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ABSTRACT 

REAL-TIME, SELF-LEARLING IDENTIFICATION AND STOCHASTIC 
OPTIMAL CONTROL OF ADVANCED POWERTRAIN SYSTEMS 

by 

Andreas Malikopoulos 

 
Co-Chairs: Dionissios N. Assanis and Panos Y. Papalambros 

 

Increasing demand for improving fuel economy and reducing emissions without 

sacrificing performance has stimulated significant research on and investment in 

advanced internal combustion engine technologies. These technologies have introduced a 

number of controllable variables that have enhanced our ability to optimize engine 

operation. Current engine calibration methods for deriving the optimal values of the 

controllable variables generate a static tabular relationship between the variables and 

steady-state operating points or specific driving conditions (e.g., vehicle speed profiles 

for highway and city driving). These methods, however, seldom guarantee optimal engine 

operation for common driving habits (e.g., stop-and-go driving, rapid acceleration, or 

rapid braking). Each individual driving style is different and rarely meets those driving 

conditions of testing for which the engine has been calibrated to operate optimally.  

This dissertation develops the theory and algorithms that succeed in making the 

engine of a vehicle an autonomous intelligent system capable of learning the optimal 

values of the controllable variables in real time while the driver drives the vehicle. The 

engine is treated as a controlled stochastic system, and engine calibration is formulated as 
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a sequential decision-making problem under uncertainty that addresses the system 

identification and stochastic control problem simultaneously.  

Specifically, the theory for building models suited for sequential decision-making 

under uncertainty is reviewed. These models formalize the framework in which an 

intelligent or rational system can select control actions so that a long-term reward is 

maximized. The theory is extended to portray a real-time computational learning model 

with which the state estimation and system identification problem can be solved. A 

lookahead control algorithm is implemented that provides the decision-making 

mechanism suitable for real-time implementation. The algorithm solves the stochastic 

control problem by utilizing accumulated data acquired over the learning process of the 

computational model. The increase of the problem’s dimensionality, when more than one 

controllable variable is considered, is addressed by a decentralized learning control 

scheme. This scheme draws from multi-agent learning research in a range of areas, 

including reinforcement learning and game theory, to coordinate optimal behavior among 

the controllable variables.  

Various case studies, including cart-pole balancing, vehicle cruise-control, and 

gasoline and diesel engine calibration, were conducted. In the engine calibration problem, 

the engine was shown to progressively perceive the driver’s driving style and eventually 

learn its optimal calibration for this driving style. 

The theory and algorithms developed in this dissertation may reduce considerably 

the existing discrepancy between the gas mileage estimate displayed on the vehicle’s 

window sticker and the actual one. This would allow every driver to realize optimal fuel 

economy and pollutant emissions as fully as possible with respect to his/her driving 

habits.  
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CHAPTER 1 

INTRODUCTION 

Increasing demand for improving fuel economy and reducing emissions without 

sacrificing performance has induced significant research on and investment in advanced 

internal combustion engine technologies. These technologies, such as fuel injection 

systems, variable geometry turbocharging, variable valve actuation, and exhaust gas 

recirculation, have introduced a number of new engine variables that can be controlled to 

optimize engine operation. In particular, the determination of the optimal values of these 

variables, referred to as engine calibration, have been shown to be critical for achieving 

high engine performance and fuel economy while meeting emission standards. 

Consequently, engine calibration is defined as a procedure that optimizes one or more 

engine performance criteria, e.g., fuel economy, emissions, or engine performance with 

respect to the engine controllable variables. This dissertation develops the theory and 

algorithms that succeed in making the engine of a vehicle an autonomous intelligent 

system capable of learning the optimal values of the controllable variables in real time 

while the driver drives the vehicle. 

1.1 Motivation 

Current calibration methods generate a static tabular relationship between the 

optimal values of the controllable variables and steady-state operating points or specific 

driving conditions (e.g., vehicle speed profiles for highway and city driving). This 
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relationship is incorporated into the electronic control unit (ECU) of the engine to control 

engine operation. While the engine is running, values in the tabular relationships are 

interpolated to provide the values of the controllable variables for each engine operating 

point. These calibration methods, however, seldom guarantee optimal engine operation 

for common driving habits (e.g., stop and go driving, rapid acceleration, or rapid 

braking). Each individual driving style is different and rarely meets those driving 

conditions of testing for which the engine has been calibrated to operate optimally. 

Consumers often complain that their new cars simply cannot achieve the gas mileage 

estimate displayed on the window sticker or featured in advertisements.   

1.2 Advancements in Engine Electronic Control Units 

Advanced internal combustion engine technologies have led to increased 

opportunities for use of Electronic Control Units (ECUs). Current ECUs perform a 

variety of control tasks using engine calibration static maps that provide the values of 

several controllable variables. These values are then used as references by actuators to 

maintain optimal engine operation. In traditional ECU development processes, engine 

calibration maps are generated experimentally by extensive steady-state engine operation 

and step function changes of engine speed and load [1-4]. This is usually accompanied by 

simple transient operation limited by dynamometer capabilities and simulation 

technologies [5]. However, steady-state and simple transient engine operation is only 

partially indicative of actual engine operation in a vehicle. Increased sophistication of 

ECUs coupled with engine technologies can lead to significant calibration improvements. 

Advances in computing technology have enabled simulation-based methods such 

as Hardware in the Loop (HiL) and Software in the Loop (SiL) test systems [6, 7]. HiL 

systems have been widely utilized as powerful methods for implementing engine 

calibration maps. These systems involve a real-time simulation engine model and a 
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vehicle system connected to the ECU hardware. HiL systems allow the ECU 

development through simulation of powertrain components and vehicle system. SiL 

systems are more recent approaches, in which the engine model is integrated with the 

ECU software, and run on a computer [8]. SiL allows selective tests of single calibration 

tasks and separate modules of the ECU early in the development process. An essential 

requirement of HiL and SiL systems is the availability of an engine model capable of 

generating physical and consistent outputs of a combustion engine based on actual inputs.  

1.3 State-of-the-art Engine Calibration Methods 

HiL and SiL systems aim to provide automated software tools for generating and 

validating calibration maps during the ECU development process. Various methods for 

deriving these maps at steady-state and limited transient engine operation have been 

extensively reported in the literature [9-12]. These efforts have been valuable in 

understanding steady-state operation, and optimizing fuel economy and emissions in the 

last years [13]. However, continuously optimal engine operation has not yet been 

possible. State-of-the-art engine calibration methods rely on static correlations for steady-

state operating points accompanied by transient vehicle testing. The calibration process, 

its duration, and its cost grow exponentially with the number of controllable variables, 

and optimal calibration for the entire feasible engine operating domain cannot be 

guaranteed. Even for engines with simple technologies, achievement of optimal 

calibration may become impractical [10]. In addition, current calibration methods cannot 

guarantee optimal engine operation in transient cases encountered in driving styles of 

different drivers [14]. Transient operation constitutes the largest segment of engine 

operation over a driving cycle compared to the steady-state one [15, 16]. Fuel 

consumption and emissions during transient operation are extremely complicated [16], 

vary significantly with each particular driving cycle [17, 18], and are highly dependent 
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upon the calibration [18, 19].  Engine operating points, during the transient period before 

their steady-state value is reached, are associated with different Brake-Specific Fuel 

Consumption (BSFC) values, depending on the directions, as shown in Figure 1.1, from 

which they have been arrived, illustrated qualitatively in Figure 1.2. Pollutant emissions 

such as NOx, and particulate matters, demonstrate the same qualitative behavior, as 

shown by Hagena et al. [13]. 
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Figure 1.1 − Two trajectories A, and B, of engine operating points ending at the same 

operating point 
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Figure 1.2 − BSFC value of the terminal engine operating point as reached from 

trajectories A, and B 

1.3.1 Design of Experiments 

Exhaustive investigation of the controllable variables with respect to all potential 

engine operating points requires a huge amount of testing. With the increasing number of 

these variables in current engine technologies, the required effort for testing grows 

exponentially. Design of Experiments (DoE) [20-23] is typically used to reduce the scope 

of the experiments required to derive the optimal engine calibration correlation under 

steady-state operating conditions. The main objective of this method is to expedite 

dynamometer tests significantly using a smaller subset of tests. This subset is utilized 

either in implementing engine calibration experimentally or in developing mathematical 

models for evaluating engine output. Using these models, optimization methods can 

determine the engine calibration static correlations between steady-state operating points 

and the controllable engine variables [24].  

DoE has been widely used as the baseline calibration method for the last several 

years. Major applications include catalyst system optimization [25], optimization of 

variable valvetrains for performance and emissions [26-28], and implementation of 
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dynamic model-based engine calibrations. DoE employs statistics to generate a matrix of 

test points to explore the behavior or a physical system. The method relies on statistical 

data to determine a set of models that describe the system responses when some variables 

vary. In applying DoE to engine calibration, the objective is to define the coefficients of 

polynomial equations that can represent engine output over the range of the various 

controllable variables. 

1.3.2 Dynamic Model-Based Calibration Systems 

Dynamic model-based calibration methods utilize high-fidelity dynamic engine 

models. The data required to develop these models are obtained by operating the engine 

through a set of transient dynamometer tests while the engine calibration is perturbed in 

real time by a reconfigurable rapid prototyping control system. The predictive engine 

model produced in this fashion utilizes a combination of equation-based and neural 

network methods. DoE-experimental calibration is well suited only for steady-state 

engine operation over   some   driving   cycle.  In   contrast, dynamic modeling produces 

a transient or   dynamic engine   model capable of predicting   engine   operating   cycle. 

The steady-state optimal engine calibration can be produced from the transient engine 

model as a sub-set of the transient engine operation. Guerrier et al. [9] employed DoE 

and advanced statistical modeling to develop empirical models to enhance the powertrain 

control module calibration tables. Stuhler et al. [2] implemented a standardized and 

automated calibration environment, supporting the complexity of gasoline direct injection 

engines, for an efficient calibration process using an online DoE to decrease the 

calibration cost. Rask et al. [10] developed  a dynamic-based calibration method to 

rapidly generate optimized maps for a V6 engine equipped with two-step variable valve 

actuation and intake cam phasing. Engine models employed in dynamic model-based 

calibration methods can predict engine output over transient operation within the data 
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utilized to calibrate the models. However, not all the correlations of optimal values of the 

controllable engine variables associated with the transient operating points can be 

quantified explicitly; to pre-specify the entire transient engine operation is impractical, 

and thus, engine calibration correlations cannot be optimized for these cases a priori. 

1.3.3 Calibration using Artificial Neural Networks 

Various approaches have been proposed for using artificial neural networks 

(ANNs) to promote modeling and calibration of engines [11, 29-32]. Neural networks are 

non-linear statistical data modeling tools. They can be used to model complex 

relationships between inputs and outputs or to find patterns in data. ANNs are 

application-specific and exhibit unpredictable behavior when previously unfamiliar data 

are presented to them. These difficulties increase if a nonlinear dynamic presentation of a 

system is to be realized, because of the increasing number of possibilities related to the 

dynamics and the interactions between the input signals.  ANNs are suited for 

formulating objective functions, evaluating the specified engine performance indices with 

respect to the controllable engine variables and, thus, deriving the engine calibration 

correlations. They are computationally efficient for optimization requiring hundreds of 

function evaluations. However, optimal engine calibration for the entire engine operating 

domain is seldom guaranteed even for steady-state operating points. Moreover, the 

correlations between optimal values of the controllable engine variables and the transient 

operating points, overall, cannot be quantified explicitly, prohibiting a priori optimal 

engine calibration. 

1.3.4 Simulation-Based Calibration Systems 

Research efforts in addressing transient operation have focused on simulation-

based methods to derive calibration maps for transients of particular driving cycles. Burk 
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et al. [33] presented the necessary procedures required to utilize co-simulation techniques 

with regard to predicting engine drive cycle performance for a typical vehicle. Jacquelin 

et al. [34] utilized analytical tools to run the FTP-75 driving cycle through pre-computed 

engine performance maps, depending on engine speed, load, intake and exhaust cam 

centerline positions. Atkinson et al. [14] implemented a dynamic system to provide 

optimal calibration for transient engine operation of particular driving cycles. These 

methods utilize engine models sufficiently accurate to portray fuel economy and feed-gas 

emissions during transient engine operation. However, identifying all possible transients, 

and thus deriving optimal values of the controllable variables through calibration maps 

for those cases a priori, is infeasible. 

1.4 Research Objective 

This dissertation reports research work towards implementing the theory and the 

algorithmic implementation that allow the engine of a vehicle to become an autonomous 

intelligent system. The engine should be able to realize in real time its optimal calibration 

with respect to both steady-state and transient operating points designated by the driver’s 

driving style.  

The problem of deriving the optimal values of the controllable variables for 

engine operating point transitions compromises of two major sub-problems. The first 

concerns exploitation of the information acquired from the engine operation to identify its 

behavior, that is, how an engine representation can be built by observing engine operating 

point transitions. In control theory, this is addressed as a state estimation and system 

identification problem. The second concerns assessing the engine output with respect to 

alternative values of the controllable variables (control policies), and selecting those that 

optimize specified engine performance indices. This forms a stochastic control problem. 
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In this context, the engine is treated as a controlled stochastic system and engine 

calibration is formulated as a sequential decision-making problem under uncertainty. 

The research objective is to make the engine capable of learning the optimal 

values of the engine variables in real time while the driver drives the vehicle. The engine 

progressively perceives the driver’s driving style and eventually learns the optimal 

calibration for this driving style. The longer the engine runs during a particular driving 

style, the better the engine’s specified performance criteria will be. The engine’s ability 

to learn its optimum operation is not limited, however, to a particular driving style. The 

engine can learn to operate optimally for different drivers, although the drivers should 

indicate their identities before starting the vehicle. The engine can then adjust its 

calibration to be optimal for a particular driver based on what it has learned in the past 

regarding his/her driving style.  

The ultimate goal of the research work reported here is to fully exploit the 

engine’s given technology in terms of the maximum specified performance criteria, e.g., 

engine power, fuel economy, and pollutant emissions that can be achieved. It aims to 

provide an answer to the following question: “For an engine with a given technology, 

what are the maximum performance criteria that a driver can get with respect to his/her 

driving habits?” 

1.5 Outline of Dissertation 

The dissertation is organized as follows. Chapter 2 presents the theory for 

building computational models suitable for real-time sequential decision-making under 

uncertainty. These models are essential traits of any intelligent or rational system that 

selects control actions after every perception, so that a long-term reward (cost) is 

maximized (minimized). Research efforts in implementing these models are reviewed in 

that chapter. Chapter 3 portrays a real-time computational learning model suitable to 
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solve the state estimation and system identification sub-problem.  Chapter 4 introduces 

the algorithmic structure of the decision-making mechanism suitable for real-time 

implementation. The algorithm solves the stochastic control sub-problem by utilizing 

accumulated data acquired over the learning process of the computational model. The 

increase of the problem’s dimensionality, when more than one controllable variable is 

considered, is addressed by a decentralized learning control scheme presented in Chapter 

5. This scheme draws from multi-agent learning research in a range of areas, including 

reinforcement learning, and game theory, to coordinate optimal behavior among the 

various controllable variables. The engine is considered as a cooperative multi-agent 

system, in which the subsystems, i.e., controllable variables, are treated as autonomous 

rational agents who strive interactively and jointly to optimize engine performance 

indices. In Chapter 6, the research contributions are summarized and future work is 

proposed. Relevant references are included at the end of each chapter. 
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CHAPTER 2 

SYSTEM IDENTIFICATION AND STOCHASTIC CONTROL 

This chapter presents the underlying theory for building computational models 

suitable for real-time sequential decision-making under uncertainty. The engine is treated 

as a controlled stochastic system and engine calibration is formulated as a sequential 

decision-making problem under uncertainty. The goal is to make the engine an 

autonomous intelligent system that can select the values of the controllable variables in 

real time, for each engine operating point transition, which optimize specified engine 

performance criteria. In essence, we seek an optimal calibration that can be achieved for 

steady-state and transient engine operating points resulting from the driver’s driving 

style.  

2.1 Modeling Engine Operation as a Stochastic Process 

Engines are streamlined syntheses of complex physical processes determining a 

convoluted dynamic system. They are operated with reference to engine operating points 

and the values of various engine controllable variables. At each operating point, these 

values highly influence engine performance criteria, e.g., fuel economy, emissions, or 

acceleration. This influence becomes more important at engine operating point transitions 

designated partly by the driver’s driving style and partly by the engine’s controllable 

variables. Consequently, the engine is a system whose behavior is not completely 
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foreseeable, and its future evolution (operating point transitions) depends on the driver’s 

driving style.  

We seek a method to derive the optimal values of the controllable variables for 

each engine operating point transition that optimize engine performance criteria. These 

values are selected at points of time referred to as decision epochs (or stages), when the 

time domain can be either discrete or continuous. In our case, discrete time is employed 

because of the discreteness in the values of the controllable variables (control actions). 

The engine output is sampled at the decision epochs.  

The engine performance criteria are treated as controlled random functions, the 

engine is treated as a controlled stochastic system, and engine operation is modeled as a 

stochastic process. The problem of engine calibration is thus reformulated as a sequential 

decision-making problem under uncertainty. The goal is to select the values of the 

controllable variables for each engine operating point in real time that optimize the 

random functions representing the engine performance criteria. 

2.2 Sequential Decision-Making Problems Under Uncertainty 

Sequential decision models [1, 2] are mathematical abstractions of situations in 

which decisions must be made in several decision epochs while incurring a certain cost 

(or reward) at each epoch. Each decision may influence the circumstances under which 

future decisions will be made, and thus, the decision maker must balance his/her desire to 

minimize (maximize) the cost (reward) of the present decision against his/her desire to 

avoid future situations where high cost is inevitable.  

An example of a decision-making process involves portfolio management. An 

investor must balance his/her desire to achieve immediate return against a desire to avoid 

investments in areas where low long-term yield is probable. The current decision will 

depend also on his/her assessment of the areas with high long-term profit. This 
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assessment is a problem of state estimation, and the decision to be made by the decision 

maker is formulated as a stochastic control problem, which requires a solution of the 

estimation problem first. The prediction of areas with high profit can be expressed as the 

conditional expectation 1{ | }k kE r r+  of the next period’s value given the present period’s 

value. Consequently, the state estimation problem requires the knowledge of the 

probability distribution of the value of the areas to be invested. The estimation of the 

relevant probability distribution is the problem of identification (or system identification). 

In most situations of decision-making in a stochastic environment, the problems of 

identification, estimation, and control are all tied together. The deterministic and 

stochastic system models aim to provide the mathematical framework for analysis of the 

sequential decision-making problem in deterministic and stochastic environments, 

respectively. 

2.2.1 Deterministic System Model 

A broadly applicable model of discrete-time deterministic optimal control of a 

dynamic system over a finite number of stages M ∈`  (a finite horizon) has two 

principal features: (a) an underlying discrete-time dynamic system, and (b) a cost 

function that is additive over time. The dynamic system expresses the evolution of the 

system’s “state,” under the influence of decisions made at discrete instances of time. The 

deterministic dynamic system [3] is described by the general system equation 

1 ( , ),  0,1,..., -1,k k k k k M+ = =s f s α  (2.1) 

 

where n
k ∈s \  is the column vector of system’s states, which belong to some state space 

S , and m
k ∈α \  is the input at time k; kα  represents the vector of control actions chosen 

by the decision maker from some feasible action set ( )kA s , which is a subset of some 

control space A . The system output is represented by the equation 
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( , ),  0,1,..., -1,k k k k k M= =y h s α  (2.2) 

where .p
k ∈y \   

 

Without loss of generality, the following discussion will refer to the one-

dimensional deterministic system model, namely, 

1 ( , ),  0,1,..., -1,k k k ks f s k Mα+ = =  (2.3) 

( , ).k k k ky h s α=  (2.4) 

 

An important property of the system described by Eq. (2.3) is that the current state 

ks  and the sequence of control actions 1, ,...,k k k ma a a+ +  determine the state 1k ms + +  

independently of the past values of state and control actions 1 2 1 2, ,..., , ,...k k k ks s a a− − − − , that 

is, there is a function 1,k m kf + +  such that 

1 1, ( , ,..., ).k m k m k k k k ms f s a a+ + + + +=  (2.5) 

 

The cost incurred at the kth decision epoch is given by a function ( , )k kc s a . We 

seek a finite sequence of functions 0 1 1{ , ,..., },Mπ µ µ µ −= defined as a control policy, 

which minimizes the total cost over M decision epochs. The functions kµ  specify the 

control ( )k ka sµ=  that will be chosen when at kth decision epoch the state is ks . 

Consequently, the total cost corresponding to a policy 0 1 1{ , ,..., },Mπ µ µ µ −=  and initial 

state 0s  is given by 

1

0
0

( ) ( , ( )),
M

k k
k

J s c s sπ µ
−

=

= ∑  (2.6) 
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where the states 1 2 1, ,..., Ms s s −  are generated from 0s  and π  via the systems equation 

1 ( , ( )),   0,1,..., 1.k k k ks f s s k Mµ+ = = −  (2.7) 

 

At each initial state 0s  and π , there is a corresponding sequence of control 

actions 0 1 1, ,..., Ma a a − , where ( )k ka sµ=  and ks  is generated by Eq. (2.7). An alternative 

formulation of the problem includes the selection of a sequence of control actions, rather 

than a policy π , minimizing the following total cost 

1

0
0

( ) ( , ).
M

k k
k

J s c s a
−

=

= ∑  (2.8) 

 

The deterministic optimal control problem is representative of a plethora of 

sequential decision-making problems of practical interest, and it constitutes the basis of 

the stochastic system model. 

2.2.2 Stochastic System Model 

The stochastic system model [3, 4] establishes the mathematical framework for 

the representation of dynamic systems such as engines that evolve stochastically over 

time. The discrete-time stochastic optimal control problem is obtained from the 

deterministic problem when the system includes a stochastic disturbance or noise at time 

k, kw , in its portrayal. Consequently, Eq. (2.3) is replaced by the equation 

1 ( , , ),  0,1,..., 1.k k k k ks f s w k Mα+ = = −  (2.9) 

 

The sequence { ,kw k ≥ 0}  is a stochastic process with a given probability law; that 

is, the joint probability distribution of the random variables 0 1, ,..., kw w w  is known for 
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each k. When the state is not directly observed, it is necessary to augment the state Eq. 

(2.9) with the equation 

( , ),  0,1,..., -1,k k k ky h s v k M= =  (2.10) 

 

where ky  is the observation or system’s output and kv  is the measurement error or noise. 

The sequence { ,kv k ≥ 0}  is a stochastic process with known probability distribution. If in 

Eq. (2.10) ( , )k k k kh s v s= , then the system is completely observed, namely, k ky s= , 

whereas if k ky s≠  the system is partially observed. 

The system’s state ks  depends upon the input sequence 0 1 1, ,..., Ma a a −  as well as 

the random variables 0 1, ,..., kw w w , Eq. (2.9). Consequently, ks  is a random variable; the 

system output ( , )k k k ky h s v=  is a function of the random variables 0 1 0 1, ,..., , ,...,s s v v  and 

thus, is also a random variable. Similarly, the sequence of control actions ( )k ka sµ= , 

{ ,ka k ≥ 0} , constitutes a stochastic process. 

Definition 2.1 [4]. The random variables 0 0 1 0 1, , ,..., , ,...,s w w v v  are addressed as 

basic random variables, since the sequences { ,ks k ≥ 0}  and { ,ka k ≥ 0}  are constructed 

from them. 

As shown in the previous section, the deterministic system model, Eq. (2.3), 

imposes the property that the state 1ks +  at time k+1 is completely determined once ks  and 

ka  are known. It is desirable for the stochastic system model, Eq. (2.9), to retain an 

analogous property by imposing a condition directly on the basic random variables. That 

is, whether the conditional probability distribution of 1ks +  given ks  and ka  is independent 

of previous values of states and control actions. Suppose the control policy 

0 1 1{ , ,..., }Mπ µ µ µ −=  is employed. The corresponding stochastic processes { ,ks kπ ≥ 0} , 

{ ,ky kπ ≥ 0} , and { ,ka kπ ≥ 0} , are defined by 

1 0 0( , , ),  ,k k k k ks f s a w s sπ π π π
+ = =  (2.11) 
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( , ).k k k ky h s vπ π=   

 

Suppose further that the values realized by the random variables ks  and ka  are known. 

These values are insufficient to determine the value of 1ks +  since kw  is not known. The 

value of 1ks +  is statistically determined by the conditional distribution of 1ks +  given ks  

and ka , namely 

1| , ( | , ).
k k ks s a k kP s aπ
+

⋅  (2.12) 

 

For any subset 1k+S , that is, the state space at time k+1, and from Eq. (2.11), we have 

1| , 1 | ,( | , ) ( | , ),
k k k k k ks s a k k k w s a k k kP s a P s aπ π
+ + =S W  (2.13) 

where : { | ( , , ) }.k k k k kw f s a w= ∈W S   

 

The interpretation of Eq. (2.13) is that the conditional probability of reaching the 

state space 1k+S  at time k+1 given ks  and ka  is equal to the probability of being at the 

disturbance space kW  at time k. Suppose that the previous values of the random variables 

ms  and ma , 1m k≤ −  are known. The conditional distribution of 1ks +  given these values 

will be 

1| , 1 0 0 | , 0 0( | ,..., , ,..., ) ( | ,..., , ,..., ).
k k k k k ks s a k k k w s a k k kP s s a a P s s a aπ π
+ + =S W  (2.14) 

 

The conditional probability distribution of 1ks +  given ks  and ka  can be 

independent of the previous values of states and control actions, if it is guaranteed that for 

every control policy π , kw  is independent of the random variables ms  and ma , 1m k≤ − . 
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Kumar and Varaiya [4] proved that this property is imposed under the following 

assumption. 

Assumption 2.1.  The basic random variables 0 0 1 0 1, , ,..., , ,...,s w w v v  are all 

independent. 

Assumption 2.1 imposes a condition directly to the basic random variables which 

eventually yields that the state 1ks +  depends only on ks  and ka . Moreover, the 

conditional probability distributions do not depend on the control policy π , and thus, the 

suuperscript π  can be dropped 

1| , 1 0 0 | , 1( | ,..., , ,..., ) ( | , ),
k k k k k ks s a k k k w s a k k kP s s s a a P s s aπ π
+ + +=  (2.15) 

or 
1 1| , 1 0 0 | , 1( | ,..., , ,..., ) ( | , ).

k k k k k ks s a k k k s s a k k kP s s s a a P s s a
+ ++ +=   

 

A stochastic process { ,ks k ≥ 0}  satisfying the condition of Eq. (2.15) is called a 

Markov Process and the condition is addressed as a Markov property. 

Definition 2.2 [5]. A Markov process is a random process { ,ks k ≥ 0}  with the 

property that given the values of the process from time zero up through the current time, 

the conditional probability of the value of the process at any future time depends only on 

its value at the current time. That is, the future and past are conditionally independent 

given the present. 

Definition 2.3 [6]. When the state of a Markov process is discrete, then the 

process is called a Markov chain. 

A large class of sequential decision-making problems under uncertainty can be 

modeled as a Markov Decision Process (MDP). MDP [7] provides the mathematical 

framework for modeling decision-making in situations where outcomes are partly random 

and partly under the control of the decision maker. Decisions are made at points of time 

referred to as decision epochs, and the time domain can be either discrete or continuous.  
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2.3 Markov Decision Process 

The Markov decision process model consists of five elements: (a) decision 

epochs; (b) states; (c) actions; (d) the transition probability matrix; and (e) the transition 

cost (or reward) matrix. In this framework, the decision maker is faced with the problem 

of influencing system behavior as it evolves over time, by making decisions (choosing 

actions). The objective of the decision maker is to select the course of action (control 

policy) which causes the system to perform optimally with respect to some predetermined 

optimization criterion. Decisions must anticipate costs (or rewards) associated with future 

system states-actions.  

At each decision epoch k, the system occupies a state ks i=  from the finite set of 

all possible system states S 

{1,2,..., },  .N N= ∈S `  (2.16) 

 

In this state ks ∈S , the decision maker has available a set of allowable 

actions, ( ),  ( )k k kA s A sα ∈ ⊆A , where A is the finite action space 

( ).
k ks A s∈= SA ∪  (2.17) 

 

The decision-making process occurs at each of a sequence of decision epochs 

0,1,2,..., ,  k M M= ∈` . At each epoch, the decision maker observes a system’s 

state ,ks i i= ∈S , and executes an action ( )k kA sα ∈ , from the feasible set of actions 

( )kA s ⊆A  at this state. At the next epoch, the system transits to the state 1 ,ks j j+ = ∈S  

imposed by the conditional probabilities 1( | , )k k kp s j s i α+ = = , designated by the 

transition probability matrix P(⋅,⋅). The conditional probabilities of 

P(⋅,⋅), : [0,1]p × →S A , satisfy the constraint  
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1
1

( | , ) 1,
N

k k k
j

p s j s i α+
=

= = =∑  (2.18) 

where N is the cardinality of S, | | .N = S   

 

Following this state transition, the decision maker receives a cost associated with 

the action αk, 1( | , ), :k k kR s j s i Rα+ = = × →S A \  as imposed by the transition cost 

matrix R(⋅,⋅). 

2.3.1 The Cost of a Markov Control Policy 

The solution to an MDP can be expressed as an admissible control policy so that a 

given performance criterion is optimized over all admissible policies Π. An admissible 

policy consists of a sequence of functions 

0 1 1{ , ,..., },Mπ µ µ µ −=  (2.19) 

 

where kµ  maps states ks  into actions ( )k k ksα µ=  and is such that 

( ) ( ), .k k k ks A s sµ ∈ ∀ ∈S  

A Markov policy π  determines the probability distribution of state process 

{ ,ks k ≥ 0}  and the control process { ,ka k ≥ 0} . Different policies will lead to different 

probability distributions. In optimal control problems, the objective is to derive the 

optimal control policy that minimize (maximize) the accumulated cost (reward) incurred 

at each state transition per decision epoch. If a policy π  is fixed, the cost incurred by π  

when the process starts from an initial state 0s  and up to the time horizon M is 

1

0 1
0

( ) ( | , ),
M

k k k k
k

J s R s j s i aπ
−

+
=

= = =∑  (2.20) 
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, , ( ).k ki j a A s∀ ∈ ∀ ∈S   

 

The accumulated cost 0( )J sπ  is a random variable since ks  and ka  are random 

variables. Hence the expected accumulated cost of a Markov policy is given by 

1 1

0 1 1      0 0( ) ( )

( ) { ( | , )} { ( | , ( ))}.
k k

k k k k

M M

k k k k k k k k ks S s Sk ka A s a A s

J s E R s j s i a E R s j s i sπ µ
− −

+ +∈ ∈
= =∈ ∈

= = = = = =∑ ∑ (2.21)

 

The expectation is with respect to the probability distribution of { ,ks k ≥ 0}  and 

{ ,ka k ≥ 0}  determined by the Markov policy π . Eq. (2.21) can readily be evaluated in 

terms of the transition probability matrix as follows: 

1

0 1 1
0 1

( ) ( | , ) ( | , ).
M N

k k k k k k k k
k j

J s P s j s i a R s j s i aπ
−

+ +
= =

= = = ⋅ = =∑∑  (2.22)

 

Consequently, the control policy that minimizes Eq. (2.22) is defined as the 

optimal Markov policy π ∗ . Dynamic programming (DP) has been widely employed as 

the principal method for computing global optimal policies in sequential decision-making 

problems under uncertainty. Algorithms, such as value iteration, policy iteration, and 

linear programming, have been extensively utilized in solving deterministic and 

stochastic optimal control problems, Markov and semi-Markov decision problems, min-

max control problems, and sequential games. While the nature of these problems may 

vary significantly, their underlying structures are very similar.  

2.4 Dynamic Programming Algorithm 

The Dynamic Programming (DP) [8] algorithm rests on the principle of 

optimality. The principle of optimality states the following fact [1]. Let 

0 1 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗
−=  be an optimal policy for a finite decision-making problem, and 
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assume that, when using π ∗ , a given state ks i=  occurs at time k with positive 

probability. Consider the sub-problem whereby the process occupies the state ks i=  at 

time k and wishes to minimize the accumulated cost from time k to time M, namely, 

1

1   
( )

{ ( ) ( | , )},
k

k k

M

M M k k k ks S k ka A s

E R s R s s a
−

+∈
=∈

+ ∑  
(2.23)

where 1( ) ( | , ).M M M M M MR s R s s a+=   

 

Then the truncated policy 1 1{ , ,..., }k k Mµ µ µ∗ ∗ ∗
+ −  is optimal for the sub-problem.  

The principle of optimality essentially suggests that an optimal policy can be 

constructed in piecemeal fashion, first constructing an optimal policy for the “tail sub-

problem” involving the last decision epoch, then extending the optimal policy to the “tail 

sub-problem” involving the last two decision epochs, and continuing in this manner until 

an optimal policy for the entire problem is derived. The DP algorithm is founded on the 

principle of backward induction. It proceeds sequentially, by solving all the tail sub-

problems of a given number of decision epochs, utilizing the solution of the tail sub-

problems of shorter number of decision epochs. The DP algorithm is stated as follows. 

For every initial state 0s , the optimal cost 0( )J sπ ∗

, given by Eq. (2.22), of the sequential 

decision-making problem under uncertainty is equal to 0 0( )J s , given by the last step of 

the following algorithm, which proceeds backward in time from the decision epoch M-1 

to decision epoch 0: 

1( ) ( ) ( | , ),M M M M M M M MJ s R s R s s a+= =  (2.24)

1( )    
( ) min { ( ) ( ( , , ))}, 0,1,..., 1.

k k k
k k M M k k k k ka A s s S

J s E R s J f s a w k M+∈ ∈
= + = −  
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2.4.1 Optimal Control Policy 

The optimal policy 0 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗=  for the finite horizon problem can be 

derived by 

0 0arg min ( ).J s
π

π ∗

∈
=

Π
 

(2.25) 

The finite-horizon model is appropriate when the decision-maker’s “lifetime” is 

known, namely, the terminal epoch of the decision-making sequence. For problems with 

a very large number of decision epochs, however, the infinite-horizon model is more 

appropriate. In this context, the overall expected undiscounted cost is: 

0 0 0 0( ) lim  min ( ).
M

J s J s
π→∞ ∈

=
Π

 (2.26) 

 

This relation is valuable computationally and analytically, and it holds under certain 

conditions [3].  

2.5 Engine Identification and Stochastic Control: Problem Definition 

The problem of deriving the optimal values of the controllable variables for 

engine operating transitions involves two major sub-problems. The first is exploitation of 

the information acquired from the engine output to identify its behavior. That is, how an 

engine representation can be built by observing engine operating point transitions is the 

state estimation and system identification problem. The second is assessment of the 

engine output with respect to alternative values of the controllable variables (control 

policies), and selecting those that optimize specified engine performance criteria, e.g., 

fuel economy, emissions, engine power, etc. The latter forms a stochastic control 

problem. Although computational considerations in many instances lead us to treat these 

three aspects separately, in our approach they are considered simultaneously in solving 

the engine calibration problem in real time, while the engine is running the vehicle. 
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The stochastic system model, Eq. (2.9), can provide a systematic treatment of the 

general engine identification and stochastic control problem. The model adapted to the 

engine, as illustrated in Figure 2.1, is repeated here for easy reference 

1 ( , , ),  0,1,..., 1,k k k k ks f s a w k M+ = = −  (2.27) 

( , ),k k k ky h s v=   

 

where ks  represents the engine operating point, which belongs to the finite engine 

operating space S , and ka  represent the values of the controllable variables at time k. 

These values belong to some feasible action set ( )kA s , which is a subset of the control 

space A . The sequence { ,kw k ≥ 0}  is an unknown disturbance representing the driver 

while commanding the engine through the gas pedal position. This sequence is treated as 

a stochastic process with an unknown probability distribution; ky  is the observation or 

engine’s output, and kv  is the measurement sensor error or noise. The sequence 

{ ,kv k ≥ 0}  is a stochastic process with unknown probability distribution. 

The initial engine operating point 0s  along with the sequences of gas pedal 

position { ,kw k ≥ 0} , and the sensor error { ,kv k ≥ 0}  are assumed to be independent, 

which is a reasonable assumption in reality. In this context, the engine is treated as a 

stochastic system and engine operation can be considered as a stochastic process 

{ ,ks k ≥ 0}  which satisfies the condition of Eq. (2.15). Consequently, engine operation 

can be modeled as a Markov decision process with the cost function at each state (engine 

operating point) transition to be represented by the engine output (e.g., fuel economy, 

emissions, and engine power). The problem of engine calibration is thus formulated as a 

sequential decision-making problem under uncertainty.  

At each decision epoch k, the engine operates at a given state ks  designated partly 

by the driver 1kw − , and partly by the controllable variable 1ka −  at time k-1. On that basis 
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the self-learning controller selects a value ka . One decision epoch later, the engine 

transits to a new state 1ks +  and the controller observes the engine output 

1 1 1 1 1( , ) ( | , )k k k k k k k ky h s v R s s a+ + + + += =  associated with this state transition, as illustrated in 

Figure 2.2 . 

 

 

ykEngine
fk

Driver

Self-Learning
Controller

πk

Sensors

wk

sk Engine Output
hk

vk

αk

ykEngine
fk

Driver

Self-Learning
Controller

πk

Sensors

wk

sk Engine Output
hk

vk

αk

 

 
Figure 2.1 − The stochastic system model adapted for the engine calibration problem. 

The controller (decision maker) is faced with the problem of influencing engine 

operation as it evolves over time by selecting values of the controllable variables. The 

goal of the controller is to select the optimal control policy (optimum values of the 

controllable variables) for the sequences of engine operating point transitions, 

corresponding to the driver’s driving style, that cause the engine to perform optimally 

with respect to some predetermined performance criterion (cost function). 

A key aspect of this process is that decisions are not viewed in isolation since the 

controller simultaneously solves the state estimation and system identification sub-

problem by using the conditional probabilities of the sequence { ,ks k ≥ 0}  given the 

sequence { ,ka k ≥ 0} . Consequently, in the stochastic control problem the self-learning 

controller can select those values that balance the desire to minimize the cost function of 

the next engine operating transition against the desire to avoid future operating point 
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transitions where high cost is inevitable. This approach aims to provide engine calibration 

that can capture transient engine designated by the driver’s driving style. 
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Figure 2.2 − Sequential decision-making problem. 
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CHAPTER 3 

REAL-TIME, SELF-LEARNING SYSTEM IDENTIFICATION 

Modeling dynamic systems incurring stochastic disturbances for deriving a 

control policy is a ubiquitous task in engineering. However, in some instances obtaining a 

model of a system may be impractical or impossible. Alternative approaches employ a 

simulation-based stochastic framework, in which the system interacts with its 

environment in real time and obtains information that can be processed to produce an 

optimal control policy. In this context, the problem of developing a policy for controlling 

the system’s behavior is formulated as a sequential decision-making problem under 

uncertainty. This problem involves two major sub-problems: (a) the state estimation and 

system identification problem, and (b) the stochastic control problem. The first is 

exploitation of the information acquired from the system output to identify its behavior, 

that is, how a state representation can be built by observing the system’s state transitions. 

The second is assessment of the system output with respect to alternative control policies, 

and selecting those that optimize specified performance criteria. 

This chapter reports research on implementing a computational model suitable to 

solve the state estimation and system identification sub-problem. The evolution of the 

system is modeled as a Markov Decision Process (MDP). A state-space representation is 

constructed through a learning mechanism which can then be used in solving the 

stochastic control problem. The model allows decision making based on gradually 
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enhanced knowledge of system response as it transitions from one state to another, in 

conjunction with actions taken at each state.  

3.1 Reinforcement Learning Algorithms 

Deriving a control policy for dynamic systems is an off-line process in which 

various methods from control theory are utilized iteratively. These methods aim to 

determine the policy that satisfies the system’s physical constraints while optimizing 

specific performance criteria. A challenging task in this process is to derive a 

mathematical model of the system’s dynamics that can adequately predict the response of 

the physical system to all anticipated inputs. Exact modeling of complex engineering 

systems, however, may be infeasible or expensive. Alternative methods have been 

developed enabling the real-time implementation of control policies for systems when an 

accurate model is not available. In this framework, the system interacts with its 

environment, and obtains information enabling it to improve its future performance by 

means of costs (or rewards) associated with control actions taken. This interaction 

portrays the learning process conveyed by the progressive enhancement of the system’s 

“knowledge” regarding the course of action (control policy) that maximizes the 

accumulated rewards with respect to the system’s operating point (state) transitions. The 

environment is assumed to be non-deterministic; namely, taking the same action in the 

same state on two different decision time steps (decision epochs or stages), the system 

may transit to a different state and incur a dissimilar cost in the subsequent step. 

Consequently, the problem of developing a policy for controlling the system’s behavior is 

formulated as a sequential decision-making problem under uncertainty. 

Dynamic programming (DP) has been widely employed as the principal method 

for analysis of sequential decision-making problems [1]. Algorithms, such as value 

iteration and policy iteration, have been extensively utilized in solving deterministic and 
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stochastic optimal control problems, Markov and semi-Markov decision problems, 

minimax control problems, and sequential games. However, the computational 

complexity of these algorithms in some occasions may be prohibitive and can grow 

intractably with the size of the problem and its related data, referred to as the DP “curse 

of dimensionality” [2]. In addition, DP algorithms require the realization of the 

conditional probabilities of state transitions and the associated costs, implying a priori 

knowledge of the system dynamics. However, even if the transition probabilities are 

known, the problem of analytic computation might be too hard, and one might seek an 

approximation method that exploits the possibilities of simulation. 

Simulation-based methods for solving sequential decision-making problems under 

uncertainty have been primarily developed in the field of Reinforcement Learning (RL) 

[2-4]. RL has aimed to provide algorithms, founded on DP, for learning control policies 

when analytical methods cannot be used effectively, or the system’s state transition 

probabilities are not known [5].  A major influence on research leading to current RL 

algorithms has been Samuel’s method [6, 7], used to modify a heuristic evaluation 

function for deriving optimal board positions in the game of checkers. In this algorithm, 

Samuel represented the evaluation function as a weighted sum of numerical features and 

adjusted the weights based on an error derived from comparing evaluations of current and 

predicted board positions. This approach was refined and extended by Sutton [8, 9] to 

introduce a class of incremental learning algorithms, Temporal Difference (TD). TD 

algorithms are specialized for deriving optimal policies for incompletely known systems, 

using past experience to predict their future behavior. Watkins [10] extended Sutton’s TD 

algorithms and developed an algorithm for systems to learn how to act optimally in 

controlled Markov domains by explicitly utilizing the theory of DP. A strong condition 

implicit in the convergence of Q-learning to an optimal control policy is that the sequence 

of decision epochs that forms the basis of learning must include an infinite number of 

decision epochs for each initial state and action. Q-learning is considered the most 
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popular and efficient model-free learning algorithm in deriving optimal control policies 

in Markov domains [11]. Schwartz [12] explored the potential of adapting Q-learning to 

an average-cost framework with his R-learning algorithm; Bertsekas and Tsitsiklis [3] 

presented a similar to Q-learning average-cost algorithm. Mahadevan [13] surveyed 

reinforcement-learning average-cost algorithms and showed that these algorithms do not 

always produce bias-optimal control policies.  

The aforementioned algorithms consist of evaluation functions attempting to 

successively approximate the Bellman equation. These evaluation functions assign to 

each state the total cost expected to accumulate over time starting from a given state 

when a policy π  is employed. Although many of these algorithms are eventually 

guaranteed to find suboptimal policies in sequential decision-making problems under 

uncertainty, their use of the accumulated data acquired over the learning process is 

inefficient, and they require a significant amount of experience to achieve acceptable 

performance [11]. This requirement arises due to the formation of these algorithms in 

deriving optimal policies without learning the system models en route; that is they do not 

solve the state estimation and system identification problem simultaneously. 

Algorithms for computing optimal policies by learning the models are especially 

important in applications in which real-world experience is considered expensive. 

Sutton’s Dyna architecture [14, 15] exploits strategies which simultaneously utilize 

experience in building the model and adjust the derived policy. Prioritized sweeping [11] 

and Queue-Dyna [16] are similar methods concentrating on the interesting subspaces of 

the state-action space. Barto et al. [4] developed another method, called Real-Time 

Dynamic Programming (RTDP), referring to the cases in which concurrently executing 

DP and control processes influence one another. RTDP focuses the computational effort 

on the state-subspace that the system is most likely to occupy. However, these methods 

are specific to problems in which the system needs to achieve particular goal states and 

the initial cost of every goal state is zero.  



35 

3.2 Identification and Stochastic Adaptive Control 

Adaptive control algorithms provide a systematic treatment in deriving optimal 

control policies in stochastic systems where exact modeling is not available a priori. In 

this context, the evolution of the system is modeled as a countable state controlled 

Markov chain whose transition probability is specified up to an unknown parameter 

taking values in a compact metric space. 

In general, the analysis of optimal control in dynamic systems starts with a given 

state space model 

1 ( , , ),k k k k ks f s wα+ =  (3.1) 

( , ).k k k ky h s v=  (3.2) 

  

Stating that the model is given implies that the functions kf , kh , and the 

probability distribution of the basic random variables 0 0 1 0 1, , ,..., , ,...,s w w v v  are all known. 

Moreover, the conditional distributions of  1( , )k ks y+  given ( , )k ks a  are also known. This 

is the off-line information in contrast to the on-line one which at time k consists of the 

observations 1( , )k k kz y a −= . Consequently, the off-line information specifies a unique 

system. However, the off-line information is often insufficient to characterize a model 

completely; that is, the system model is not known initially. In this context, we are faced 

with the problem of how to make a rational choice of the control values 0 1, ,...,a a  when 

the model is unspecified. This problem can be reformulated as a problem with partial 

observation. Nevertheless, the resulting computational burden increases making this 

formulation impractical except in the case when the unspecified system model is known 

to belong to a finite set. 

Suppose the system model is unknown. As we make more observations kz , i.e., 

as k increases, we ought to be able to characterize better the system model. The abstract 
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framework that describes and analyzes this learning process is quite simple. A particular 

model is specified by a triple [17] 

: ( , , ),M f h= P  (3.3) 

 

where f  is the function in the state equation, h  is the function in the observation 

equation, and P  is the probability distribution of the basic random variables. It is 

assumed that the off-line information is such as to guarantee that the true system model 

belongs to the family of models : ( , , )M f hθ θ θ θ= P  parameterized by the finite-

dimensional vector θ  which is known to belong to the set Θ . Consequently, it is known 

a priori that the true system model corresponds to some true parameter θ ∈ΘD , which is 

unidentified initially. At time k, an estimation k̂θ  of the true parameter is made based on 

the on-line observation kz . If the estimation or identification procedure is sufficient then 

k̂θ  should approach θ D  as k increases. 

The initial uncertainty about the system is reflected in the parameterization, i.e., 

the function ( , , )f hθ θ θθ → P , and the size of the parameter set Θ . This size may be 

large or small, and the parameterization may be more or less complex, i.e., linear vs. 

nonlinear, one-to-one vs. many-to-one. In practice, however, the set of models { }M θ  can 

only approximately represent the true system. Better approximations will lead to more 

complex parameterizations and a larger model set Θ  making the identification problem 

more complicated. Consequently, the choice of parameterization must keep a balance 

between the demand for accuracy and the need to limit the computational burden. 

The stochastic adaptive control problem has been extensively reported in the 

literature. Mandl [18] considered an adaptive control scheme providing a minimum 

contrast estimate of the unknown model of the systems at each decision epoch (stage), 

and then applying the optimal feedback control corresponding to this estimate. If the 

system satisfies a certain “identifiability condition”, the sequence of parameter estimates 
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converges almost surely to the true parameter. Borkar and Variaya [19] removed this 

identifiability condition and showed that when Θ  is finite, the maximum likelihood 

estimate k̂θ  converges almost surely to a random variable. Borkar and Variaya [20], and 

Kumar [21] examined the performance of the adaptive control scheme of Mandl without 

the “identifiability condition,” but under varying degrees of generality of the state, 

control, and model spaces with the attention restricted to the maximum likelihood 

estimate. Doshi and Shreve [22] proved that if the set of allowed control laws is 

generalized to include the set of randomized controls, then the cost of using this scheme 

will almost surely equal to the optimal cost achievable if the true parameter were known. 

Kumar and Becker [23] implemented a novel approach to the adaptive control problem 

when a set of possible models is given including a new criterion for selecting a parameter 

estimate. This criterion is obtained by a deliberate biasing of the maximum likelihood 

criterion in favor of parameters with lower optimal costs. These results were extended by 

assuming that a finite set of possible models is not available [24]. Sato, Abe, and Takeda 

[25-27] proposed a learning controller for Markovian decision problems with unknown 

probabilities. The controller was designed to be asymptotically optimal considering a 

conflict between estimation and control for determination of a control policy.  Kumar 

[28], and Varaiya [29] have provided comprehensive surveys of the aforementioned 

research efforts. 

Certainty Equivalence Control (CEC) [17, 28] is a common approach in 

addressing stochastic adaptive control problems. The unknown system parameter is 

estimated at each decision epoch while assuming that the decision maker selects a control 

action as if the estimated parameter is the true one. The major drawback of this approach 

is that the decision maker may get locked in a false parameter when there is a conflict 

between learning and control. Forcing controls, different actions from those imposed by 

the certainty equivalence control, at some random decision epochs are often utilized to 

address this issue. The certainty equivalence control employing a forcing strategy is 
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optimal in stochastic adaptive optimization problems with the average-cost-per-unit-time 

criterion.  

Various stochastic adaptive control schemes have considered the classical 

example of the multi-armed bandit problem. Lai and Robbins [30] developed a solution 

methodology for bandits with independent identically distributed arms by introducing the 

average-cost-per-unit-time criterion. Ananthanam, Varaiya, and Walrand [31], and 

Agrawal, Hedge, and Teneketzis [32] generalized this result by developing various 

extensions of the Lai-Robbins formulation in the multi-armed bandit problem. Agrawal, 

Teneketzis, and Ananthanam [33] developed a “translation scheme” which along with the 

construction of an “extended probability space” solved the controlled Markov chain 

problem by converting it to a form similar to that for the controlled Markov independent 

sequence problem [34]. These results were utilized by Graves and Lai [35] to develop 

adaptive control rules considering compact parameter set and general state-space while 

assuming finite set of admissible policies. In these adaptive control schemes, the best 

possible performance depends on the on-line forcing strategy. Agrawal and Teneketzis 

[36] studied the rate of forcing to asses the performance of a certainty equivalence control 

with forcing for the multi-armed bandit problem and the adaptive control of Markov 

chains.  

Although the aforementioned research work has successfully led to 

asymptotically optimal adaptive control schemes, their underlying framework imposes 

limitations in implementing these schemes on the engine calibration problem defined as a 

sequential decision-making problem under uncertainty in Chapter 2. In particular, in the 

engine calibration problem, the engine model is assumed to be completely unknown, and 

thus, parameterization cannot be developed. Moreover, the requirement of real-time 

derivation of the values of the engine controllable variables over an unknown horizon 

imposes an additional computational burden in implementing such control schemes.  
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In this chapter, a computational model suited for real-time sequential decision-

making under uncertainty modeled as controlled Markov chain is proposed. The model 

consists of a new state-space representation that addresses the state estimation and system 

identification sub-problem for the entire system (engine) operating domain. Furthermore, 

it utilizes an evaluation function suitable for lookahead control algorithms, and thus, for 

real-time implementation. 

3.3 Finite State Controlled Markov Chains 

The evolution of the system (engine) is modeled as a Markov Decision Process 

with a finite state space (engine operating domain) S  and action space (values of the 

engine controllable variables) A . So, a discrete-time Markov process { , 0}ks k ≥  is 

considered that takes values in some countable set S , that is, the state belongs to a finite 

state space {1,2,..., },N N= ∈S ` . The control action ka  takes values in a pre-specified 

space A . Consequently, the process is a controlled Markov chain. The transition 

probabilities are specified by the N N×  matrix valued function on A , 

( ) : { ( ), , },ija a a i j a→ = ∀ ∈ ∀ ∈P P S A  (3.4) 

 

with the interpretation 

1 1 0 0Prob{ | , ,..., , ,..., } ( ) ,  0, , .k k k k ij k ijs j s i s s a a a p k i j+ −= = = = ≥ ∀ ∈SP  (3.5) 

 

Definition 3. 1 [37]. The chain { , 0}ks k ≥  is called homogeneous if 

1 1 0( | ) ( | ),ij k k ijs j s i s j s i+ = = = = =P P 0, , .k i j∀ ≥ ∀ ∈S  (3.6) 
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Theorem 3. 1 [38]. The transition probability matrix ( )aP  is a stochastic matrix, 

that is 
(a) ( )aP  has non-negative entries, or 0, ,ijp i j≥ ∀ ∈S , 

(b) the sum of its rows is equal to one, or 1,ij
j

p i
∈

= ∀ ∈∑
S

S . 

Proof. The proof is provided by Grimmett and Stirzaker [38]. 

,  

 
Definition 3. 2 [39]. The n-step transition probability matrix ( , ) ( )m m n

ij ka+P  is the 

matrix of n-step transition probabilities    ( , ) ( , )( ) ( | )m m n m m n
ij k ij m n ma s j s i+ +

+= = =P P .  

The n-step transition probability matrix satisfies the Chapman-Kolmogorov 

equation, 

( , ) ( ) ( ) ,m m n m n
ij il lj

l

p p p+

∈

= ⋅∑
S

 
(3.7) 

or ( , ) ( ) .m m n n
a k aa+ =P P   

3.3.1 Classification of States in a Markov Chain 

The evolution of a Markov chain can be seen as the motion of a notional particle 

which jumps between the states of the state space i∈S  at each decision epoch. The 

classification of the states in a Markov chain aims to provide insight towards modeling 

appropriately the evolution of a controlled dynamic system. 

Definition 3. 3 [38]. A Markov state i∈S  is called recurrent (or persistent), if 

0(  for some 0 | ) 1,ij ks i k s i= ≥ = =P  (3.8) 

 

that is, the probability of eventual return to state i , having started from i , is one. 
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The first time the chain { , 0}ks k ≥  visits a state i∈S  is given by 

1( ) : min{ 1: }.kT i k s i= ≥ =  (3.9) 

 

1( )T i  is called the first entrance time or first passage time of state i . It may 

happen that ks i≠  for any 1k ≥ . In this case, 1( ) minT i = ∅ , which is taken to be ∞ . 

Consequently, if the chain never visits state i  for any time 1k ≥ , 1( )T i = ∞ . Given that 

the chain starts in state i , the conditional probability that the chain returns to state i  in 

finite time is  

1 0: ( ( ) | ).iif T i s i= < ∞ =P  (3.10) 

 

Consequently, for a recurrent state i  1iif = . Furthermore, if the expected time for the 

chain to return to a recurrent state i  is finite, the state is said to be positive recurrent; 

otherwise, the state is said to be null recurrent. The nth entrance time of state i  is given 

by 

1( ) : min{ ( ) : }.n n kT i k T i s i−= ≥ =  (3.11) 

 

Definition 3. 4 [38]. The mean recurrence time iµ  of a state i  is defined as 

1 0: { ( ) | }.i E T i s iµ = =  (3.12) 

 

Definition 3. 5 [38]. The period ( )d i  of a state i  is defined by  

( ) : { : ( ) 0},nd i gcd n T i= >  (3.13) 
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that is, the greatest common divisor of the decision epochs at which return is possible. 

The state i  is periodic if ( ) 1d i >  and aperiodic if ( ) 1d i = . 

Definition 3. 6 [38]. A Markov state is called ergodic, if it is positive recurrent, 

and aperiodic. 

Definition 3. 7 [38]. If the chain started from state i  and visits state j , that is 
( )

0( | ) 0n
ij ns j s i= = >P  for some 0n > , it is said that i  communicates with j , and it is 

denoted i j→ . It is said that i  and j  intercommunicate if i j→  and j i→ , in which 

case it is denoted i j↔ . 

Definition 3. 8 [39]. A Markov chain is called irreducible if all states intercom-
municate in a finite number of decision epochs, that is, ( )

0( | ) 0,  ,n
ij ns j s i i j= = > ∀ ∈SP . 

3.4 The Predictive Optimal Decision-Making Computational Model  

The Predictive Optimal Decision-making (POD) [40] learning model 

implemented in this dissertation consists of a new state-space system representation. The 

state-space representation accumulates gradually enhanced knowledge of the system’s 

transition from each state to another in conjunction with actions taken for each state. This 

knowledge is expressed in terms of transition probabilities and an expected evaluation 

function associated with each Markov state. The major differences between the proposed 

computational model and the existing RL methods are: (a) the model solves the state 

estimation and system identification sub-problem for the entire system’s operating 

domain by learning the transition probability and cost matrices, and (b) the model utilizes 

an evaluation function suitable for lookahead control algorithms, and thus, for real-time 

implementation. While the model’s knowledge regarding the transition probabilities is 

advanced, a real-time lookahead control algorithm, which is developed in Chapter 4, can 

realize the control actions in the stochastic control sub-problem. This approach is 

especially appealing to learning engineering systems in which the initial state is not fixed 
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[41, 42], and recursive updates of the evaluation functions to approximate the Bellman 

equation would demand a huge number of iterations to achieve the desired system 

performance.  

The model considers controlled systems that their evolution is modeled as a 

Markov chain, with the following assumptions. 

Assumption 3. 1. The Markov chain is homogeneous. 

Assumption 3. 2. The Markov chain is ergodic, that is, the states are positive 

recurrent and aperiodic. 

Assumption 3. 3. The Markov chain is irreducible. Consequently, each state i  of 

the Markov chain intercommunicates with each other , ,i j i j↔ ∀ ∈S , that is, each 

system’s state can be reached with a positive probability from any other state in finite 

decision epochs. 

3.4.1 Construction of the POD State Space Representation 

The new state-space representation defines the POD domain S� , which is 

implemented by a mapping H  from the Cartesian product of the finite state space and 

action space of the Markov chain { , 0}ks k ≥  

,× × →H : S A S S�  (3.14) 

 

where {1,2,..., },  N N= ∈S `  denotes the Markov state space, and  

( ),
k k ks A s s i∈= ∀ = ∈SA S∪  stands for the finite action space. Each state of the POD 

domain represents a Markov state transition from ks i= ∈S  to 1ks j+ = ∈S  for all 0k ≥ , 

as illustrated in Figure 3.1, that is  

1 1 1 1( ) ( ) 1

: | = , ( | , ) 1, | | ,
k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i N
µ

α+ + + +∈
=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � �  (3.15) 
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, ,  ( ) ( ).k ki j s A sµ∀ ∈ ∀ ∈S   

 

Definition 3. 9.  The mapping H  generates an indexed family of subsets, iS� , for 

each Markov state ks i= ∈S , defined as Predictive Representation Nodes (PRNs). Each 

PRN is constituted by the set of POD states 1
ij
k is + ∈S��  representing the state transitions 

from the state ks i= ∈S  to all other Markov states 

{ }1 1( ) ( )
| = , .

k k

ij
k k ks A si s s i s j j

µ+ +∈
= = → ∀ ∈S S� �  (3.16) 

 

 
Markovian 
domain

POD domainMarkovian 
domain

POD domain

 
 

Figure 3.1 − Construction of the POD domain. 

 

PRNs partition the POD domain insofar as the POD underlying structure captures 

the state transitions in the Markov domain as depicted in Figure 3.2, namely 

, withiij
iks ∈

= SS S��
� �∪  

(3.17) 
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.iij
iks ∈

=∅S S��
�∩  

 

 

PRNs, constituting the fundamental aspect of the POD state representation, 

provide an assessment of the Markov state transitions along with the actions executed at 

each state. This assessment aims to establish a necessary embedded property of the new 

state representation so as to consider the potential transitions that can occur in subsequent 

decision epochs. The assessment is expressed by means of the PRN value, 1( | ( ))ij
i k iR s sµ+� , 

which accounts for the minimum expected cost that can be achieved by transitions 

occurring inside a PRN.  

Definition 3. 10.  The PRN value 1( | ( ))ij
i k iR s sµ+�  is defined as 

1 1 1( ) 1

( | ( )) : min ( | , ( )) ( | , ( )),
k

N
ij

i k k k k k k k ks j
R s s i p s j s i s R s j s i s

µ
µ µ µ+ + +∈

=

= = = = ⋅ = =∑A
�  (3.18) 

1 , , , ( ) ( ), and | | .ij
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��   

 

lS�

jS�

iS�

…

lS�

jS�

iS�

…

 
 

Figure 3.2 − Partition of POD through the PRNs. 
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The PRN value is exploited by POD state representation as an evaluation metric 

to estimate the subsequent Markov state transitions. The estimation property is founded 

on the assessment of POD states by means of an expected evaluation 

function, 1( , ( ))i ij
PRN k kR s sµ+� , defined as 

{1 1 1

2 1

( , ( )) ( | , ( )) ( | , ( ))

                                                                                ( | ( ))},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (3.19) 

2 1 1, , , , ( ), ( ), ( ) ( ).jm
k k k k ks i j m s A s s A sµ µ+ + +∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈S S��   

 

Consequently, employing the POD evaluation function through Eq. (3.19), each 

POD state, 1
ij
k is + ∈S�� , is comprised of an overall cost corresponding to: (a) the expected 

cost of transiting from state ks i=  to 1ks j+ =  (implying also the transition from the PRN 

iS�  to jS� ); and (b) the minimum expected cost when transiting from 1ks j+ =  to any other 

Markov state at k+2 (transition occurring into jS� ).  

3.4.2 Self-Learning System Identification 

While the system interacts with its environment, the POD model learns the system 

dynamics in terms of the Markov state transitions. The POD state representation attempts 

to provide a process in realizing the sequences of state transitions that occurred in the 

Markov domain, as infused in PRNs. The different sequences of the Markov state 

transitions are captured by the POD states and evaluated through the expected evaluation 

functions given in Eq. (3.19). Consequently, the lowest value of the expected evaluation 

function at each POD state essentially estimates the subsequent Markov state transitions 

with respect to the actions taken.  As the process is stochastic, however, the real-time 

learning method still has to build a decision-making mechanism of how to select actions, 

namely, how to solve the stochastic control problem. This problem is addressed in 

Chapter 4. 
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The learning performance is closely related to the exploration-exploitation 

strategy of the action space. More precisely, the decision maker has to exploit what is 

already known regarding the correlation involving the admissible state-action pairs that 

minimize the costs, and also to explore those actions that have not yet been tried for these 

pairs to assess whether these actions may result in lower costs. A balance between an 

exhaustive exploration of the environment and the exploitation of the learned policy is 

fundamental to reach nearly optimal solutions in a few decision epochs and, thus, to 

enhance the learning performance. This exploration-exploitation dilemma has been 

extensively reported in the literature. Iwata et al. [43] proposed a model-based learning 

method extending Q-learning and introducing two separated functions based on statistics 

and on information by applying exploration  and exploitation strategies. Ishii et al. [44] 

developed a model-based reinforcement learning method utilizing a balance parameter, 

controlled through variation of action rewards and perception of environmental change. 

Chan-Geon et al. [45] proposed an exploration-exploitation policy in Q-learning 

consisting of an auxiliary Markov process and the original Markov process. Miyazaki et 

al. [46] developed a unified learning system realizing the tradeoff between exploration 

and exploitation. Hernandez-Aguirre et al. [47] analyzed the problem of exploration-

exploitation in the context of the approximately correct framework  and studied whether 

it is possible to set bounds on the complexity of the exploration needed to achieve a fixed 

approximation error over the action value function with a given probability. 

An exhaustive exploration of the environment is necessary to evade premature 

convergence on a sub-optimal solution even if this may result in both sacrificing the 

system’s performance in the short run and increasing the learning time. In our case it is 

assumed that, for any state ks i= ∈S , all actions of the feasible action 

set ( ) ( )k ks i A s iµ = ∈ =  are selected by the decision maker at least once. At the early 

decision epochs and until full exploration of the action set ( ),kA s i i= ∀ ∈S  occurs, the 
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mapping from the states to probabilities of selecting the actions is constant; namely, the 

actions for each state are selected randomly with the same probability 

1( ( ) | ) , ( ) ( ), .
( )

p i i i A i i
A i

µ µ= ∀ ∈ ∀ ∈S  (3.20) 

 

When the exploration phase is complete, a lookahead control algorithm can be 

utilized to build up the decision-making mechanism.  

3.4.3 Stationary Distributions and the Limit Theorem 

The behavior of a Markov chain after a long time k  has elapsed is described by 

the stationary distributions and the limit theorem. The sequence { , 0}ks k ≥  does not 

converge to some particular state i∈S  since it enjoys the inherent random fluctuation 

which is specified by the transition probability matrix. Subject to certain conditions, the 

distribution of { , 0}ks k ≥  settles down. 

Definition 3. 11 [38]. The vector ρ  is called a stationary distribution of the chain 

if ρ  has entries ( , )i iρ ∈S  such that: 
(a) 0iρ ≥  for all i , and 1i

i
ρ

∈

=∑
S

, 

(b) = ⋅ρ ρ P , that is i j ji
j

ρ ρ
∈

= ⋅∑
S

P , where jiP  is the transition probability 

1( | )ji k ks i s j+ = =P , for all i . 

 
If the transition probability matrix of a Markov chain ijP  is raised to a higher 

power, the resulting matrix is also a transition probability matrix. If the matrix is kept 

raising to higher powers, then the elements in any given column start converging to the 

same number. This property can be illustrated further in the following simple example. 

Let us consider a Markov chain with two states {1,2}=S  and a transition probability 

matrix 
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0.7 0.3
.

0.4 0.6
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P    

 

This matrix represents the one-step transition probabilities of the states. 

Consequently, if the chain is at state 1 there is a probability of 0.7 that it will remain there 

and of 0.3 that it will transit to state 2. Similarly, if the chain is at state 2, there is a 

probability of 0.4 that it will transit to state 1 and of 0.6 that it will remain at state 2. If 

this matrix is raised to the second order, the resulting matrix yields the two-step transition 

probabilities 

2 0.7 0.3 0.7 0.3 0.61 0.39
.

0.4 0.6 0.4 0.6 0.52 0.48
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P    

 

The elements of the two-step transition probability matrix essentially return the 

conditional probability that the chain will transit to a particular state within two decision 

epochs. Consequently, the value 2
12 1( 2 | 1) 0.39k ks s+ = = =P  in the above matrix is the 

conditional probability that the chain will go from state 1 to state 2 in two decision 

epochs. If the one-step transition probability matrix is raised to the 8th power, it is noticed 

that the elements in any given column start converging to 0.57 and 0.43, respectively, 

namely, 

8 0.5715 0.4285
.

0.5714 0.4286
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P    

 

These numbers constitute the stationary distribution of the chain, vector ρ , that is, 

1

2

0.57
.

0.43
ρ
ρ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

ρ    
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The limit theorem states that if a chain is irreducible with positive recurrent states, 

the following limit exists 

1lim ( | ) ( ).n
j ij k k nn

s j s i s jρ +→∞
= = = = =P P   (3.21) 

 

Theorem 3. 2 (“Limit Theorem”) [38]. An  irreducible  Markov  chain  has  a 

stationary distribution ρ  if and only if all the states are positive recurrent. Furthermore, 

ρ  is the unique stationary distribution and is given by 1
i iρ µ−=  for each i∈S , where iµ  

is the mean recurrence time of i . 

Proof. The proof is provided by Grimmett and Stirzaker [38]. 

,  

 

Stationary distributions have the following property 

, 0n n= ⋅ ∀ ≥ρ ρ P  (3.22) 

3.4.4 Convergence of POD Model 

As the system interacts with its environment, the POD state representation 

realizes the sequences of state transitions that occurred in the Markov domain, as infused 

in PRNs. In this section, it is shown that this realization determines the stationary 

distribution of the Markov chain. 

Definition 3. 12.  Given a set C ⊂ \  and a variable x , the indicator function, 

denoted by ( )CI x , is defined by 

1,
( ) :

0,C

x C
I x

x C
∈⎧

= ⎨ ∉⎩
 (3.23) 
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Lemma 3. 1. Each PRN is irreducible, that is , ,i j i j↔ ∀ ∈S S S� � . 

Proof. At the decision epoch k , the state transition from i  to j  corresponds to 

the ij
ks�  inside the PRN iS� . The next state transition will occur from the state j  to any 

other Markov state. Consequently, by Definition 3.9, the next state transition will occur 
in jS� . By Assumption 3.3, all states intercommunicate with each other, that is, 

, ,i j i j↔ ∀ ∈S . So PRNs intercommunicate and thus they are irreducible. The lemma is 

proved. 

,  

 

The number of visits of the chain to the state j∈S  between two successive visits 

to state i∈S  at the decision epoch k M= , that is, the number of visits of the POD state 
ij
Ms ∈S�� , is given by 

1{ } { ( ) }
1

( ) : ( )
k

M
ij
M s j T i k k

k
V s I s= ≥

=

=∑ ∩�  (3.24) 

 

where 1( )T i  is the time of the first return to state i∈S .  

Definition 3. 13.  The mean number of visits of the chain to the state j∈S  

between two successive visits to state i∈S  is 

( ) : { ( ) | },ij ij
M M kV s E V s s i= =� �  (3.25) 

or 1 0
1

( ) : ( , ( ) | ).
M

ij
M k

k

V s s j T i k s i
=

= = ≥ =∑� P   

 
Definition 3. 14.  The mean recurrence time time 

i
µS�  that the chain spends at the 

PRN iS�  is 

1 0
1

: ( ) ( , ( ) | ).
i

M
ij
M k

j j k
V s s j T i k s iµ

∈ ∈ =

= = = ≥ =∑ ∑∑S
S S

� � P  (3.26) 
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Lemma 3. 2. The mean recurrence time of each PRN iS� ,
i

µS� , is equal to the mean 

recurrence time of state i∈S , iµ . 

Proof. It was shown (Lemma 3.1) that each time the Markov chain transits from 

one state i∈S  to a state j∈S  there is a corresponding transition from the PRN iS�  to 

jS� . Consequently, the number of visits of the chain to the state i∈S  is equal to the 

number of visits to the PRN iS� . Taken the expectation of this number yields the mean 

recurrence time, by Definition 3. 13. The lemma is proved. 

,  

 

Proposition 3. 1. If A, B, and C are some events and 

( | ) ( | )A B C A B∩ =P P , (3.27) 

then 

( | ) ( | ) ( | )A C B A B C B∩ = ⋅P P P  (3.28) 

Proof. 

( )( | )
( )

A B CA C B
B

∩ ∩
∩ =

PP
P

 (3.29) 

using the identity ( | ) ( ) ( )A B B A B⋅ = ∩P P P , Eq. (3.29) yields  

( | ) ( ) ( | ) ( )
( ) ( )

A C B C B A B C B
B B

∩ ⋅ ∩ ⋅ ∩
=

P P P P
P P

 by using Eq. (3.27)  

( | ) ( ) ( | ) ( | ) ( )
( ) ( )

A B C B A B C B B
B B
⋅ ∩ ⋅ ⋅

= =
P P P P P

P P
  

( | ) ( | ).A B C B= ⋅P P   

 

,  
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It remains to present the main result of the POD computational model, namely, 

that the realization of the sequences of state transitions that occurred in the Markov 

domain as infused by the PRNs determines the stationary distribution of the Markov 

chain. 

Theorem 3. 3. The POD state representation generates the stationary distribution 

ρ  of the Markov chain. Moreover, the stationary probability is given by the mean 

recurrence time of each PRN iS� , 1

iiρ µ−= S� . 

Proof. Since the chain is ergodic with irreducible states, it is guaranteed that the 

chain has a unique stationary distribution, and for each state i∈S  the stationary 

probability is equal to 1
i iρ µ−= . 

i iρ µ⋅ =     

Siiρ µ= ⋅ �  by Lemma 3. 2  

1 0 0
S 1

( , ( ) | ) ( )
M

k
j k

s j T i k s i s i
∈ =

= = ≥ = ⋅ =∑∑P P   (3.30) 

1 0
S 1

( , ( ) , )
M

k
j k

s j T i k s i
∈ =

= = ≥ =∑∑P   (3.31) 

by using the identity ( | ) ( ) ( )A B B A B⋅ = ∩P P P .  

For 1k = ,  Eq. (3.31) yields  

1 0
S

( , ( ) 1, ) 1.k
j

s j T i s i
∈

= ≥ = =∑P  
(3.32) 

For k ≥ 2 , Eq. (3.30) yields  

1 0 0
S 1

( , ( ) | ) ( )
M

k
j k

s j T i k s i s i
∈ =

= ≥ = ⋅ =∑∑P P   
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0
S 1

( ,  for 1 1, )
M

k m
j k

s j s i m k s i
∈ =

= = ≠ ≤ ≤ − =∑∑P  (3.33) 

0 0 0
S 1

( | ) (  for 1 1| ) ( )
M

k m
j k

s j s i s i m k s i s i
∈ =

= = = ⋅ ≠ ≤ ≤ − = ⋅ =∑∑P P P   

0 0
S 1

( | ) (  for 1 1, )
M

k m
j k

s j s i s i m k s i
∈ =

= = = ⋅ ≠ ≤ ≤ − =∑∑P P   

0 0
1 S

( | ) (  for 1 1, )
M

k m
k j

s j s i s i m k s i
= ∈

⎛ ⎞
= = = ⋅ ≠ ≤ ≤ − =⎜ ⎟

⎝ ⎠
∑ ∑P P   

0
1

(  for 1 1, )
M

m
k

s i m k s i
=

= ≠ ≤ ≤ − =∑P  (3.34) 

by using the identity ( ) ( ) ( ) ( )A B A B A B∪ = + − ∩P P P P , Eq. (3.34) becomes  

0
1

( ) (  for 1 1) (  for 0 1)
M

m m
k

s i s i m k s i m k
=

= + ≠ ≤ ≤ − − ≠ ≤ ≤ −∑P P P   

Since the Markov chain is homogeneous (Assumption 3. 1)  

0 0
1

{ ( ) ( ) (  for 0 3)

(  for 0 1)}

M

m
k

m

s i s i s i m k

s i m k
=

= = + ≠ + ≠ ≤ ≤ − −

≠ ≤ ≤ −

∑�P P P

P
  

{ } ( )

( )

0 0
1

( ) ( ) lim (  for 0 3)

lim (  for 0 1) ,

M

mkk

mk

s i s i s i m k

s i m k

→∞
=

→∞

= = + ≠ + ≠ ≤ ≤ − −

− ≠ ≤ ≤ −

∑ P P P

P
 (3.35) 

since the Markov states are irreducible (Assumption 3. 3)  

( )lim (  for 0 3) 0mk
s i m k

→∞
≠ ≤ ≤ − =P , and  

( )lim (  for 0 1) 0mk
s i m k

→∞
≠ ≤ ≤ − =P .  
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Eq. (3.35) becomes  

{ } { }0 0
1 1

( ) ( ) 1 1.
M M

k k
s i s i

= =

= = + ≠ = =∑ ∑P P   

We have shown that 

S 1.
ii i iρ µ ρ µ⋅ = ⋅ =�    

Consequently, the stationary distribution is given by the mean recurrence time of 
each PRN iS� ,

i
µS�  

S

1 .
i

iρ µ
=

�

 
  

,  

3.5 Concluding Remarks 

In this chapter, a computational model suited for real-time sequential decision-

making under uncertainty was implemented. The evolution of the system was modeled as 

a Markov chain. A state-space representation was constructed through a learning 

mechanism and used in solving the state estimation and system identification problem. 

The model accumulates gradually enhanced knowledge of system response as it 

transitions from one state to another, in conjunction with actions taken at each state. As 

the system interacts with its environment, the state representation of the model realizes 

the sequences of state transitions that occurred in the Markov domain, as infused in the 

Predictive Representation Nodes (PRNs). It was shown that this realization determines 

the stationary distribution of the Markov chain (Theorem 3. 3). Utilizing this model, a 

lookahead control algorithm can be employed simultaneously to address the stochastic 

control problem in real time. This problem is addressed in Chapter 4. 
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CHAPTER 4 

REAL-TIME STOCHASTIC CONTROL 

This chapter presents the algorithmic implementation that provides the decision-

making mechanism suitable for real-time implementation. The algorithm solves the 

stochastic control sub-problem by utilizing accumulated data acquired over the learning 

process of the POD model developed in Chapter 3. A lookahead control algorithm is 

proposed that assigns at each state the control actions that minimize the transition cost of 

the next two decision epochs. The principle of the algorithm is founded on the theory of 

stochastic control problems known as games against nature. The efficiency of the POD 

model and the lookahead algorithm is demonstrated on four applications: (a) the single 

cart-pole balancing problem; (b) a vehicle cruise-control problem; (c) a gasoline engine 

that learns the optimal spark advance over aggressive acceleration profiles; and (d) a 

diesel engine that learns the optimal injection timing in a segment of a driving cycle. 

4.1 The Predictive Optimal Stochastic Control Algorithm 

The POD state representation attempts to provide an efficient process in realizing 

the state transitions that occurred in the Markov domain. The different sequences of the 

state transitions are captured by the POD states and evaluated through the expected 

evaluation functions. Consequently, the lowest value of the expected evaluation function 

at each PRN essentially estimates the Markov state transitions that will occur. As the 

process is stochastic, however, it is still necessary for the decision maker to build a 
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decision-making mechanism for making decisions (selecting control actions). The 

Predictive Optimal Stochastic Control Algorithm (POSCA), proposed in this dissertation, 

aims to provide this mechanism. 

The principle of POSCA is founded on the theory of stochastic control problems 

with unknown disturbance distribution, also known as games against nature. The 

decision-making mechanism is modeled as a stochastic game between the decision maker 

(controller) and an “opponent” (environment). The solution of this game is derived 

utilizing the mini-max theorem. Each POD state 1
ij
k is + ∈S��  corresponds to a completed 

game that started at the Markov state ks i= ∈S  and ended up at 1ks j+ = ∈S . At state 

ks i= , the decision maker has a set of strategies (control actions) ( ) ( )k ks A sµ ∈  available 

to play. Similarly, the environment’s set of strategies are the Markov 

states {1,2,..., },  N N= ∈S ` . During the learning process of the POD model, this game 

has been played insofar as the decision maker forms a belief about the environment’s 

behavior by fully exploring all available strategies, ( ) ( )k ks A sµ ∈ . This property arises 

when the state representation converges to the stationary distribution of the Markov 

chain. Consequently, at state ks i= ∈S , the decision maker can select those control 

actions by means of the PRN expected evaluation functions, 1( , ( ))i ij
PRN k kR s sµ+� . However, 

to handle the uncertainty of this prediction, the decision maker seeks a policy *π ∈Π , 

which guarantees the best performance in the worst possible situation, namely, 

{ }
1

*
1

( ) ( )
( ) arg min max ( , ( )) .

kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

�  (4.1) 

 

This approach is especially appealing for real-time implementation when the time 

between decision epochs is small. In this situation, the controller needs to select control 

actions quickly and there is not enough time to search for an optimal policy for a 

relatively distant future.  
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The implementation of the POD model and POSCA is illustrated in Figure 4.1. At 

each decision epoch k , the POD model observes the system’s state ks i= ∈S  and 

control action ( )k ka A s∈  selected from the feasible action set ( )kA s , which is a subset of 

some control space A . At the next decision epoch, the system transits to another state 

1ks j+ = ∈S  imposed by the transition probability ( )ij ⋅P , and receives a numerical cost  

( )ijR ⋅ . The POD state representation realizes the sequences of state transitions ( )ij ⋅P  that 

occurred in the Markov domain and the associated costs ( )ijR ⋅ . When the POD model 

converges to the stationary distribution, POSCA is employed to derive the control policy 

π ∗  by means of Eq. (4.1). 

4.1.1 Performance Bound of POSCA 

This section evaluates the performance bound of POSCA in terms of the 

accumulated cost over the decision epochs. The following Lemma aims to provide a 

useful step toward presenting the main result (Theorem 4. 1). 

Lemma 4. 1 [1]. Let : [ , ]f → −∞ ∞S  and : [ , ]g × → −∞ ∞S A  be two functions 

such that 

( )min ( , ) ,
a

g i a i
∈

> −∞ ∀ ∈
A

S . (4.2) 

Then we have 

( )
min max[ ( ) ( , ( ))] max[ ( ) min ( , )],

i ai i
f i g i i f i g i a

µ
µ

∈ ∈∈ ∈
+ = +

A AS S
 

 

where :µ →S A , such that ( )a iµ= , and ,S A  are some sets.  

 

Proof. The proof is provided by Bertsekas [1]. 

,  
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Figure 4.1 − Implementation of POD model and POSCA. 

Assumption 4. 1. The accumulated cost incurred at each decision epoch k  is 

bounded, that is,  0δ∃ >  such that ( )k kJ s δ< . 

Theorem 4. 1. The accumulated cost ( )k kJ s�  incurred by the two step lookahead 

policy 0 1 1{ , ,..., }Mπ µ µ µ −=  of POSCA  

{ }
1 1 21

1 2 1 1( )( ) ( )
( ) arg min max ( | , ) min ( | , ) ,

k k kkk k k

k k k k k k ka A s sss A s
s R s s E R s s

µ
π α α

+ + ++
+ + + +∈ ∈∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
 (4.3) 
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is bounded by the accumulated cost ( )k kJ s  incurred by the minimax control policy 

0 1 1{ , ,..., }Mπ µ µ µ −=  of Dynamic Programming (DP), namely,  

[ ]
1

1 1 1
( ) ( )

arg min max ( | , ) ( )
kk k k

k k k k kss A s
R s s J s

µ
π α

+
+ + +∈∈

= +
S

. 
(4.4) 

 

with probability 1. 

 

Proof. Suppose that the chain starts at a state 0 ,s i i= ∈S  at time 0k =  and ends 

up at k M= . We consider the problem of finding a policy 0 1 1{ , ,..., }Mπ µ µ µ −=  with 

( )k ksµ ∈A  for all ks ∈S  and k  that minimizes the cost function 

1

2

1 1 1
0

( ) max ( | , ) ( | , )
k

M

k M M M M k k k ks k

J s R s s a R s s aπ

+

−

− − +∈
=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑S

. (4.5) 

 

The DP algorithm for this problem takes the following form starting from the tail 

sup-problem 

[ ]
1

1( ) ( )
( ) min max ( | , ) ( )

M M M M
M M M M M M M Ms A s s

J s R s s a R s
µ +

+∈ ∈
= =

S
, and 

(4.6) 

[ ]
1

1 1 1( ) ( )
( ) min max ( | , ) ( ) ,

k k k k
k k k k k k ks A s s

J s R s s J s
µ

α
+

+ + +∈ ∈
= +

S
 

(4.7) 

where ( )M MR s  is the cost of the terminal decision epoch.  

 

Following the steps of the DP algorithm proposed by Bertsekas [1], the optimal 

accumulated cost 0( )J sπ∗

 starting from the last decision epoch and moving backwards is  

0 0 0 1 1 1

0

0 ( ) ( ) ( ) ( )

2

1 1 1
0

( ) min ... min

                 max...max ( | , ) ( | , ) .

M M M

M

s A s s A s

M

M M M M k k k ks s k

J s

R s s a R s s a

π

µ µ

∗

− − −∈ ∈

−

− − +∈ ∈
=

=

⎡ ⎤+⎢ ⎥⎣ ⎦
∑S S

 (4.8) 
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By applying Lemma 4. 1, we can interchange the min over 1µΜ−  and the max 

over 0 2,..., Ms s − . The required assumption of Lemma 4. 1 (Eq. (4.2)) is implied 

by Assumption 4. 1. Eq. (4.8) yields 

 

[ ]

0 0 0 2 2 2

0 2 1

0 ( ) ( ) ( ) ( )

3

1 1 1 2 2
0

( ) min ... min

max... max ( | , ) max ( | , ) ( )

M M M

M M

s A s s A s

M

k k k k M M M M M Ms s sk

J s

R s s a R s s a J s

π

µ µ

∗

− − −

− −

∈ ∈

−

+ − − − −∈ ∈ ∈
=

=

⎡ ⎤⎡ ⎤
+ +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑S S S

 (4.9) 

0 0 0 2 2 2 0 2

3

1 1 1( ) ( ) ( ) ( ) 0
min ... min max... max ( | , ) ( ) .

M M M M

M

k k k k M Ms A s s A s s s k
R s s a J s

µ µ − − − −

−

+ − −∈ ∈ ∈ ∈
=

⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑S S
  

By continuing backwards in similar way we obtain  

0 0 0( ) ( )J s J sπ∗

= . (4.10) 

 

Consequently, an optimal policy for the minimax problem can be constructed by 

minimizing the RHS of Eq. (4.5).  

The cost incurred by policy 0 1 1{ , ,..., }Mπ µ µ µ −=  of POSCA at each decision 

epoch k  is 

( )M MJ s =  (4.11) 

{ }
1 1 21

1 1 2 1 1( ) ( ) ( )

1

min max ( | , ) min ( | , )

( | , ) ( ),
M M M M M MM

M M M M M M M Ms A s a A s ss

M M M M M M

R s s E R s s

R s s a R s
µ

α α
+ + ++

+ + + + +∈ ∈ ∈∈

+

⎡ ⎤= +⎢ ⎥⎣ ⎦
= =

SS  (4.12) 

since the terminal decision epoch is at k M= , and thus, 

1 2 1 1( | , ) 0M M M MR s s α+ + + + = . 
 

1 1( )M MJ s− − =   
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{ }
1 1 1 1

1 1 1 1( ) ( ) ( )
min max ( | , ) min ( | , ) ,

M M M M M MM
M M M M M M M Ms A s a A s ss

R s s E R s s
µ

α α
− − − +

− − − +∈ ∈ ∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
 (4.13) 

2 2( )M MJ s− − =   

{ }
2 2 2

1 11

( ) ( )

2 1 2 2 1 1 1( )

min

max ( | , ) min ( | , ) ,

M M M

M M MM

s A s

M M M M M M M Ma A s ss
R s s E R s s

µ

α α

− − −

− −−

∈

− − − − − − −∈ ∈∈

=

⎡ ⎤+⎢ ⎥⎣ ⎦SS

 (4.14) 

…  

{ }
0 0 0 1 1 21

0 0 0 1 0 0 1 2 1 1( ) ( ) ( )
( ) min max ( | , ) min ( | , )

s A s a A s ss
J s R s s E R s s

µ
α α

∈ ∈ ∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
. (4.15) 

 

Performing the same task as we did with DP algorithm by starting from the last 

epoch of the decision-making process and moving backwards, the accumulated cost 

incurred by POSCA ( )k kJ s�  is  

( )M MJ s =�   

{ }
1 1 21

1 1 2 1 1( ) ( ) ( )

1

min max ( | , ) min ( | , )

( | , ) ( ) ( ),
M M M M M MM

M M M M M M M Ms A s a A s ss

M M M M M M M M

R s s E R s s

R s s a R s J s
µ

α α
+ + ++

+ + + + +∈ ∈ ∈∈

+

⎡ ⎤= +⎢ ⎥⎣ ⎦
= = =

SS  (4.16) 

1 1( )M MJ s− − =�   

{ }
1 1 1

1

( ) ( )

1 1 1 1( )

min

max ( | , ) min ( | , ) ( )

M M M

M M MM

s A s

M M M M M M M M M Ma A s ss
R s s E R s s J s

µ

α α

− − −

+

∈

− − − +∈ ∈∈

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦SS
�

 (4.17) 

[ ]
1 1 1

1 1 1( ) ( )
min max ( | , ) ( )

M M M M
M M M M M Ms A s s

R s s J s
µ

α
− − −

− − −∈ ∈
= +

S
� ,  

(4.18) 

since 1( | , ) 0M M M MR s s α+ = .  
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1
1 1 1 1 1( ) ( )
( ) min max ( | , ) ( ) ( ),

M M M M
M M M M M M M M Ms A s s

J s R s s J s J s
µ

α
+

− − + − −∈ ∈
⎡ ⎤= + =⎣ ⎦S

� �  (4.19) 

since ( )M MJ s�  is a constant quantity.  

2 2( )M MJ s− − =�   

{ }
2 2 2

1 11

( ) ( )

2 1 2 2 1 1 1( )

1 1

min

max ( | , ) min ( | , )
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M M M
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M M M M M M M Ma A s ss
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However,  

{ }
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2 2 2

1 11

2 2 2 1
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2 1 2 2 1 1( )
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α α
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∈
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S

 (4.21) 

since the LHS of the inequality will return a cost 2 ( | , )MR − ⋅ ⋅ ⋅ which is not only 

maximum over when the chain transits from 2Ms −  to 1Ms −  but also minimum 

when the chain transits from 1Ms −  to Ms . So, the LHS can be at most equal to 

the cost which is maximum over the transition from 2Ms −  to 1Ms − . 

Consequently, comparing the accumulated cost of POSCA in Eq. (4.20) with 

the one resulted from the DP at the same decision epoch, namely, 

 

[ ]
2 2 2 1

2 2 1 1 2 2 1 1( ) ( )
( ) min max ( | , ) ( )

M M M M
M M M M M M M Ms A s s

J s R s s a J s
µ − − − −

− − − − − − − −∈ ∈
= +

S
, 

(4.22) 

we conclude that  

2 2 2 2( ) ( )M M M MJ s J s− − − −≤�  (4.23) 
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By continuing backward with similar arguments we have  

0 0 0 0 0( ) ( ) ( ).J s J s J sπ∗

≤ =�  (4.24) 

 

Consequently, the accumulated cost resulting from the control policy 

0 1 1{ , ,..., }Mπ µ µ µ −=  of POSCA is bounded by the accumulated cost of the optimal 

minimax control policy of DP with probability 1.  

,  

 

4.2 Application: Single Cart-Pole Balancing Problem 

The overall performance of the POD model and POSCA is evaluated on the basis 

of its application to the inverted pendulum balancing problem. The inverted pendulum 

involves a pendulum hinged to the top of a wheeled cart as illustrated in Figure 4.2. The 

objective of POD is to balance the pendulum having no prior knowledge about the system 

dynamics, utilizing only real-time measurements.  

Realizing the balance control policy of a single inverted pendulum without a 

priori knowledge of the system’s model has been extensively reported in the literature for 

the evaluation of learning algorithms. Anderson [2] implemented a neural network 

reinforcement-learning method to generate successful action sequences. Two neural 

networks having a similar structure were employed to learn two functions: (a) an action 

function mapping the current state into control actions, and (b) an evaluation action 

mapping the current state into an evaluation of that state.  These two networks were 

trained utilizing reinforcement learning by evaluating the performance of the network and 

compared to real-time measurements. Williams et al. [3] proposed a learning architecture 

for training a neural network controller to provide the appropriate control force to balance 
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the inverted pendulum. One network for the identification of the plant dynamics and one 

for the controller were employed. Zhidong  et al. [4] implemented a  “neural-fuzzy 

BOXES” control system by neural networks and utilized reinforcement learning for the 

training. Jeen-Shing et al. [5] proposed a defuzzification method incorporating a genetic 

algorithm to learn the defuzzification factors. Mustapha et al. [6] developed an actor-

critic reinforcement learning algorithm represented by two adaptive neural-fuzzy 

systems. Si et al. [7] proposed a generic on-line learning control system similar to 

Anderson’s utilizing neural networks and evaluated it through its application to both a 

single and double cart-pole balancing problem. The system utilizes two neural networks, 

and employs the action- dependent heuristic dynamic programming to adapt the weights 

of the networks.  
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Figure 4.2 − The inverted pendulum. 

In the implementation of the POD on the single inverted pendulum presented 

here, two major variations are considered: (a) a single look-up table-based representation 

is employed for the controller to develop the mapping from the system’s Markov states to 

optimal actions, and (b) two of the system’s state variables are selected to represent the 

Markov state. The latter introduces uncertainty and thus a conditional probability 
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distribution associating the state transitions with respect to the actions taken. 

Consequently, the POD model is evaluated in deriving the optimal policy (balance 

control policy) in a sequential decision making problem under uncertainty. 
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Figure 4.3 − Free body diagram of the system. 

The governing equations, derived from the free body diagram of the system, 

shown in Figure 4.3, are: 

2( ) cos sin ,M m x bx mL mL Uϕ ϕ ϕ ϕ+ + + − =�� ��� �  (4.25) 

2cos ( ) sin 0,mLx I mL mgLϕ ϕ ϕ+ + + =����   

2
2

N secwhere  0.5 kg,  0.2 kg,  0.1 ,
m

m           0.006 kg m ,  9.81 ,and  0.3 m.
sec

M m b

I g L

= = =

= = =
  

 

The goal of the learning controller is to realize in real time the force, U, of a fixed 

magnitude to be applied either to the right or the left direction so that the pendulum 

stands balanced when released from any angle, φ, between 3° and -3°. The system is 

simulated by numerically solving the nonlinear differential equations (4.25) employing 
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the explicit Runge-Kutta method with a time step of τ =0.02 sec. The simulation is 

conducted by observing the system’s states and executing actions (control force U) with a 

sample rate T =0.02 sec (50 Hz). This sample rate defines a sequence of decision-making 

epochs, 0,1, 2,..., ,  k M M= ∈N . 

The system is fully specified by four state variables: (a) the position of the cart on 

the track, ( )x t ; (b) the cart velocity, ( )x t� ; (c) the  pendulum’s  angle  with  respect  to  the 

vertical position, ( )tϕ ; and (d) the angular velocity, ( )tϕ� . However, to incorporate 

uncertainty, the Markov states are selected to be only the pair of the pendulum’s angle 

and angular velocity, namely, the finite state space S is defined as 

{ | ( , )}.i i ϕ ϕ= =S �  (4.26) 

 

Consequently, at state  ks i= ∈S   and executing a control force value, kU , the 

system will end up at state 1ks j+ = ∈S  with a conditional probability 

1( | , )k k kp s j s i U+ = = . The control force, kU , selects values from the finite set A , 

defined as 

( ) [ 3 ,3 ], 0, ,kA s i N N k i= = = − ∀ ≥ ∀ ∈A S  (4.27) 

where 1,2,..., ,  | | .i N N= = S   
 

Each state of the POD state space S�  represents a Markov state transition from 

ks i= ∈S  to 1ks j+ = ∈S  for all 0k ≥ , that is  

1 1 1 1( ) ( ) 1
: | = , ( | , ) 1, | | .

k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i U N
µ+ + + +∈

=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � �  (4.28) 

 

The decision-making process occurs at each of a sequence of epochs 

0,1,2,..., ,  k M M= ∈` . At each decision epoch k , the learning controller observes the 
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system’s state ks i= ∈S , and executes a control force value ( )k kU A s∈ . At the next 

decision epoch, the system transits to another state 1ks j+ = ∈S  imposed by the 

conditional probability 1( | , )k k kp s j s i U+ = = , and receives a numerical cost  

1( | , )k k kR s j s i U+ = =  (the pendulum’s angle φ). The control policy 0 1 1{ , ,..., },Mπ µ µ µ −=  

where the functions kµ  specify the control ( )k kU sµ= , is derived by means of the 

following equation 

{ }
1

1
( ) ( )

( ) arg min max ( , ( )) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

�  (4.29) 

where  

{1 1 1

2 1

( , ( )) ( | , ( )) ( | , ( ))

                                                                                ( | ( ))},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (4.30) 

where  

1

2 1

2 1 1 2 1 1( ) 1

( | ( )) :

: min ( | , ( )) ( | , ( )),
k

jm
j k k

N

k k k k k ks j

R s s

p s m s j s R s m s j s
µ

µ

µ µ
+

+ +

+ + + + + +∈
=

=

= = = ⋅ = =∑A

�
 (4.31) 

2 , , , ( ) ( ), and | | .jm
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��   

 

The inverted pendulum is simulated repeatedly for different initial angles, φ, 

between 3° and -3° utilizing the POD learning method. The simulation lasts for 50 sec 

and each complete simulation defines one iteration. If at any instant during the 

simulation, the pendulum’s angle, φ, becomes greater than 3° or less than -3°, this 

constitutes a failure, denoted by stating that there was one iteration associated with a 

failure. If, however, no failure occurs during the simulation, this is denoted by stating that 

there was one iteration associated with no failure. 
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4.2.1 Simulation Results 

After completing the learning process, the controller employing the POD learning 

method realizes the balance control policy of the pendulum, as illustrated in Figure 4.4. 

In some instances, however, the system’s response demonstrates some overshoots or 

delays during the transient period, shown in Figure 4.5. This can be handled by a denser 

parameterization of the state-space or adding a penalty in long transient responses. The 

efficiency of the POD learning method in deriving the optimal balance control policy that 

stabilizes the system is illustrated in Figure 4.6. It is noted that after POD realizes the 

optimal policy in 749 failures and, afterwards, as the number of iterations continues, no 

further failures occur. 
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Figure 4.4 − Simulation of the system after learning the balance control policy with POD 

for different initial conditions. 
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Figure 4.5 − Simulation of the system after learning the balance control policy with POD 

for different initial conditions (zoom in). 
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Figure 4.6 − Number of failures until POD derives the balance control policy. 
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4.3 Application: Autonomous Vehicle Cruise Control 

In this section, the overall performance of the POD model and POSCA is 

demonstrated on a vehicle cruise-control problem. Cruise control automatically regulates 

the vehicle’s longitudinal velocity by suitably adjusting the gas pedal position. A vehicle 

cruise-control system is activated by the driver who desires to maintain a constant speed 

in long highway driving. The driver activates the cruise controller while driving at a 

particular speed, which is then recorded as the desired or set-point speed to be maintained 

by the controller. The main goal in designing a cruise control algorithm is to maintain 

vehicle speed smoothly but accurately, even under large variation of plant parameters 

(e.g., the vehicle’s varying mass in terms of the number of passengers) and road grade. In 

the case of passenger cars, however, vehicle mass may change noticeably but is within a 

small range. Therefore, powertrain behavior might not vary significantly.  

The objective of the POD learning cruise controller is to realize in real time the 

control policy (gas pedal position) that maintains the vehicle speed as set by the driver 

under a great range of different road grades. Implementing learning vehicle cruise 

controllers has been addressed previously, employing learning and active control 

approaches. Zhang et al. [8] implemented learning control based on pattern recognition to 

regulate in real time the parameters of a PID cruise controller. Shahdi et al. [9] proposed 

an active learning method to extract the driver's behavior and to derive control rules for a 

cruise control system. However, no attempt has been reported in implementing a learning 

automotive vehicle cruise controller utilizing the principle of reinforcement learning, i.e., 

enabling the controller to improve its performance over time by learning from its own 

failures through a reinforcement signal from the external environment, and thus 

attempting to improve future performance. 

The software package enDYNA by TESIS [10], suitable for real-time simulation 

of internal combustion engines, is used to evaluate the performance of the POD learning 
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cruise controller. The software simulates the longitudinal vehicle dynamics with a highly 

variable drivetrain including the modules of starter, brake, clutch, converter, and 

transmission. In the driving mode the engine is operated by means of the usual vehicle 

control elements just as a driver would do. In addition, a mechanical parking lock and the 

uphill grade can be set. The driver model is designed to operate the vehicle at given speed 

profiles (driving cycles). It actuates the starter, accelerator, clutch and brake pedals 

according to the profile specification, and also shifts gears. In this example, an existing 

vehicle model is selected representing a midsize passenger car carrying a 1.9-L 

turbocharged diesel engine. 

When activated, the learning cruise controller bypasses the driver model and takes 

over the vehicle’s cruising. The Markov states are defined to be the pair of the 

transmission gear and the difference between the desired and actual vehicle speed, ∆V, 

namely, 

{ | ( , )}.i i gear V= = ∆S  (4.32) 
 

The actions, a , correspond to the gas pedal position and can take values from the 

feasible set A, defined as 

( ) [0,0.7],kA s i= = =A  (4.33) 

where 1,2,..., ,  | | .i N N= = S   
 

To incorporate uncertainty the vehicle is simulated in a great range of different 

road grades from 0° to 10°. Each state of the POD state space represents a Markov state 

transition from ks i= ∈S  to 1ks j+ = ∈S  for all 0k ≥ , that is  

1 1 1 1( ) ( ) 1
: | = , ( | , ) 1, | | .

k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i a N
µ+ + + +∈

=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � �  (4.34) 
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The decision-making process occurs at each of a sequence of epochs 

0,1,2,..., ,  k M M= ∈` . At each decision epoch k , the cruise controller observes the 

system’s state ks i= ∈S , and selects a pedal position ( )ka A s∈ . At the next decision 

epoch, the system transits to another state 1ks j+ = ∈S  imposed by the conditional 

probability 1( | , )k k kp s j s i a+ = = , and receives a numerical cost 1( | , )k k kR s j s i a+ = =  

(difference between the desired and actual vehicle speed). The control policy 

0 1 1{ , ,..., },Mπ µ µ µ −=  where the functions kµ  specify the pedal position ( )k ka sµ= , is 

derived by means of the following equation 

{ }
1

1
( ) ( )

( ) arg min max ( , ( )) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

�  (4.35) 

where  
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2 1

( , ( )) ( | , ( )) ( | , ( ))
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PRN k k k k k k k k
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R s s
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µ
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2 , , , ( ) ( ), and | | .jm
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��   

4.3.1 Simulation Results 

After completing the learning process for each road grade, the POD cruise 

controller realizes the control policy (gas pedal position) to maintain the vehicle’s speed 

at the desired set point. The vehicle model was initiated from zero speed. The driver 

model, following the driving cycle, accelerated the vehicle up to 40 mph and at 10 sec 
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activated the POD cruise controller. The desired and actual vehicle speeds for three 

different road grades as well as the gas pedal rates of the POD controller are illustrated in 

Figure 4.7. The small discrepancy between the desired and actual vehicle speed before 

the cruise controller activation is due to the steady-state error of the driver’s model. 

However, since the desired driving cycle set the vehicle’s speed at 40 mph, activation of 

the POD cruise controller helps to correct this error and, afterwards, maintains the 

vehicle’s actual speed at the set point. The accelerator pedal position is at different values 

because, in the case of road grades 2º and 6º, the selected transmission gear is 2, shown in 

Figure 4.8, while in case of road grade 10º the selected transmission gear is 1. So, at 

different selected gears, the accelerator pedal position varies to maintain constant vehicle 

speed. In Figure 4.9, the performance of the POD cruise controller is evaluated on a 

severe driving scenario where the road grade changes from 0° to 10°, while the POD 

cruise controller is active. In this scenario, the POD is activated again at 10 sec when the 

road grade is 0°, and at 14 sec the road grade becomes 10°. The engine speed and the 

selected transmission gear for this scenario are shown in Figure 4.10. While the vehicle is 

cruising at constant speed and the road grade changes from 0º to 10º, the vehicle’s speed 

starts to decrease after some time. Once this occurs, the self-learning cruise controller 

senses the discrepancy between the desired and actual vehicle speed and commands the 

accelerator pedal so as to correct the error. Consequently, there is a small time delay in 

the acceleration pedal command, shown in Figure 4.9, which depends on vehicle inertia. 
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Figure 4.7 − Vehicle speed and accelerator pedal rate for different road grades by self-

learning cruise control with POD. 
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Figure 4.8 − Engine speed and transmission gear selection for different road grades by 

self-learning cruise control with POD. 
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Figure 4.9 − Vehicle speed and accelerator pedal rate for a road grade increase from 0° to 

10°. 
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from 0° to 10°. 
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4.4 Real-Time, Self-Learning Optimization of Engine Calibration 

In this section, the POD model and POSCA are applied to make the engine an 

autonomous intelligent system that can learn the values of the controllable variables in 

real time for each engine operating point transition that optimize specified engine 

performance criteria, e.g., engine power, fuel economy, or pollutant emissions. The 

learning process transpires while the engine is running the vehicle and interacting with 

the driver. Taken in conjunction with assigning values of the controllable variables from 

the feasible action space, A, this interaction portrays the progressive enhancement of the 

controller’s “knowledge” of the driver’s driving style with respect to the controllable 

variables. This property arises due to the learning process required by the POD state 

representation to capture the stationary distribution of the engine operation with respect 

to the driver’s driving style. More precisely, at each of a sequence of decision epochs 

0,1,2,...,k M= , the driver introduces a state ks i= ∈S  (engine operating point) to the 

engine’s self-learning controller, and on that basis the controller selects an action, 

( )k kA sα ∈  (values of the controllable variables). This state arises as a result of the 

driver’s driving style corresponding to particular engine operating points. One decision 

epoch later, as a consequence of its action, the engine receives a numerical cost, 1kR + ∈\ , 

and transits to a new state 1 ,ks j j+ = ∈S  as illustrated in Figure 4.11. 

The POD state-space representation S� , is implemented by a mapping H  from 

the Cartesian product of the finite state space and action space of the Markov chain  

,× × →H : S A S S�  (4.38) 

 

where {1,2,..., },  N N= ∈S `  denotes the engine operating domain, and  

( ),
k k ks A s s i∈= ∀ = ∈SA S∪  stands for the values of the controllable variables. Each 

state of the POD domain represents a Markov state transition from ks i= ∈S  to 

1ks j+ = ∈S  for all 0k ≥ , that is  
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Figure 4.11 − The learning process during the interaction between the engine and the 
driver. 

At each decision epoch, the controller implements a mapping from the Cartesian 

product of the state space and action space to the set of real numbers, × × →S A S \ , by 

means of the costs that it receives 1( | , )k k kR s j s i α+ = = . Similarly, another mapping 

from the Cartesian product of the state space and action space to the closed set [0,1] is 

executed, [0,1]× × →S A S , that provides the realization of the engine operating point 

transitions 1( | , )k k kp s j s i α+ = = . The implementation of these two mappings aims 

POSCA to compute the optimal control policy π  of the self-learning controller 

{ }
1

1
( ) ( )

( ) arg min max ( , ( )) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

�  (4.40) 

where  
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4.5 Application: Self-Learning Spark Ignition in a Gasoline Engine 

An example of real-time, self-learning optimization of the calibration with respect 

to spark ignition timing in a spark ignition engine is presented in this section. In spark 

ignition engines the fuel and air mixture is prepared in advance before it is ignited by the 

spark discharge. The major objectives for the spark ignition are to initiate a stable 

combustion and to ignite the air-fuel mixture at the crank angle resulting in maximum 

efficiency, while fulfilling emissions standards and preventing the engine from knocking. 

Simultaneous achievement of the aforementioned objectives is sometimes inconsistent; 

for instance, at high engine loads the ignition timing for maximum efficiency has to be 

abandoned in favor of prevention of engine destruction by way of engine knock. Two 

essential parameters are controlled with the spark ignition: ignition energy and ignition 

timing. Control of ignition energy is important for assuring combustion initiation, but the 

focus here is on the spark timing that maximizes engine efficiency. Ignition timing 

influences nearly all engine outputs and is essential for efficiency, drivability, and 

emissions. The optimum spark ignition timing generating the maximum engine brake 

torque is defined as Maximum Brake Torque (MBT) timing [11]. Any ignition timing 
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that deviates from MBT lowers the engine’s output torque as illustrated in Figure 4.12. A 

useful parameter for evaluating fuel consumption of an engine is the Brake-Specific Fuel 

Consumption (BSFC), defined as the fuel flow rate per unit power output. This parameter 

evaluates how efficiently an engine is utilizing the fuel supplied to produce work 

( / )
( / ) ,

( )
fm g h

bsfc g kW h
P kW

⋅ =
�

 (4.43) 

 

where fm�  is the fuel mass flow rate per unit time and P is engine’s power output. 

Continuous engine operation at MBT ensures optimum fuel economy with respect to the 

spark ignition timing.  

For a successful engine calibration with respect to spark ignition timing, the 

engine should realize the MBT timing for each engine operating point (steady-state and 

transient) dictated by the driving style of a driver. Consequently, by achieving MBT 

timing for all steady-state and transient operating points an overall improvement of the 

BSFC is expected. Aspects of preventing knocking are not considered in this example; 

however, they can be easily incorporated by defining the spark ignition space to include 

the maximum allowable values. 

The software package enDYNA is employed for the implementation or real-time, 

self-learning optimization of engine calibration. The software utilizes thermodynamic 

models of the gas path and is well suited for testing and development of Electronic 

Control Units (ECUs). In the example, a four-cylinder gasoline engine is used from the 

enDYNA model database. The software’s static correlation involving spark ignition 

timing and engine operating points is bypassed to incorporate the self-learning controller. 

This correlation is designated by the baseline calibration that enDYNA model is 

accompanied by, and is included in, the engine’s ECU.  
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The control actions, ka , correspond to the spark ignition timing that can take 

values from the feasible set A, defined as 

( ) [5 ,35 ],kA s i= = = ° °A  (4.44) 

where 1,2,..., ,  | | .i N N= = S   

 

The engine model is run repeatedly over the same driving style represented by the 

pedal position. Every run over this driving style constitutes one complete simulation. To 

evaluate the efficiency of our approach in both steady-state and transient engine 

operation, the pedal position rate is chosen to represent an aggressive acceleration, as 

illustrated in Figure 4.13.  
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Figure 4.12 − Effect of spark ignition timing on the engine brake torque at constant 

engine speed. 
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Figure 4.13 − Gas-pedal position rate representing a driver’s driving style. 

4.5.1 Simulation Results 

After completing the learning process, the self-learning controller specified the 

optimal policy in terms of the spark ignition timing, as shown in Figure 4.14, and 

compared with the spark ignition timing designated by the baseline calibration of the 

enDYNA model. The optimal policy resulted in higher engine brake torque compared to 

the baseline calibration as shown in Figure 4.15 and Figure 4.16. This improvement 

indicates that the engine with self-learning calibration was able to operate closer to MBT 

timing. Having the engine operate at MBT timing resulted in an overall minimization of 

the BSFC, illustrated in Figure 4.17. Figure 4.18 compares the velocity of the two 

vehicles, one carrying the engine with the baseline calibration and the other with the self-

calibrated one. 

The two vehicles were simulated for the same driving style, namely, the same 

pedal-position rate. The vehicle carrying the engine with the self-learning calibration 

demonstrated higher velocity, since the engine produced higher brake torque for the same 
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gas-pedal position rate. Consequently, if the driver wishes to follow a specific vehicle’s 

speed profile, this can now be achieved by stepping on the gas-pedal more lightly than 

required in the engine with the baseline calibration and, therefore, directly enabling in 

additional benefits in fuel economy.  
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Figure 4.14 − Spark ignition timing over the driving style. 
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Figure 4.15 − Engine brake torque. 
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Figure 4.16 − Engine brake torque (zoom-in). 
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Figure 4.17 − BSFC comparison between the baseline and self-learning calibration. 
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Figure 4.18 − Velocity of the two vehicles carrying the engine with baseline and self-

learning calibration. 
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To evaluate the efficiency of the algorithm in learning, the vehicles were 

simulated for three additional acceleration profiles, shown in Figure 4.19. The algorithm 

specified successfully the optimal policy in terms of the spark ignition timing minimizing 

the BSFC compared to the baseline calibration, as illustrated in Figures 4.20 - 4.22. 
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Figure 4.19 − Three different acceleration profiles. 
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Figure 4.20 − BSFC comparison between the baseline and self-learning calibration 

(Acceleration profile A). 
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Figure 4.21 − BSFC comparison between the baseline and self-learning calibration 

(Acceleration profile B). 
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Figure 4.22 − BSFC comparison between the baseline and self-learning calibration 

(Acceleration profile C). 

4.6 Application: Self-Learning Injection Timing in a Diesel engine 

The objective of this study is to evaluate the efficiency of the self-learning 

controller in deriving the optimal control policy (injection timing) during transient engine 

operation. A desired speed profile, shown in Figure 4.23, including an acceleration and 

deceleration segment designated by a hypothetical driver, was selected. The model with 

the baseline ECU and the model with the self-learning controller are run repeatedly over 

the same profile. The first model incorporates a static calibration map for injection timing 

corresponding to steady-state operating points. Before initiating the first simulation, the 

model with the self-learning controller has no knowledge regarding the particular 

transient engine operation and injection timing associated with it.  

The control actions, ka , correspond to the injection timing that can take values 

from the feasible set A, defined as 

( ) [ 2 ,18 ],kA s i= = = − ° °A  (4.45) 
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where 1,2,..., ,  | | .i N N= = S   
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Figure 4.23 − Desired speed profile. 

4.6.1 Simulation Results 

After completing the exploration phase, the self-learning controller derived the 

values of injection timing, shown in Figure 4.24. The significant variation of injection 

timing is attributed to the engine behavior during the transient period before steady-state 

operation occurs. During this period, the maximum brake torque (MBT), and thus, brake-

specific fuel consumption and emissions, are varied for the same engine operating point 

[12]. These values, corresponding to a particular operating point, highly depend on the 

previous operating points from which they have been arrived. Consequently, start of 

injection at steady-state operating points is not optimal for the same points when 

transiting one from another.  

The injection timing computed by the self-learning controller maximized engine 

torque during transient operation, and the desired speed profile was achieved requiring 
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lower pedal position rates for the same engine speed as illustrated in Figure 4.25 and 

Figure 4.26. The implication is that injection timing altered the brake mean effective 

pressure (BMEP) for this range of engine speed, and engine operation was modified as 

shown in Figure 4.27. Lower pedal position rates required less injected fuel mass into the 

cylinders since injection duration was reduced (Figure 4.28), resulting in minimization of 

fuel consumption as illustrated in Figure 4.29.  

 

 

0 5 10 15 20 25

-2

0

2

4

6

8

10

12

14

16

18

Time [sec]

In
je

ct
io

n 
Ti

m
in

g 
B

TD
C

 [d
eg

]

 

 

Model with Baseline ECU
Model with Self-Learning Controller

 
Figure 4.24 − Injection timing. 
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Figure 4.25 − Pedal position rate. 
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Figure 4.26 − Engine speed. 
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Figure 4.27 − Engine operating point transitions. 
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Figure 4.28 − Injection duration. 
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Figure 4.29 − Fuel consumption. 

 

While the fuel mass injected into the cylinders is reduced, the mass air flow was 

kept almost constant (Figure 4.30) providing excess of air. These conditions degraded the 

formation of HC, CO and PM as illustrated in Figures 4.31 - 4.33. The injection timing of 

the baseline ECU provided higher emission temperatures in the exhaust manifold, shown 

in Figure 4.34, and consequently, NOx formation was progressed much faster as depicted 

in Figure 4.35. 
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Figure 4.30 − Mass air flow into the cylinders. 
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Figure 4.31 − HC concentration of emissions. 

 



99 

0 5 10 15 20 25
0

1

2

3

4

5

6

7
x 10

-6

Time [sec]

P
M

 C
on

ce
nt

ra
tio

n 
[%

]

 

 

Model with Baseline ECU
Model with Self-Learning Controller

 
Figure 4.32 − PM Concentration. 
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Figure 4.33 − CO concentration of emissions. 
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Figure 4.34 − Exhaust manifold temperature. 
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Figure 4.35 − NOx concentration of emissions. 
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Table 1 summarizes the quantitative assessment of the improvement of fuel 

consumption, and emissions, by employing the self-learning controller in ECU 

development. 

 
Table 1: Quantification assessment of benefits in fuel consumption and emissions 
compared to baseline ECU. 

Engine Performance 
Indices 

Improvement  
[%] 

Fuel consumption 8.4 

NOx 7.7 

HC 32.9 

CO 5.0 

PM 9.8 

 

4.7 Concluding Remarks 

This chapter has presented the algorithmic implementation that provides the 

decision-making mechanism suitable for real-time implementation. The algorithm solves 

the stochastic control sub-problem by utilizing accumulated data acquired over the 

learning process of the POD model. The solution of the algorithm exhibits performance 

bound that is superior compared to the solution provided by the minimax control policy 

of the dynamic programming algorithm (Theorem 4.1). 

The overall performance of the POD model and POSCA in deriving an optimal 

control policy was evaluated through application to several examples. In the cart-pole 

balancing problem, POD and POSCA realized the balancing control policy for an 

inverted pendulum when the pendulum was released from any angle between 3° and -3°. 

In implementing the real-time cruise controller, POD and POSCA maintained the desired 
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vehicle’s speed at any road grade between 0° and 10°. The engine calibration problem 

demonstrated that the POD model and POSCA can make the engine of a vehicle an 

autonomous intelligent system. The engine can learn by means of a self-learning 

controller the optimal values of the controllable variables in real time while the driver 

drives the vehicle. The longer the engine runs during a particular driving style, the better 

the engine’s specified performance indices will be. This property arises due to the 

learning process required by the state representation to capture the stationary distribution 

of the engine operation with respect to the driver’s driving style. The engine’s ability to 

learn its optimum calibration is not limited, however, to a particular driving style. The 

engine can learn to operate optimally for different drivers by assigning the transition 

probability P(⋅,⋅), and cost matrices R(⋅,⋅) for each driver. The drivers should indicate 

their identities before starting the vehicle to denote the pair of these matrices that the 

engine should employ. The engine can then adjust its operation to be optimal for a 

particular driver based on what it has learned in the past regarding his/her driving style. 

It is left for future research to explore the impact of traffic patterns, and terrain, on 

the general applicability of having the engine learn its optimal calibration for an 

individual driving style. Future research should also investigate the potential of 

advancing the POD model to accommodate more than one decision maker in sequential 

decision-making problems under uncertainty, known as multi-agent systems [13]. These 

problems are found in systems in which many intelligent decision makers (agents) 

interact with each other. The agents are considered to be autonomous entities. Their 

interactions can be either cooperative or selfish, i.e., the agents can share a common goal, 

e.g., control of vehicles operating in platoons to improve throughput on congested 

highways by allowing groups of vehicles to travel together in a tightly spaced platoon at 

high speeds. Alternatively, the agents can pursue their own interests. 
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CHAPTER 5 

DECENTRALIZED LEARNING 

This chapter proposes a decentralized learning control scheme in finite Markov 

chains that aims to address the problem of dimensionality, when more than one decision 

makers are engaged. This scheme draws from multi-agent learning research in a range of 

areas including reinforcement learning, and game theory to coordinate optimal behavior 

among the decision makers. The solution of the decentralized scheme attempts to provide 

a Nash equilibrium coordinated control policy. 

In applying this scheme to the engine calibration problem, the engine is treated as 

a cooperative multi-agent system, in which the subsystems, i.e., controllable variables, 

are considered autonomous intelligent agents who strive interactively and jointly to 

optimize engine performance criteria. 

5.1 Decentralized Learning in Finite Markov Chains 

Decentralized decision making requiring limited information is a highly desirable 

feature of large complex systems. It is necessary when complete information among 

decision makers, which is required in centralized decision making, is impractical due to 

the increase of the problem’s dimensionality. Moreover, decentralized decision making 

can often be useful in complex systems with uncertainties regarding their behavior and 

the nature of external events [1]. Even in the absence of such uncertainties the 

coordination of decentralized decision makers is still a formidable problem; local 
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optimality and global optimality are often inconsistent. Uncertainty adds to the difficulty 

of an identification problem, the feature that motivates the use of a learning approach. 

Mathematical learning theory has been developed in systems to address the modeling and 

control aspects of sequential decision making under uncertainty [2-4]. Learning automata 

have been applied to network routing in which decentralization is attractive and large 

uncertainties are present [5, 6]. The resulting system performance has demonstrated that 

decentralized learning schemes can be successful while the problem’s dimensionality 

remains tractable.  

The problem of decentralized iterative control for a class of large scale 

interconnected dynamic systems in continuous time domain was studied by Wu [7]. In 

this off-line approach, it is assumed that the considered systems are linear time varying, 

and the interconnections between each subsystem are unknown. Szer et al. [8] proposed a 

model-free distributed reinforcement learning algorithm that utilizes communication to 

improve learning among the decision makers in a Markov decision process formalism. 

Scherre et al. [9] developed a general iterative heuristic approach in which at each 

decision epoch the focus is on a sub-group of decision makers and their policies given the 

rest of the decision makers have fixed plans. Beynier et al. [10] introduced the notion of 

expected opportunity cost to better assess the influence of a local decision of an agent on 

the others. An iterative version of the algorithm was implemented to incrementally 

improve the policies of agents leading to higher quality solutions in some settings. Yagan 

et al. [11] implemented a model-free coordinated reinforcement learning for 

decentralized optimal control assuming that each decision maker can partially observe the 

state condition. This decentralized scheme is suited for partially observable Markov 

decision processes. Shen et al. [12] developed a decentralized Markov game model to 

estimate the belief among the decision makers. In the proposed model, the model-free Q-

learning algorithm was employed to adjust dynamically the payoff function of each 

player.  
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Although many of these algorithms addressed the decentralized learning problem 

their use of the accumulated data acquired over the learning process is inefficient, and 

they require a significant amount of experience to achieve acceptable performance. This 

requirement arises due to the formation of these algorithms in deriving optimal policies 

without learning the system models en route; that is, they do not solve the state 

estimation and system identification problem simultaneously. 

The study of interacting decision makers inevitably entails game theory [13-16]. 

The use of learning schemes by players does not circumvent the basic complexities of N-

player games. In general, rational behavior is not well defined even when the payoff 

structure is known to all players. Wheeler et al. [1] employed a game-theoretic approach 

and developed a decentralized learning control scheme in finite Markov chains with 

unknown transition probabilities and costs. In this scheme, the decision makers 

demonstrate a myopic behavior, namely, they are unaware of the surrounding world. In 

attempting to improve his/her performance, each decision maker selects a control action, 

observes the corresponding cost associated with the occupied state, and then updates the 

action. 

The decentralized learning control scheme proposed in this dissertation differs 

from Wheeler’s scheme: Here the decision makers do not demonstrate myopic behavior 

explicitly. On the contrary, a random hierarchy among them is assumed, based on which 

each one observes the control actions of the other. In particular, POSCA is employed to 

derive the control actions of the first member in the hierarchy of decision makers with 

respect to the sequence of state transitions. At the same time, the algorithm is engaged 

separately to derive the control actions of the second member in the hierarchy of decision 

makers with respect to the optimal policy as being learned from the first one. Similarly, 

the algorithm is employed to derive the control actions of the third decision maker with 

respect to the second one and so forth. 
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This decentralized learning scheme entails a game-theoretic approach. In 

particular, the interaction among the controllers is modeled as an identical payoff game. 

The game involves Σ∈`  players (controllers) interacting through a stationary random 

environment. At each decision epoch k , the environment presents a state ks i= ∈S  to 

the players, and on that basis each player selects a strategy (control action) from his/her 

feasible set of strategies ( ),{ 1,..., }r
kA s r = Σ . The players seek a Nash equilibrium 

strategy that exists under certain conditions. 

5.2 Game Theory 

Game theory is defined as the study of mathematical models of conflict and 

cooperation between intelligent rational decision makers. Game theory provides the 

mathematical framework for analyzing situations in which two or more individuals make 

decisions that will influence one another’s welfare. A game refers to any situation 

involving two or more decision makers who are called players.  

There is a main assumption that game theorists generally make about the players: 

they are rational and intelligent. A decision maker is rational if he makes decisions 

consistently in pursuit of his own objectives. In game theory, building on the fundamental 

results of decision theory, it is assumed that each player’s objective is to maximize the 

expected value of his/her own payoff, which is measured in some utility scale.  

Formally, a game Γ  in the strategic form is represented by 

( ): , ( ) , ( )r r
r rA R∈Σ ∈ΣΓ = Σ , (5.1) 

 

where Σ  is the set of players, rA  is the set of feasible strategies for each player r , and 
rR  is the payoff function of each player that implements a mapping from the Cartesian 

product of the state space S  (stationary environment) and the set of feasible strategies of 

each player rA  to the set of real numbers, 1: ...rR A AΣ× × × →S \ . 
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5.3 The Decentralized Learning Control Scheme in POD Domain 

In the proposed decentralized learning scheme, the interaction among the 

controllers is modeled as an identical payoff game. First, a random hierarchy among the 

controllers is assumed, based on which each one observes the control actions (strategies) 

of the other. More precisely, the first member in the hierarchy of the decision makers 

observes the sequence of state transitions. At the same time, the second member in the 

hierarchy of the decision makers observes the control actions as being learned from the 

first one and so forth. The game between the first controller and the environment is 

defined 

( )( )1 1 1 2
1 , , ( ), ( , , ,..., ) ,ra A i R i a a a iΣΓ = ∀ ∈S S , (5.2) 

 

where S  is the state space, 1a  is the action of the first controller, 1( )A i  is its the feasible 

set of strategies (control actions), and 1 2( , , ,..., )rR i a a aΣ  is the common payoff that all 

controllers receive when they select control actions at a particular state i∈S . The second 

game between the second controller in the hierarchy and the first one is defined as 

( )( )1 2 2 1 1 2
2 , , ( ), ( , , ,..., ) ,ra a A a R i a a a iΣΓ = ∀ ∈S , (5.3) 

 

where 2a  denotes the action of the second controller, and 2 1( )A a  is its feasible set of 

control actions with respect to the control actions of the first controller 1a . Similarly, the 

game between the last two in the hierarchy of controllers is defined as 

( )( )1 1 1 2, , ( ), ( , , ,..., ) ,ra a A a R i a a a iΣ− Σ Σ Σ− Σ
ΣΓ = ∀ ∈S . (5.4) 

 

These games are played simultaneously at each decision epoch k , while the chain 

{ 0}ks k, ≥  visits a state ks i= ∈S . The POD state representation is employed to provide 

the realization of the state transitions that occurred in the Markov domain. The different 
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sequences of the state transitions are captured by the POD states and evaluated through 

the expected evaluation functions that correspond to the common payoff 
1 2( , , ,..., )rR i a a aΣ . POSCA selects the lookahead policy that determines the control 

actions at each decision epoch.  

Definition 5. 1 (“Nash Equilibrium”) [14].  In a strategic game, an action a∗  is 

called Nash equilibrium if no player r  has an action yielding an outcome that he/she 

prefers to that generated when he/she chooses ra∗ , given that every other player l∈Σ  

chooses his/her equilibrium actions la∗ . Briefly, no player can profitably deviate, given 

the actions of the other players. 

The decentralized learning control scheme seeks to reach a Nash equilibrium 

strategy 1 2( , ,..., )a a a∗ ∗ ∗Σ  for all players that is guaranteed the maximum common payoff 
1 2( , , ,..., )rR i a a aΣ . 

Definition 5. 2. For each controller r , the function rF  is defined as 

{ }1 2 1 2max 0, ( , , ,..., ,..., ) ( , , ,..., ,..., ) ,r r r r rF R i a a a a R i a a a a iΣ ∗ ∗ ∗ ∗ ∗Σ= − ∀ ∈S , (5.5) 

 

where 1( )r ra A a −∈  is the action of the controller r  from the feasible set of actions, and 

rR∗  is the maximum common payoff at the current decision epoch when all controllers 

believe that their Nash equilibrium control actions is 1 2( , ,..., ,..., )ra a a a∗ ∗ ∗ ∗Σ .  

Definition 5. 3. For each controller r , the function rR′  is defined as the mapping 

:rR′ →\ \ , namely, 

1 2 1 2( , , ,..., ,..., ) ( , , ,..., ,..., ) , .
1

r r r r r

r r

R i a a a a F R i a a a aR i
F

∗ ∗ ∗ ∗ ∗Σ Σ+ ⋅′ = ∀ ∈
+

S  (5.6) 

 

The decentralized learning scheme seeks the control actions that provide the fixed 

point of the mapping :rR′ →\ \ .  
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Suppose that during the learning process the belief of the controllers for the Nash 

equilibrium control actions is 1 2( , ,..., ,..., )ra a a a∗ ∗ ∗ ∗Σ , which results in a common payoff 

equal to 1 2( , , ,..., ,..., )r rR i a a a a∗ ∗ ∗ ∗ ∗Σ . Suppose that at the next decision epoch, they switch 

to any tupleΣ −  1 2( , ,..., ,..., )ra a a aΣ  with a payoff 1 2( , , ,..., ,..., )r rR i a a a aΣ . If this payoff 

is less than 1 2( , , ,..., ,..., )r rR i a a a a∗ ∗ ∗ ∗ ∗Σ , then the function rF  in Eq. (5.5) becomes zero. 

This means that no controller can improve the payoff by changing its control action, and 

thus the Nash equilibrium control actions 1 2( , ,..., ,..., )ra a a a∗ ∗ ∗ ∗Σ  vanishes all functions 
rF  for each controller, and makes 1 2( , ,..., ,..., )ra a a a∗ ∗ ∗ ∗Σ  fixed under the mapping 

:rR′ →\ \ . On the other hand, if the tupleΣ −  1 2( , ,..., ,..., )ra a a aΣ  yields a payoff 

higher than 1 2( , , ,..., ,..., )r rR i a a a a∗ ∗ ∗ ∗ ∗Σ , then the controller change their belief and make 

this tuple to be the Nash equilibrium control actions for that decision epoch and on. 

5.3.1 Existence of a Nash Equilibrium 

The conditions under which a Nash equilibrium of a game exists have been 

extensively reported in the literature. An existence result has two purposes. First, if a 

game satisfies the hypothesis of the result, then it is known that our effort to find an 

equilibrium will meet with success. Second, the existence of an equilibrium shows that 

the game is consistent with a steady state solution. Nash [17] proved that every finite 

game that has at least on equilibrium strategy. 

Kakutani’s Fixed Point Theorem gives conditions on the mapping :rR′ →\ \  

under which there indeed exists a Nash equilibrium. 

Theorem 5. 1 (“Kakutani’s Fixed Point Theorem”) [18]. Let X  be a compact 

convex subset of n\  and let :f X X→  be a set-valued function for which 

1. For all x X∈  the set ( )f x  is nonempty and convex, 

2. the graph of f  is closed. 

Then there exists x X∗ ∈  such that ( ),x f x∗ ∗∈  or ( )x f x∗ ∗= . 
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Proof. The proof is provided by Khamsi and Kirk [18]. 

,  

 

If the mapping :rR′ →\ \  in Eq. (5.6) satisfies the conditions imposed in 

Theorem 5. 1, then it is guaranteed that a Nash equilibrium control action for the 

controllers exists. 

The decentralized learning scheme is illustrated with a simple example including 

a state space with two states {1,2}=S , and two controllers 1a  and 2a . Each controller 

has available two control actions, that is, 1 1 1
1 2{ , }a a a=  and 2 2 2

1 2{ , }a a a= . In the 

centralized form the game with the corresponding common payoffs is formalized as 

follows 

1 2 1 2 1 2 1 2
1 1 1 2 2 1 2 2/ , , , ,

1 10 8 2 40
2 9 7 20 3

States Actions a a a a a a a a
. (5.7) 

 

Obviously, at state 1 the optimal control actions are the pair 1 2
2 2,a a , whereas at 

state 2 the optimal actions are 1 2
2 1,a a  that maximize the common payoffs. In the proposed 

decentralized learning scheme, two games are formed. The first one is between the 

environment and controller 1,  

1 1
1 2/  1

1 ? ?
2 ? ?

States Controller a a
 (5.8) 

 

and the second game is between the two controllers. 

2 2
1 1

1
1
1
2

 1/  2
? ?
? ?

Controller Controller a a
a
a

 (5.9) 
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The states appear with an unknown probability distribution that is captured by the 

POD state representation. The controllers should explore their action space to learn the 

corresponding payoffs, and eventually, find the control actions resulting in the maximum 

payoffs.  

The decentralized scheme is applied for one thousand decision epochs. At state 1, 

the controllers converge to their Nash equilibrium control actions after 356 decision 

epochs, illustrated in Figure 5.1. At state 2, the controllers converge to their Nash 

equilibrium after 227 decision epochs as depicted in Figure 5.2. 
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Figure 5.1 − Common payoff at state 1 with respect to decision epochs. 
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Figure 5.2 − Common payoff at state 2 with respect to decision epochs. 

5.4 Decentralized Learning in Engine Calibration 

The decentralized learning method [19] establishes a learning process that enables 

the derivation of the optimal values of the controllable variables to occur in parallel 

phases. The algorithm is employed to derive the optimal policy of one controllable 

variable with respect to the sequence of state transitions imposed by the driver’s driving 

style. Concurrently, the algorithm is also engaged separately to derive the optimal policy 

of the second controllable variable with respect to the optimal policy being learned for 

the first one. In case of more than two controllable variables, the algorithm is employed 

in a similar fashion, namely, the third variable with respect to the second one and so 

forth.  

For instance, in implementing a diesel engine calibration with respect to the 

injection timing, α, and VGT vane position, β, a feasible set of values, A and B, for each 

controllable variable is defined. The decentralized learning enables the engine to 

implement two different mappings in parallel. In the first, injection timing is mapped to 
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the states as a result of the correspondence of the driver’s driving style to particular 

engine operating points, i.e., × →S A \ . In the second, VGT is mapped to the injection 

timing, i.e., × →A B \ . The learning algorithm utilizes these two mappings to derive the 

optimal policies, ,απ
∗ ∈A and βπ

∗ ∈Β  (optimal values of injection timing and VGT) for 

the driver’s driving style as expressed by the incidence in which particular states or 

particular sequences of states arise. 

The decentralized learning process of the engine transpires at each stage k  in 

conjunction with the injection timing kα ∈A  taken for each state ks i= ∈S , and VGT 

vane position kβ ∈B  for each kα ∈A . At the early stages, and until full exploration of 

the feasible sets A and B, occurs, the mapping from states to probabilities of selecting a 

particular value of injection timing kα ∈A , and the mapping from kα ∈A  to 

probabilities of selecting VGT kβ ∈B  are constant; namely, the values of each 

controllable variable are selected randomly with the same probability 
 

1( | ) , , , andk k kp s i iα α= = ∀ ∈ ∀ ∈A S
A

 (5.10) 

1( | ) , , ,k kp aβ α β= ∀ ∈ ∀ ∈A B
B

 (5.11) 

1,2,..., , | | .i N N= = S   

 

Exploration of the entire feasible set for each variable is important to evade sub-

optimal solutions. POSCA is thus used after the exploration phase to realize the optimal 
policies, απ

∗ , and βπ
∗  by means of the expected costs, 1( | , )k k kV s s a+  and 1( | , )k k kV α α β+ , 

generated by the mappings × →S A \ , and × →A B \ , respectively. The expected 

costs are defined to be 
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1 1 1( | , ) ( | , ) ( | , )k k k k k k k k kV s j s i a p s j s i a R s j s i a+ + += = = = = ⋅ = = +   

1
2 1 1 1 1

1

min ( | , ) ( | , ) ,
k

N

k k k k k ka l

p s l s j a R s l s j a and
+

+ + + + +∈
=

⎡ ⎤+ = = ⋅ = =⎢ ⎥⎣ ⎦
∑A

 (5.12) 

1 1 1( | , ) ( | , ) ( | , )k k k k k k k k kV m n p m n R m nα α β α α β α α β+ + += = = = = ⋅ = = +   

1
2 1 1 2 1 1

1
max ( | , ) ( | , ) ,

k
k k k k k k

p
p p m R p m

β
α α β α α β

+

Λ

+ + + + + +∈
=

⎡ ⎤
+ = = ⋅ = =⎢ ⎥

⎣ ⎦
∑B

 (5.13) 

, 1, 2,..., , | |,
, 1, 2,..., , | | .

i j N N and
m n

= =
= Λ Λ =

S
A

  

 

In deriving the optimal policies of the injection timing and VGT in self-learning 

calibration, which is treated in a stochastic framework, all uncertain quantities are 
described by probability distributions. The optimal policies, απ

∗ , and βπ
∗  are based on the 

minimax control approach, whereby the worst possible values of the uncertain quantities 

within the given set are assumed to occur. This is a pessimistic point of view that 

essentially assures the optimal policies will result in at least a minimum overall cost 

value. Consequently, at state ,ks i=  the algorithm predicts the optimal policy απ
∗  in 

terms of the values of injection timing α as 

[ ]
1

1
( ) ( )

( ) arg min max ( | , ) ,
kk k k

k k k kss A s
s V s j s i aα

µ
π

+

∗
+∈∈

= = =
S

 
(5.14) 

, .i j∀ ∈S   
 

For this optimal policy απ
∗  the algorithm predicts the optimal policy βπ

∗  in terms 

of the values of the VGT vane position β as 
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[ ]
1

1
( ) ( )

( ) arg min max ( | , ) ,
kk k k

k k k kaa a
V a m a nβ

β
π α β

+

∗
+∈∈

= = =
AB

 
(5.15) 

, .m n∀ ∈A   
 

Employing decentralized learning, the derivation of the optimal values of more 

than one controllable variable can be achieved while the problem’s dimensionality 

remains tractable. 

5.5 Application: Decentralized Learning in a Diesel Engine 

The decentralized learning introduced in the previous section is now applied to a 

four-cylinder, 1.9-liter turbocharged diesel engine. The objective is to find the optimal 

injection timing and VGT vane position, while the engine is running the vehicle, that 

maximize the engine brake torque. Injection timing is an important controllable variable 

in the combustion process, and affects performance and emissions [20]. The major 

objective of injection timing is to initiate the start of the fuel injection at the crank angle 

resulting in the maximum brake torque (MBT). It designates the ignition delay defined to 

be the crank angle between the start of injection (SOI) and the start of combustion (SOC).  

The VGT technology was originally considered to increase engine brake torque at tip-ins 

and reduce turbo-lag. VGT has a system of movable guide vanes located on the turbine 

stator. By adjusting the guide vanes, the exhaust gas energy to the turbocharger can be 

regulated, and thus the compressor mass airflow and exhaust manifold pressure can be 

controlled. 

The software package enDYNA Themos CRTD by TESIS [21] suitable for real-

time simulation of diesel engines is employed. In the example, the existing static 

correlation involving injection timing and VGT is bypassed to incorporate the learning 

method and is used as a baseline comparison. The engine models with the baseline and 

self-learning calibration are run repeatedly over the same driving style represented by a 
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segment of the FTP-75 driving cycle, illustrated in Figure 5.3. Every run over this driving 

style constitutes one complete simulation. Before initiating the first simulation of the 

engine model, the elements of the transition probability and cost matrix are assigned to be 

zero. That is, the engine at the beginning has no knowledge regarding the particular 

driving style and the values of the costs associated with the controllable variables 

(injection timing and VGT).  

 

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Time [sec]

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

 

 

Driving cycle
Baseline Engine Calibration
Real-Time, Self-Learning Calibration

 
Figure 5.3 − Segment of the FTP-75 driving cycle. 

5.5.1 Simulation Results 

Applying the decentralized learning method, the vehicle with the self- learning 

calibration was able to follow the segment of the driving cycle requiring lower gas pedal 

position rates for the same engine speed, as illustrated in Figures 5.4 – 5.6. The 

implication is that the derived policy of injection timing and VGT resulted in higher 

engine torque compared to the baseline calibration. The injection timing (before top dead 

center BTDC) for both vehicles is illustrated in Figures 5.7 and 5.8. While the baseline 
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calibration interpolates values of the injection timing of steady-state operating points, the 

injection timing derived by the learning algorithm corresponded to the engine operating 

point transitions imposed by the driver’s driving style, and thus, self-learning calibration 

was able to capture transient engine operation. Lower gas pedal position rates resulted in 

reducing the fuel mass injection duration, shown in Figure 5.9, and consequently, less 

fuel mass was injected into the cylinders, as illustrated in Figure 5.10 (in zoom-in for 

clarity). In the decentralized learning of the engine, the injection timing was mapped to 

the engine operating points (states) while the VGT vane position was mapped to the 

optimal injection timing. The derived VGT policy is illustrated in Figure 5.11 – 5.12.  
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Figure 5.4 − Engine speed. 
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Figure 5.5 − Gas-pedal position rate representing a driver’s driving style. 
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Figure 5.6 − Gas-pedal position rate representing a driver’s driving style (zoom-in). 
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Figure 5.7 − Injection timing. 
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Figure 5.8 − Injection timing (zoom-in). 
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Figure 5.9 − Fuel mass injection duration (zoom-in). 
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Figure 5.10 − Fuel mass injected per cylinder (zoom-in). 
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Figure 5.11 − VGT vane position. 
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Figure 5.12 − VGT vane position (zoom-in). 
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Having the engine operate at the maximum brake torque, a 9.3% overall 

improvement of fuel economy was accomplished, as illustrated in Figure 5.13, compared 

to the baseline calibration. Figures 5.14 and 5.15 show a decrease in the temperature and 

NOx concentration of the exhaust gas; this is due to the earlier injection determined for 

the engine operating transitions of the particular driver’s driving style. Table 2 

summarizes the quantitative assessment of the improvement of fuel economy, and NOx, 

by employing the self-learning controller in ECU development. 

 
Table 2: Quantification assessment of benefits with self-learning controller compared to 
baseline ECU. 

Engine Performance 
Indices 

Improvement  
[%] 

Fuel consumption 9.1 

NOx 8.6 
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Figure 5.13 − Fuel consumption for the driving cycle. 
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Figure 5.14 − Emission temperature in the exhaust manifold. 
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Figure 5.15 − NOx concentration of emissions (zoom-in). 
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5.6 Concluding Remarks 

This chapter has proposed a decentralized learning scheme suitable for finite 

Markov chains. In this scheme, the decision makers do not demonstrate myopic behavior 

explicitly. Instead, a random hierarchy among them is assumed, based on which each one 

observes the control actions of the other while attempting to select a Nash equilibrium 

coordinated control policy. Decentralization is a common and often necessary aspect of 

large sequential decision-making problems. It is necessary when complete information 

among decision makers is impractical due to the increase of the problem’s 

dimensionality.  

In applying the proposed decentralized scheme to the engine calibration problem, 

a learning process was established that enables the derivation of the values of the 

controllable variables to occur in parallel phases. The values for more than one 

controllable variable can thus be determined while keeping the problem’s dimensionality 

tractable. The example presented an application of this scheme in real-time, self-learning 

calibration of a diesel engine with respect to injection timing and VGT vane position. The 

engine was able to realize the optimal values of injection timing and VGT for a driving 

style represented by a segment of the FTP-75 driving cycle, thus, optimizing fuel 

economy. Future research should validate this method to more than two controllable 

variables and the implications for the required learning time. 

The proposed method, in conjunction with the POD model and POSCA, can 

guarantee optimal calibration for steady-state and transient engine operating points 

resulting from the driver’s driving style. This capability can be valuable in engines 

utilized in hybrid-electric powertrain configurations when real-time optimization of the 

power management is considered. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Dissertation Summary 

This dissertation has proposed the theory and algorithms toward making the 

engine of a vehicle an autonomous intelligent system that can learn the optimal values of 

various controllable variables in real time while the driver drives the vehicle. Through 

this approach, engine calibration is optimized with respect to both steady-state and 

transient operation designated by the driver’s driving style. Consequently, every driver 

can realize optimal fuel economy and pollutant emissions as fully as possible.  

The engine was treated as a controlled stochastic system, and engine calibration 

was formulated as a sequential decision-making problem under uncertainty. This problem 

involved two major sub-problems: (a) the state estimation and system identification 

problem, and (b) the stochastic control problem. In Chapter 2, the underlying theory for 

building computational models suitable for sequential decision-making under uncertainty 

was reviewed. These models constitute an essential framework for making intelligent 

systems able to learn the control actions that optimize their long-term performance. 

In Chapter 3, a real-time computational learning model was implemented suitable 

for solution of the state estimation and system identification sub-problem. A state-space 

representation was constructed through a learning mechanism that can be employed 

simultaneously with a lookahead control algorithm in solving the stochastic control 

problem. The model allows decision making based on gradually enhanced knowledge of 
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system response as it transitions from one state to another, in conjunction with control 

actions taken at each state.  

To enable the engine to select the optimal values of various controllable variables 

in real time, a lookahead control algorithm was developed in Chapter 4. The algorithm 

solves the stochastic control sub-problem by utilizing accumulated data acquired over the 

learning process of the state-space representation. The combination of the state-space 

representation and control algorithm make the engine progressively perceive the driver’s 

driving style and eventually learn its optimal calibration for this driving style. The longer 

the engine runs during a particular driving style, the better the engine’s specified 

performance indices will be. This property arises due to the learning process required by 

the state representation to capture the stationary distribution of the engine operation with 

respect to the driver’s driving style. The engine can learn its optimal calibration for any 

other driver who indicates his or her identity before starting the vehicle by assigning the 

transition probability P(⋅,⋅), and cost (or reward) matrices R(⋅,⋅) for each driver. 

The enhancement of the problem’s dimensionality, when more than one 

controllable variable is considered, was addressed by the development of a decentralized 

learning control scheme, presented in Chapter 5. This scheme draws from multi-agent 

learning research in a range of areas, including reinforcement learning, and game theory, 

to coordinate optimal behavior among the various controllable variables. The engine was 

modeled as a cooperative multi-agent system, in which the subsystems, i.e., controllable 

variables, were treated as autonomous intelligent agents who strive interactively and 

jointly to optimize engine performance criteria. 

In summary, the research reported in this dissertation has taken steps toward 

development engine calibration that can capture transient engine operation designated by 

the driver’s driving style. Each individual driving style is different and rarely meets those 

driving conditions of testing for which the engine is calibrated to operate optimally by 

means of the state-of-the-art calibration methods. The implementation of the proposed 
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approach in a vehicle is expected to significantly reduce the discrepancy between the gas 

mileage estimate displayed on the window sticker or featured in advertisements and the 

actual gas mileage of the vehicle. 

6.2 Summary of Contributions 

Three distinct steps were taken toward making the engine an autonomous 

intelligent system: 

 

1. A computational model suitable for real-time sequential decision-making 

under uncertainty was implemented. A state-space representation was 

constructed through a learning mechanism and utilized in solving the state 

estimation and system identification sub-problem. The model accumulates 

gradually enhanced knowledge of system response as it transitions from 

one state to another, in conjunction with actions taken at each state. As the 

system interacts with its environment, the state representation realizes the 

sequences of state transitions that occurred in the Markov domain. This 

realization converges to the stationary distribution of the Markov chain 

(Theorem 3.3). 

 

2. A lookahead control algorithm was developed that addresses the stochastic 

control sub-problem in real time by utilizing accumulated data acquired 

over the learning process of the state-space representation. The principle 

of the algorithm is founded on the theory of stochastic control problems 

with unknown disturbance distribution, also known as games against 

nature. The solution of the algorithm exhibits performance bounds that are 
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better than the solution of any minimax control policy provided by 

dynamic programming (Theorem 4.1). 

 

3. A decentralized learning control scheme was proposed to coordinate 

optimal behavior among various decision makers for mutual benefit. The 

solution of the decentralized scheme provides a Nash equilibrium 

coordinated control policy. 

6.3 Future Research 

The proposed approach toward making the engine of a vehicle an autonomous 

intelligent system assumes implicitly that engine output can be perfectly observed. In this 

context, engine operation was modeled as a completely observable Markov decision 

process. Future research should examine the potential of having limited capabilities in 

observing engine output, and thus, should consider modeling engine operation as a 

partially observable Markov decision process. 

Future research should also investigate the potential of advancing the POD model 

to accommodate more than one decision maker with non-cooperative interactions. These 

problems are found in systems in which many intelligent decision makers interact with 

each other to pursue their own interests, e.g., subsystems of a hybrid-electric vehicle. 

Sequential decision-making under uncertainly is a fundamental problem faced by 

autonomous intelligent or rational systems, e.g., physical systems, robots, automated 

manufacturing systems, etc, embedded in complex environments that choose actions to 

achieve long-term goals efficiently. Computational rationality can be achieved by 

modeling a system and the interaction with its environment through actions, perceptions, 

and costs (or rewards). A widely adopted paradigm for modeling this interaction is the 

completely or partially observable Markov decision process. Theory and algorithms 
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related to these problems have been extensively reported in the literature. However, no 

research has been reported addressing the computational cost associated with deriving 

these optimal policies. Future research should address the impact of the computational 

time required in deriving optimal control policies and the coupled tradeoffs. The latter 

could result in a quantitative assessment of optimal policies with respect to required 

computational time. This assessment would provide an essential treatment in selecting 

control policies suitable for real-time stochastic control implementation. 

 

 

 


