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Abstract— In this article, we demonstrate a zero-shot transfer
of an autonomous driving policy from simulation to University
of Delaware’s scaled smart city with adversarial multi-agent
reinforcement learning, in which an adversary attempts to
decrease the net reward by perturbing both the inputs and
outputs of the autonomous vehicles during training. We train
the autonomous vehicles to coordinate with each other while
crossing a roundabout in the presence of an adversary in
simulation. The adversarial policy successfully reproduces the
simulated behavior and incidentally outperforms, in terms of
travel time, both a human-driving baseline and adversary-free
trained policies. Finally, we demonstrate that the addition of
adversarial training considerably improves the performance
of the policies after transfer to the real world compared to
Gaussian noise injection.

I. INTRODUCTION

In 2015, commuters in the US spent an estimated 6.9
billion additional hours waiting in congestion, resulting in
an extra 3.1 billion gallons of fuel, costing an estimated
$160 billion [1]. An automated transportation system [2]
can alleviate congestion, reduce energy use and emissions,
and improve safety by increasing traffic flow. The use of
connected and automated vehicles (CAVs) can transition our
current transportation networks into energy-efficient mobility
systems. Introducing CAVs into the transportation system
allows vehicles to make better operational decisions, leading
to significant reductions of energy consumption, greenhouse
gas emissions, and travel delays along with improvements to
passenger safety [3].

Several efforts have been reported in the literature towards
coordinating CAVs to reduce spatial and temporal speed
variations of individual vehicles. These variations can be
introduced by breaking events, or due to the structure of
the road network, e.g., intersections [4]–[6], cooperative
merging, and speed reduction zones [7]. One of the earliest
efforts in this direction was proposed by Athans [8] to
efficiently and safely coordinate merging behaviors as a step
to avoid congestion. With an eye toward near-future CAV
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deployment, several recent studies have explored the traffic
and energy implications of partial penetration of CAVs under
different transportation scenarios, e.g., [9]–[13].

While classical control is an effective method for some
traffic control tasks, the complexity and sheer problem size
of autonomous driving in mixed-traffic scenarios makes it a
notoriously difficult problem to address. In recent years, deep
reinforcement learning (RL) has emerged as an alternative
method for traffic control. RL is recognized for its ability
to solve data-rich, complex problems such as robotic skills
learning [14], to larger and more complicated problems
such as learning winning strategies for Go [15] or StarCraft
II [16]. Deep RL is capable of handling highly complex
behavior-based problems, and thus naturally extends to traffic
control. The results from the ring road experiments that Stern
and Sugiyama [17], [18] demonstrated their policies have
also been achieved via RL methods [19]. AVs controlled with
RL-trained policies have been further used to demonstrate
their traffic-smoothing capabilities in simple traffic scenarios
such as figure eight road networks [19], intersections [20]
and roundabouts [21], and can also replicate traffic light ramp
metering behavior [22]. Indeed, real-world evaluation and
validation of control techniques under a variety of traffic
scenarios is a necessary task.

The contributions of this article are: (1) the introduction
of Gaussian single-agent noise and adversarial multi-agent
noise to learn traffic control behavior for an automated ve-
hicle; (2) a comparison performance with noise injected into
the action space, state space, and both; (3) the demonstration
of real-world disturbances leading to poor performance and
crashes for some training methods, and (4) experimental
demonstration of how autonomous vehicles can improve
performance in a mixed-traffic system.

The remainder of this article is organized as follows. In
Section II, we provide background information on reinforce-
ment learning, car-following models, the Flow framework,
and the experimental testbed. In Section III, we introduce the
mixed-traffic roundabout problem and the implementation of
the RL framework. In Section IV, we present the simulation
results. In Section V, we discuss the policy transfer process
along with the experimental results. Finally, we draw con-
cluding remarks in Section VI.

II. BACKGROUND

A. Deep Reinforcement Learning

RL is a subset of machine learning which studies how
an agent can take actions in an environment to maximize



its expected cumulative reward. The environment in which
RL trains its agent is modeled as a Markov decision pro-
cesses [23], which is the model that we used for all exper-
iments in this article. A finite-horizon, discounted Markov
decision process is defined by the tuple (S,A, P, r, ρ0, γ, T ),
where S ⊆ Rn is an n-dimensional set of states; A ⊆ Rm
is an m-dimensional set of actions, P : S × A × S → R≥0
describes the transitional probability of moving from one
state s to another state s′ given an action a; r : S ×A → R
is the reward function; ρ0 : S → R≥0 is the probability
distribution over start states; γ ∈ (0, 1] is the discount factor;
and T is the horizon.

Deep RL is a form of RL which parameterizes the policy
π : S → A with the weights of a neural net. The neural
net consists of an input layer, which accepts state inputs
s ∈ S; an output layer, which returns actions a ∈ A; and
hidden layers, consisting of affine transformations and non-
linear activation functions. The flexibility that hidden layers
provide neural nets with the possibility of being universal
function approximators, and enables RL policies to express
complex functions.

B. Policy Gradient Algorithms
There are a number of algorithms that exist for deriving

an optimal RL policy π∗. For the experiments in this article,
π∗ is learned via proximal policy optimization (PPO) [24],
a widely-used policy gradient algorithm. Policy gradient
algorithms operate in the policy space by computing an
estimate of the gradient of the expected reward ∇θR =

∇θE
[∑T

t=0 γ
trt

]
, where θ is the parameters of the policy.

The policy is then updated by performing gradient ascent
methods to update θ.

In this article, we use PPO as the algorithm for the
two types of experiments described in Sec. III, Gaussian
single-agent and adversarial multi-agent. PPO uses a clipped
surrogate objective to perform each policy update, giving it
stability and reliability similar to trust-region methods such
as TRPO [25].

C. Car Following Models
We use the intelligent driver model (IDM) [26] to model

human driving dynamics. IDM is a time-continuous mi-
croscopic car-following model which is widely used in
vehicle motion modeling. Using the IDM, the acceleration
for vehicle α is a function of its distance to the preceding
vehicle, or the headway sα, the vehicle’ own velocity vα,
and relative velocity, ∆vα, namely,

aIDM =
dvα
dt

= a

[
1−

(
vα
v0

)δ
−
(
s∗(vα,∆vα)

sα

)2]
, (1)

where s∗ is the desired headway of the vehicle,

s∗(vα,∆vα) = s0 + max

(
0, vαT +

vα∆vα

2
√
ab

)
, (2)

where s0, v0, T, δ, a, b are known parameters. We describe
these parameters and the values used in our simulation in
Section IV.

D. Flow

For training the RL policies in this article, we use Flow
[27], an open-source framework for interfacing RL libraries
such as RLlib [28], Stable Baselines, and rllab [29] with
traffic simulators such as SUMO [30] or Aimsun. Flow
enables the ability to design and implement RL solutions
for a flexible, wide variety of traffic-oriented scenarios. RL
environments built using Flow are compatible with OpenAI
Gym [31] and as such, support training with most RL algo-
rithms. Flow also supports large-scale, distributed computing
solutions via AWS EC2 1.

III. PROBLEM FORMULATION

To demonstrate the viability of autonomous RL vehicles
in reducing congestion in mixed traffic, we implemented
the scenario shown in Fig. 1. In this scenario, two groups
of vehicles enter the roundabout stochastically, one at the
northern end and one at the western end. In what follows,
we refer to the vehicles entering from the north entry as the
northern group, and to the vehicles entering from the west
entry as the western group.

The baseline scenario consists of homogeneous human-
driven vehicles using the IDM controller (1). The baseline is
designed such that vehicles approaching the roundabout from
either direction will clash at the roundabout. This results
in vehicles at the northern entrance yielding to roundabout
traffic, resulting in significant travel delays. The RL scenario
puts an autonomous vehicle at the head of each group, which
can be used to control and smooth the interaction between
vehicles; these mixed experiments correspond to a 15% −
50% mixture of autonomous and human-driven vehicles.

Fig. 1: The routes taken by the northern (solid blue) and
western (dashed red) groups through the roundabout.

A. Reinforcement Learning Structure

We categorize two sets of RL experiments that are used
and compared in this article. We will refer to them as:
Gaussian single-agent: A single-agent policy trained with
Gaussian noise injected into the state and action space. Ad-
versarial multi-agent: A multi-agent policy trained wherein

1For further information on Flow, we refer readers to view the Flow
Github page, website, or article, respectively listed here. Github: https://
github.com/flow-project/flow, website: https://flow-project.github.io/, paper:
[27].

https://github.com/flow-project/flow
https://github.com/flow-project/flow
https://flow-project.github.io/


a second agent provides selective adversarial noise to the
learning agent. We discuss the particulars of these two
methods in Sections III-A.4 and III-A.5. In this article, we
deploy seven RL-trained policies, one of which is single-
agent with no noise, three of which are Gaussian single-
agent and the other three of which are adversarial multi-
agent. All experiments follow the same setup. Inflows of
stochastic length emerge at the northern and western ends
of the roundabout. The size of the northern group will
range from 2 to 5 cars, while the size of the western group
ranges from 2 to 8. The length of these inflows will remain
static across each rollout, and are randomly selected from a
uniform distribution at the beginning of each new rollout.

1) Action Space: The actions are applied from a 2-
dimensional acceleration vector, in which the first element
is used to control the AV leading the northern group, and
the second is used to control the AV leading the western
group. If the AV has left the experiment, that element of the
action vector is discarded.

2) State Space: The state space conveys the following
information about the environment to the agent: the posi-
tion, velocity, tailway, and headway of each AV and each
vehicle in the roundabout, the distance from the roundabout
entrances to the 6 closest vehicles, the velocities of the 6
closest vehicles to each roundabout entrance, the number of
vehicles queued at each entrance, and the lengths of each
inflow. All elements of the state space are normalized. The
state space was designed with real-world implementation in
mind and could contain any environmental factors that the
simulation supports. As such, it is partially-observable to
support modern sensing capabilities. All of these observa-
tions are reasonably selected and could be emulated in the
physical world using sensing tools such as induction loops,
camera sensing systems, and speedometers.

3) Reward Function: The reward function used for all
experiments minimizes delay and applies penalties for stand-
still velocities, near-standstill velocities, jerky driving, and
speeding, i.e.,

rt = 2·
max

(
vmax
√
n−

√∑n
i=1(vi,t − vmax)2, 0

)
vmax
√
n

−p, (3)

p = ps + pp + pj + pv. (4)

where n is the total number of vehicles, p is the sum
of four different penalty functions, ps is a penalty for
vehicles traveling at zero velocity, designed to discourage
standstill; pp penalizes vehicles traveling below 0.2m/s,
which discourages the algorithm from learning an RL policy
which substitutes extremely low velocities to circumvent
the zero-velocity penalty; pj discourages jerky driving by
maintaining a dynamic queue containing the last 10 actions
and penalizing the variance of these actions; and pv penalizes
speeding.

4) Gaussian single-agent noise: Injecting noise directly
to the state and action space has been shown to aid with
transfer from simulation to real-world testbeds [21], [32].
In this method, which applies to three of the policies we
deployed, each element of the state space was perturbed
by a random number selected from a Gaussian distribution.
Only two elements describing the length of the inflows
approaching the merge were left unperturbed. Elements of
the state space corresponding to positioning on the merge
edge were perturbed from a Gaussian distribution with a
standard deviation of 0.05. For elements corresponding to
absolute positioning, the standard deviation was 0.02. All
other elements used a standard deviation of 0.1. These values
were selected to set reasonable bounds for the degree of
perturbation in the real world. Each element of the action
space was perturbed by a random number selected from a
zero mean Gaussian distribution with 0.5 standard deviation.

5) Adversarial multi-agent noise: For the other 3 policies,
we use a form of adversarial training to yield a policy
resistant to noise [33]. This is a form of multi-agent RL,
in which two policies are learned. Adversarial training pits
two agents against each other in a zero-sum game. The first
is structurally the same as the agent which is trained in
the previous 4 policies. The second, adversarial agent has
a reward function that is the negative of the first agent’s
reward; in other words, it is incentivized by the first agent’s
failure. The adversarial agent can attempt to lower the agent
reward by perturbing elements of the action and state space
of the first agent.

The adversarial agent’s action space is a 1-dimensional
vector of length 22, composed of perturbation values bound
by [−1, 1]. The first two elements of the adversarial action
space are used to perturb the action space of the original
agent’s action space. Adversarial action perturbations are
scaled by 0.1. Combining adversarial training with selective
randomization, the adversarial agent has access to perturb
a subset of the original agent’s state space. The remaining
20 elements of the adversarial agent’s action space are used
to perturb 20 selective elements of the original agent’s state
space. Both the adversarial action and state perturbations are
scaled down by 0.1. The selected elements that the adversary
can perturb are the observed positions and velocities of both
controlled AVs in the system and the observed distances of
vehicles from the merge points.

IV. SIMULATION FRAMEWORK

A. Car Following Parameters

As introduced in Section II-C, the human-driven vehicles
in these simulations are controlled via IDM. Accelerations
are provided to the vehicles via (1) and (2). Within these
equations, s0 is the minimum spacing or minimum desired
net distance from the vehicle in front of it, v0 is the desired
velocity, T is the desired time headway, δ is an acceleration
exponent, a is the maximum vehicle acceleration, and b is
the comfortable braking deceleration.

Human-driven vehicles in the system operate using
SUMO’s built-in IDM controllers, which allows customiza-



tion to the parameters described above. Standard values for
these parameters as well as a detailed discussion on the
experiments producing these values can be found in [26].
In these experiments, the parameters of the IDM controllers
are defined to be T = 1 s , a = 1 m/s2 , b = 1.5 m/s2,
δ = 4, s0 = 2 m, v0 = 30 m/s. A noise parameter 0.1 was
used to perturb the acceleration of the IDM vehicles.

Environment parameters in the simulation were set to
match the physical constraints of the experimental testbed.
These include: a maximum acceleration of 1 m/s2, a maxi-
mum deceleration of −3 m/s2, and a maximum velocity of
8 m/s. The timestep of the system is set to 1 s.

B. Algorithm/Simulation Details

We ran experiments with a discount factor of 0.999, a
trust-region size of 0.01, a batch size of 20000, a horizon of
500 seconds, and trained over 100 iterations. The controller
is a neural network, a Gaussian multi-layer perceptron with
a tanh non-linearity, and hidden sizes of (100, 50, 25). The
choice of neural network non-linearities, size, and type were
picked based on traffic controllers developed in [20]. The
states are normalized so that they are between 0 and 1 by
dividing each state by its maximum possible value. The
agent actions are clipped to be between −3 and 1. Both
normalization and clipping occur after the noise is added to
the system so that the bounds are properly respected. The
following codebases are needed to reproduce the results of
our work. Flow2, SUMO3 and the version of RLlib4 used for
the RL algorithms is available on GitHub.

C. Simulation Results

Fig. 2: Convergence of the RL reward curves of the 3
Gaussian experiments and the noiseless policy.

The reward curves of the Gaussian single-agent exper-
iments are displayed in Fig. 2. These include the curves
of the 3 experiments, which are trained with Gaussian
noise injection, as well as one trained without any noise.
In both the Gaussian single-agent and adversarial multi-
agent experiments, the policy learns a classic form of traffic
control: ramp-metering, in which one group of vehicles slows
down to allow for another group of vehicles to pass. Despite

2https://github.com/flow-project/flow.
3https://github.com/eclipse/sumo at commit number 1d4338ab80.
4https://github.com/flow-project/ray/tree/ray master at commit number

ce606a9.

the varying length of inflows from the two entries, policies
consistently converge to demonstrate ramp-metering.

V. EXPERIMENTAL DEPLOYMENT

A. The University of Delaware’s Scaled Smart City

University of Delaware’s Scaled Smart City (UDSSC) is
a 1:25 scale testbed designed to replicate real-world traffic
scenarios and implement cutting-edge control technologies in
a safe and scaled environment. UDSSC is a fully integrated
smart city, which can be used to validate the efficiency of
control and learning algorithms, including their performance
on physical hardware. UDSSC utilizes high-end computers
and a VICON motion capture system to simulate a variety
of control strategies with as many as 35 scaled CAVs. For
further information on the capabilities and features of the
UDSSC, see [34].

UDSSC utilizes a multi-level control architecture to pre-
cisely position each vehicle using position feedback from
a VICON motion capture system. High-level routing and
desired velocity calculation is handled by the mainframe
computer, as well as locating the vehicle relative to each
street on the map. This information is sent to each CAV
which then calculates its desired steering and velocity actions
based on a Stanley Controller [35, eq. (9)], and the velocity
control for each non-RL vehicle is specified by the IDM
controller (1).

To implement the RL policy in UDSSC, the weights
of the network generated by Flow were exported into a
data file. This file was accessed through a Python script
on the mainframe, which uses a ROS service to map the
current state of the experiment into a control action for each
RL vehicle. During the experiment, the RL vehicles took
commands from this script as opposed to the IDM controller.

To generate a disturbance on the roundabout system,
a random delay for when each group was released was
introduced. This delay was uniformly distributed between
0 and 1 seconds for the western group and between 0 and 4
seconds for the northern group during UDSSC experiments.
The size of each vehicle group was randomly selected from
a uniform distribution for each trial.

B. Experimental Results

The data for each vehicle was collected through the
VICON motion capture system and is presented in Table I.
The position of each car was tracked for the duration of each
experiment, and the velocity of each car was numerically
derived with a first order finite difference method.

For all trials, the RL vehicle exhibited the learned ramp
metering behavior, where the western leader reduced its
speed to avoid yielding by the northern group. The metering
behavior was extreme for the Gaussian single-agent noise
case, especially when noise was added to the action and
state together. This excessive metering significantly reduced
the average speed and increased travel delay, as seen in
Table I. The adversarial multi-agent training significantly
outperformed the Gaussian single-agent and tended to leave
only a single vehicle yielding at the northern entrance. This

https://github.com/flow-project/flow
https://github.com/eclipse/sumo
https://github.com/flow-project/ray/tree/ray_master


Fig. 3: Two RL-controlled AVs trained with adversarial multi-agent noise demonstrate emergent ramp metering behavior.
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Fig. 4: A relative frequency histogram for (a) the mean speed and (b) travel time of each vehicle for the baseline and
adversarial multi-agent scenarios with noise injected in action and State.

TABLE I: Experimental results for the baseline (no RL) case
and each training method.

Training Mean Mean Trials % Time Crashes
Time (s) Speed (m/s) Saved

Baseline 23.6 0.23 47 - 0

Adversarial Multi-Agent
Action-State 22.1 0.24 29 +6.3 0
Action 22.1 0.23 23 +6.4 0
State 21.4 0.24 26 +9.6 10

Gaussian Single-Agent
Action-State 25.8 0.21 26 -9.2 0
State 23.0 0.23 18 +2.6 0
Action 23.1 0.22 37 +2.4 0
Noiseless 22.8 0.23 32 +3.5 0

strategy led to a travel time reduction for the northern
group without a significant delay in western vehicles. The
adversarial multi-agent case with noise injected only into
the state accelerated especially fast and led to several catas-
trophic accidents between the two RL vehicles. Finally, for
small numbers of vehicles, the adversarial multi-agent trained
controllers appeared to exhibit an emergent zipper merging
behavior.5

Relative frequency histograms of average travel time and

5Videos of the experiment and supplemental information can be found
at: https://sites.google.com/view/ud-ids-lab/arlv.

mean speed for the adversarial multi-agent case with noise
injected into both action and state versus baseline scenarios
are overlaid in Fig. 4. Over all trials, the adversarial case had
a higher relative frequency of shorter travel time compared
to the baseline scenario. Average travel time for 30% of
adversarial scenarios, lies in the range [15s, 20s] comparing
to 15% for the baseline scenarios.

From Table I, we can see the average speed for baseline
and the adversarial multi-agent with noise in action-state
are nearly the same. However, in Fig. 4, we can see that
approximately 8% of trials in the baseline scenarios have an
average speed between 0.1 m/s and 0.15 m/s. Furthermore,
there are some trials that the average speed of the baseline
scenario is between 0.35 m/s and 0.4 m/s. On the other hand,
the average speed for the adversarial multi-agent with noise
in action and state varies less, and near 65% of trials have
the average speed between 0.2 m/s and 0.25 m/s compared
to 55% in the baseline scenarios.

VI. CONCLUSION

In this article, we developed a zero-shot transfer of an
autonomous driving policy directly from simulation to the
UDSSC testbed. Even under stochastic, real-world distur-
bances, the adversarial multi-agent policy improved system
efficiency by reducing travel time and average speed for most
vehicles.

https://sites.google.com/view/ud-ids-lab/arlv


As we continue to investigate approaches for policy trans-
fer, some potential directions for future research include:
multi-agent adversarial noise with multiple adversaries, tun-
ing to determine which elements of the state space are most
suitable for perturbations, tuning injected noise to maximize
policy robustness, larger, more complex interactions, such as
intersections, or merging at highway on-ramps, and longer
tests involving corridors with multiple bottlenecks.
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