systems by exploring whether household activities and travel demand might increase if the efficiency
of the transportation systems improves. Step 1 will identify the new congestion patterns of opti-
mized transportation systems and modes. Step 2 will examine public reaction, adoption, and use of
a potential energy-efficient mobility system, which will determine the urban planning, public policy,
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and governance frameworks to enable the system-wide optimal outcomes. Step 3 will determine the
new levels of travel demand and, eventually, the impact on vehicle miles traveled. The expected
outcome of my group’s research in this area will aim at identifying a mobility system which is not
only energy efficient but also acceptable by the drivers, travelers, and the public.

Another research direction that my students and I are currently working is towards establishing
a theoretical framework and control algorithms to enhance our understanding of flocking [77–82]
and the behavior of large scale, decentralized CPS networks [83–86]. One common characteristic
in CPS networks is that the models used cannot predict their behavior. In particular, one research
question that still remains unanswered is “how can we establish a framework aimed at both predicting
and affecting the behavior of a CPS network?” To address this question, my students and I are
taking the following research steps: (1) explore the communication structure of CPS networks;
(2) investigate how data in a CPS network that is increasing with time can be “compressed” to
a sufficient statistic taking values in a time-invariant space (structural results); (3) implement a
desired emerging behavior in a class of CPS networks involving multiple self-interested agents,
each with private information and preferences. Step 1 will provide the modeling framework of
the information structure of CPS networks which is necessary to understand how information is
propagated within different classes of CPS networks. Step 2 will provide the structural results
required for implementing a decentralized control framework to control CPS networks. Step 3 will
aim at imposing the conditions among the agents under which a CPS network will exhibit the desired
behavior. The expected outcome and foundation of my group’s research in this area will aim at
enhancing our understanding of the behavior of large scale, complex CPS networks and develop,
networking capabilities to analyze, model, simulate, and predict complex phenomena.
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