

REAL-TIME, SELF-LEARNING IDENTIFICATION AND STOCHASTIC

OPTIMAL CONTROL OF ADVANCED POWERTRAIN SYSTEMS

by

Andreas Malikopoulos

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2008

Doctoral Committee:

Professor Dionissios N. Assanis, Co-Chair
Professor Panos Y. Papalambros, Co-Chair
Professor James S. Freudenberg
Professor A. Galip Ulsoy
Assistant Professor Domitilla Del Vecchio

© Andreas Malikopoulos
All Rights Reserved

 2008

ii

To my wife, Voula, and
to my daughter, Georgina

iii

ACKNOWLEDGMENTS

When I came to Ann Arbor, I could never imagine that during the years to come I

would have the most wonderful and productive time in my life. I had the chance to have

come across a lot of wise and wonderful people. Their guidance and support have been

invaluable.

I was extremely fortunate to have two remarkably supportive advisors, Professor

Dennis Assanis and Professor Panos Papalambros. They provided friendly warmth,

challenges, continuing support throughout my studies while affording me a tremendous

amount of freedom and responsibility.

Professor Assanis is the reason that I decided to attend the University of Michigan

for graduate school. I had come across his research activities at the Automotive Research

Center (ARC) while still undecided about the graduate school I should attend. It took me

just seconds to realize that this was the research environment I was looking for. When I

met him and expressed my strong interest to join his group, I got impressed by his depth

of thought, his openness, and his critical eye. Professor Assanis offered an extraordinary

depth of knowledge in advanced powertrain systems, and he was a noble teacher and

mentor. I would like to sincerely thank him for giving me the opportunity to join his

research group at the University of Michigan.

During the first year of my studies, I had the privilege to meet Professor

Papalambros while taking the Design Optimization class. I believe that this meeting had a

significant impact in shaping my research interests and professional goals. Professor

Papalambros provided continuing advice and developed my sense of the academic

community in engineering. He provided challenges and he offered a blinding depth of

iv

knowledge in design optimization. He promoted a respect for rigorous work, and

constantly pushed the boundaries of his expertise while maintaining extraordinary

standards of quality. I would like to sincerely thank him for his invaluable guidance and

support throughout my studies.

In addition to my advisors, many people contributed meaningfully by providing

feedback and perspective that helped define my direction. I would like to thank the

committee members of my dissertation, Professor James Freudenberg, Professor Galip

Ulsoy, and Professor Domitilla Del Vecchio for their valuable feedback and comments

on my dissertation and publications. During my interaction with Professor Freudenberg,

while I was taking his class in linear feedback control systems, he contributed directly to

my understanding in control theory and the related applications in advanced powertrain

systems.

I also owe special thanks to Professor Demosthenis Teneketzis for broadening and

deepening my understanding in stochastic control and centralized stochastic systems. He

provided feedback and excellent references; his classes in stochastic process and

stochastic control along with our numerous interactions were instrumental in enhancing

my knowledge in this area.

I would also like to express my appreciation to a plethora of other individuals,

who spent a considerably amount of time in meeting with me and providing assistance.

Dr. Michael Kokkolaras was always willing to provide and share his knowledge in

optimization while working together in various projects. His feedback in various aspects

of my research activities was always helpful and valuable. Professor Rudy Schmerl

provided a tremendous amount of assistance in enhancing my technical communication

skills. I enjoyed all our meetings and discussions. Professor Zoran Filipi was instrumental

in developing my understanding of modeling and simulation of advanced powertrain

systems. Dr. George Lavoie was always willing to share his knowledge and expertise

while provided helpful feedback on my work. Dr. Aristotelis Babajimopoulos provided

v

unlimited assistance in any computer related issue. Finally, I would like to thank all my

lab-mates and staff, past and present, in Autolab and Optimal Design Laboratory.

This research was supported by the Automotive Research Center (ARC), a U.S.

Army Center of Excellence in Modeling and Simulation of Ground Vehicles at the

University of Michigan. This support is gratefully acknowledged.

I owe my gratitude to my father, Alexandros, and to my mother, Ioanna, who have

been always supportive in any aspect of life. The knowledge that my success will bring to

them happiness and pride was an extra motivator for me.

This dissertation is dedicated to my wife, Voula, and to my daughter, Georgina. I

would not be able to complete my PhD without the boundless love, support, and patience

of my wonderful loving wife. I will always be indebted to her for prioritizing my work

and success against her interests and professional goals. Georgina’s smile was a

tremendous source of energy for me since she was born. Looking at this little angle

always rejuvenated me, and immersed me in new energy and tranquility.

vi

TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

NOMENCLATURE... xiii

ABSTRACT.. xvi

CHAPTER 1 INTRODUCTION... 1

1.1 Motivation .. 1

1.2 Advancements in Engine Electronic Control Units 2

1.3 State-of-the-art Engine Calibration Methods ... 3

1.3.1 Design of Experiments.. 5

1.3.2 Dynamic Model-Based Calibration Systems .. 6

1.3.3 Calibration using Artificial Neural Networks....................................... 7

1.3.4 Simulation-Based Calibration Systems... 7

1.4 Research Objective... 8

1.5 Outline of Dissertation ... 9

1.6 References .. 11

CHAPTER 2 SYSTEM IDENTIFICATION AND STOCHASTIC CONTROL 14

2.1 Modeling Engine Operation as a Stochastic Process 14

2.2 Sequential Decision-Making Problems Under Uncertainty 15

2.2.1 Deterministic System Model... 16

2.2.2 Stochastic System Model.. 18

vii

2.3 Markov Decision Process ... 22

2.3.1 The Cost of a Markov Control Policy... 23

2.4 Dynamic Programming Algorithm... 24

2.4.1 Optimal Control Policy ... 26

2.5 Engine Identification and Stochastic Control: Problem Definition............ 26

2.6 References .. 30

CHAPTER 3 REAL-TIME, SELF-LEARNING SYSTEM IDENTIFICATION 31

3.1 Reinforcement Learning Algorithms.. 32

3.2 Identification and Stochastic Adaptive Control ... 35

3.3 Finite State Controlled Markov Chains.. 39

3.3.1 Classification of States in a Markov Chain... 40

3.4 The Predictive Optimal Decision-Making Computational Model 42

3.4.1 Construction of the POD State Space Representation 43

3.4.2 Self-Learning System Identification... 46

3.4.3 Stationary Distributions and the Limit Theorem 48

3.4.4 Convergence of POD Model... 50

3.5 Concluding Remarks .. 55

3.6 References .. 56

CHAPTER 4 REAL-TIME STOCHASTIC CONTROL ... 60

4.1 The Predictive Optimal Stochastic Control Algorithm 60

4.1.1 Performance Bound of POSCA .. 62

4.2 Application: Single Cart-Pole Balancing Problem..................................... 68

4.2.1 Simulation Results .. 73

4.3 Application: Autonomous Vehicle Cruise Control 75

viii

4.3.1 Simulation Results .. 77

4.4 Real-Time, Self-Learning Optimization of Engine Calibration................. 81

4.5 Application: Self-Learning Spark Ignition in a Gasoline Engine 83

4.5.1 Simulation Results .. 86

4.6 Application: Self-Learning Injection Timing in a Diesel engine 92

4.6.1 Simulation Results .. 93

4.7 Concluding Remarks .. 101

4.8 References .. 103

CHAPTER 5 DECENTRALIZED LEARNING.. 105

5.1 Decentralized Learning in Finite Markov Chains 105

5.2 Game Theory.. 108

5.3 The Decentralized Learning Control Scheme in POD Domain 109

5.3.1 Existence of a Nash Equilibrium .. 111

5.4 Decentralized Learning in Engine Calibration... 114

5.5 Application: Decentralized Learning in a Diesel Engine......................... 117

5.5.1 Simulation Results .. 118

5.6 Concluding Remarks .. 126

5.7 References .. 127

CHAPTER 6 CONCLUSIONS.. 129

6.1 Dissertation Summary .. 129

6.2 Summary of Contributions ... 131

6.3 Future Research.. 132

ix

LIST OF FIGURES

Figure 1.1 − Two trajectories A, and B, of engine operating points ending at the same

operating point ... 4

Figure 1.2 − BSFC value of the terminal engine operating point as reached from

trajectories A, and B .. 5

Figure 2.1 − The stochastic system model adapted for the engine calibration problem... 28

Figure 2.2 − Sequential decision-making problem. .. 29

Figure 3.1 − Construction of the POD domain. .. 44

Figure 3.2 − Partition of POD through the PRNs. .. 45

Figure 4.1 − Implementation of POD model and POSCA. .. 63

Figure 4.2 − The inverted pendulum. ... 69

Figure 4.3 − Free body diagram of the system. .. 70

Figure 4.4 − Simulation of the system after learning the balance control policy with POD

for different initial conditions. ... 73

Figure 4.5 − Simulation of the system after learning the balance control policy with POD

for different initial conditions (zoom in). .. 74

Figure 4.6 − Number of failures until POD derives the balance control policy. 74

Figure 4.7 − Vehicle speed and accelerator pedal rate for different road grades by self-

learning cruise control with POD. ... 79

Figure 4.8 − Engine speed and transmission gear selection for different road grades by

self-learning cruise control with POD. .. 79

Figure 4.9 − Vehicle speed and accelerator pedal rate for a road grade increase from 0° to

10°. ... 80

x

Figure 4.10 − Engine speed and transmission gear selection for a road grade increase

from 0° to 10°. ... 80

Figure 4.11 − The learning process during the interaction between the engine and the

driver. ... 82

Figure 4.12 − Effect of spark ignition timing on the engine brake torque at constant

engine speed... 85

Figure 4.13 − Gas-pedal position rate representing a driver’s driving style..................... 86

Figure 4.14 − Spark ignition timing over the driving style... 87

Figure 4.15 − Engine brake torque. .. 88

Figure 4.16 − Engine brake torque (zoom-in). ... 88

Figure 4.17 − BSFC comparison between the baseline and self-learning calibration. 89

Figure 4.18 − Velocity of the two vehicles carrying the engine with baseline and self-

learning calibration. ... 89

Figure 4.19 − Three different acceleration profiles. ... 90

Figure 4.20 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile A)... 91

Figure 4.21 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile B). .. 91

Figure 4.22 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile C). .. 92

Figure 4.23 − Desired speed profile.. 93

Figure 4.24 − Injection timing. ... 94

Figure 4.25 − Pedal position rate. ... 95

Figure 4.26 − Engine speed. ... 95

Figure 4.27 − Engine operating point transitions.. 96

Figure 4.28 − Injection duration. .. 96

Figure 4.29 − Fuel consumption. .. 97

xi

Figure 4.30 − Mass air flow into the cylinders. .. 98

Figure 4.31 − HC concentration of emissions. ... 98

Figure 4.32 − PM Concentration. ... 99

Figure 4.33 − CO concentration of emissions. ... 99

Figure 4.34 − Exhaust manifold temperature. .. 100

Figure 4.35 − NOx concentration of emissions. ... 100

Figure 5.1 − Common payoff at state 1 with respect to decision epochs. 113

Figure 5.2 − Common payoff at state 2 with respect to decision epochs. 114

Figure 5.3 − Segment of the FTP-75 driving cycle. ... 118

Figure 5.4 − Engine speed. ... 119

Figure 5.5 − Gas-pedal position rate representing a driver’s driving style..................... 120

Figure 5.6 − Gas-pedal position rate representing a driver’s driving style (zoom-in).... 120

Figure 5.7 − Injection timing. ... 121

Figure 5.8 − Injection timing (zoom-in). .. 121

Figure 5.9 − Fuel mass injection duration (zoom-in). .. 122

Figure 5.10 − Fuel mass injected per cylinder (zoom-in)... 122

Figure 5.11 − VGT vane position. .. 123

Figure 5.12 − VGT vane position (zoom-in). ... 123

Figure 5.13 − Fuel consumption for the driving cycle. .. 124

Figure 5.14 − Emission temperature in the exhaust manifold. 125

Figure 5.15 − NOx concentration of emissions (zoom-in). .. 125

xii

LIST OF TABLES

Table 1: Quantification assessment of benefits in fuel consumption and emissions

compared to baseline ECU... 101

Table 2: Quantification assessment of benefits with self-learning controller compared to

baseline ECU. .. 124

xiii

NOMENCLATURE

The following nomenclature is used consistently in the dissertation.

k Discrete time steps (decision epochs)

ks System state at time k

ky System output at time k

kw Disturbance at time k

kv Measurement error at time k

ka Control action at time k

S State space

A Control space

W Disturbance space

()A ⋅ Feasible action set

f Function in the state equation

h Function in the observation equation

π Control policy

µ Control functions

J π Cost corresponding to a control policy π
kz System observation at time k

(|)Pπ ⋅ ⋅ Conditional distribution of states for a given control policy π

(|)R ⋅ ⋅ State transition cost

P(⋅,⋅) Transition probability matrix

R(⋅,⋅) Transition cost matrix

xiv

M θ Family of models parameterized by the parameter θ

k̂θ Estimation of the parameter at time k

θ D True parameter

Θ Parameter set

1T First entrance time of the state

nT nth entrance time of state

iµ Mean recurrence time of state i

S� Predictive Optimal Decision-making (POD) domain

iS� Predictive Representation Node (PRN) for each state i

(|)iR ⋅ ⋅ Predictive Representation Node (PRN) value for each state i
i
PRNR Predictive Representation Node (PRN) expected evaluation function for

each state i

i
µS� Mean recurrence time of each Predictive Representation Node (PRN)

ρ Vector of the stationary distribution of the chain

CI Indicator function of a given set C

V Number of visits of the chain

V Mean number of visits of the chain

π Lookahead control policy by the Predictive Optimal Stochastic Control

Algorithm (POSCA)

J Accumulated cost incurred by dynamic programming

J� Accumulated cost incurred by the Predictive Optimal Stochastic Control

Algorithm (POSCA)

J Lookahead cost incurred by the Predictive Optimal Stochastic Control

Algorithm (POSCA)

Γ Strategic form game

r Player in a strategic form game
rR Payoff function for each player r in a strategic form game

xv

rA Set of feasible strategies for each player r
ra Strategy for each player r in a strategic form game

rR′ Mapping of the payoff functions in decentralized learning

xvi

ABSTRACT

REAL-TIME, SELF-LEARLING IDENTIFICATION AND STOCHASTIC
OPTIMAL CONTROL OF ADVANCED POWERTRAIN SYSTEMS

by

Andreas Malikopoulos

Co-Chairs: Dionissios N. Assanis and Panos Y. Papalambros

Increasing demand for improving fuel economy and reducing emissions without

sacrificing performance has stimulated significant research on and investment in

advanced internal combustion engine technologies. These technologies have introduced a

number of controllable variables that have enhanced our ability to optimize engine

operation. Current engine calibration methods for deriving the optimal values of the

controllable variables generate a static tabular relationship between the variables and

steady-state operating points or specific driving conditions (e.g., vehicle speed profiles

for highway and city driving). These methods, however, seldom guarantee optimal engine

operation for common driving habits (e.g., stop-and-go driving, rapid acceleration, or

rapid braking). Each individual driving style is different and rarely meets those driving

conditions of testing for which the engine has been calibrated to operate optimally.

This dissertation develops the theory and algorithms that succeed in making the

engine of a vehicle an autonomous intelligent system capable of learning the optimal

values of the controllable variables in real time while the driver drives the vehicle. The

engine is treated as a controlled stochastic system, and engine calibration is formulated as

xvii

a sequential decision-making problem under uncertainty that addresses the system

identification and stochastic control problem simultaneously.

Specifically, the theory for building models suited for sequential decision-making

under uncertainty is reviewed. These models formalize the framework in which an

intelligent or rational system can select control actions so that a long-term reward is

maximized. The theory is extended to portray a real-time computational learning model

with which the state estimation and system identification problem can be solved. A

lookahead control algorithm is implemented that provides the decision-making

mechanism suitable for real-time implementation. The algorithm solves the stochastic

control problem by utilizing accumulated data acquired over the learning process of the

computational model. The increase of the problem’s dimensionality, when more than one

controllable variable is considered, is addressed by a decentralized learning control

scheme. This scheme draws from multi-agent learning research in a range of areas,

including reinforcement learning and game theory, to coordinate optimal behavior among

the controllable variables.

Various case studies, including cart-pole balancing, vehicle cruise-control, and

gasoline and diesel engine calibration, were conducted. In the engine calibration problem,

the engine was shown to progressively perceive the driver’s driving style and eventually

learn its optimal calibration for this driving style.

The theory and algorithms developed in this dissertation may reduce considerably

the existing discrepancy between the gas mileage estimate displayed on the vehicle’s

window sticker and the actual one. This would allow every driver to realize optimal fuel

economy and pollutant emissions as fully as possible with respect to his/her driving

habits.

1

CHAPTER 1

INTRODUCTION

Increasing demand for improving fuel economy and reducing emissions without

sacrificing performance has induced significant research on and investment in advanced

internal combustion engine technologies. These technologies, such as fuel injection

systems, variable geometry turbocharging, variable valve actuation, and exhaust gas

recirculation, have introduced a number of new engine variables that can be controlled to

optimize engine operation. In particular, the determination of the optimal values of these

variables, referred to as engine calibration, have been shown to be critical for achieving

high engine performance and fuel economy while meeting emission standards.

Consequently, engine calibration is defined as a procedure that optimizes one or more

engine performance criteria, e.g., fuel economy, emissions, or engine performance with

respect to the engine controllable variables. This dissertation develops the theory and

algorithms that succeed in making the engine of a vehicle an autonomous intelligent

system capable of learning the optimal values of the controllable variables in real time

while the driver drives the vehicle.

1.1 Motivation

Current calibration methods generate a static tabular relationship between the

optimal values of the controllable variables and steady-state operating points or specific

driving conditions (e.g., vehicle speed profiles for highway and city driving). This

2

relationship is incorporated into the electronic control unit (ECU) of the engine to control

engine operation. While the engine is running, values in the tabular relationships are

interpolated to provide the values of the controllable variables for each engine operating

point. These calibration methods, however, seldom guarantee optimal engine operation

for common driving habits (e.g., stop and go driving, rapid acceleration, or rapid

braking). Each individual driving style is different and rarely meets those driving

conditions of testing for which the engine has been calibrated to operate optimally.

Consumers often complain that their new cars simply cannot achieve the gas mileage

estimate displayed on the window sticker or featured in advertisements.

1.2 Advancements in Engine Electronic Control Units

Advanced internal combustion engine technologies have led to increased

opportunities for use of Electronic Control Units (ECUs). Current ECUs perform a

variety of control tasks using engine calibration static maps that provide the values of

several controllable variables. These values are then used as references by actuators to

maintain optimal engine operation. In traditional ECU development processes, engine

calibration maps are generated experimentally by extensive steady-state engine operation

and step function changes of engine speed and load [1-4]. This is usually accompanied by

simple transient operation limited by dynamometer capabilities and simulation

technologies [5]. However, steady-state and simple transient engine operation is only

partially indicative of actual engine operation in a vehicle. Increased sophistication of

ECUs coupled with engine technologies can lead to significant calibration improvements.

Advances in computing technology have enabled simulation-based methods such

as Hardware in the Loop (HiL) and Software in the Loop (SiL) test systems [6, 7]. HiL

systems have been widely utilized as powerful methods for implementing engine

calibration maps. These systems involve a real-time simulation engine model and a

3

vehicle system connected to the ECU hardware. HiL systems allow the ECU

development through simulation of powertrain components and vehicle system. SiL

systems are more recent approaches, in which the engine model is integrated with the

ECU software, and run on a computer [8]. SiL allows selective tests of single calibration

tasks and separate modules of the ECU early in the development process. An essential

requirement of HiL and SiL systems is the availability of an engine model capable of

generating physical and consistent outputs of a combustion engine based on actual inputs.

1.3 State-of-the-art Engine Calibration Methods

HiL and SiL systems aim to provide automated software tools for generating and

validating calibration maps during the ECU development process. Various methods for

deriving these maps at steady-state and limited transient engine operation have been

extensively reported in the literature [9-12]. These efforts have been valuable in

understanding steady-state operation, and optimizing fuel economy and emissions in the

last years [13]. However, continuously optimal engine operation has not yet been

possible. State-of-the-art engine calibration methods rely on static correlations for steady-

state operating points accompanied by transient vehicle testing. The calibration process,

its duration, and its cost grow exponentially with the number of controllable variables,

and optimal calibration for the entire feasible engine operating domain cannot be

guaranteed. Even for engines with simple technologies, achievement of optimal

calibration may become impractical [10]. In addition, current calibration methods cannot

guarantee optimal engine operation in transient cases encountered in driving styles of

different drivers [14]. Transient operation constitutes the largest segment of engine

operation over a driving cycle compared to the steady-state one [15, 16]. Fuel

consumption and emissions during transient operation are extremely complicated [16],

vary significantly with each particular driving cycle [17, 18], and are highly dependent

4

upon the calibration [18, 19]. Engine operating points, during the transient period before

their steady-state value is reached, are associated with different Brake-Specific Fuel

Consumption (BSFC) values, depending on the directions, as shown in Figure 1.1, from

which they have been arrived, illustrated qualitatively in Figure 1.2. Pollutant emissions

such as NOx, and particulate matters, demonstrate the same qualitative behavior, as

shown by Hagena et al. [13].

Max Engine Torque

En
gi

ne
 T

or
qu

e

Engine Speed

Brake-Specific Fuel Consumption (BSFC)
Regimes on the Engine Operating Domain

Trajectory A of engine Trajectory A of engine
operating pointsoperating points

Trajectory B of engine Trajectory B of engine
operating pointsoperating points

Terminal engine operating Terminal engine operating
point of A and Bpoint of A and B

Max Engine Torque

En
gi

ne
 T

or
qu

e

Engine Speed

Brake-Specific Fuel Consumption (BSFC)
Regimes on the Engine Operating Domain

Trajectory A of engine Trajectory A of engine
operating pointsoperating points

Trajectory B of engine Trajectory B of engine
operating pointsoperating points

Terminal engine operating Terminal engine operating
point of A and Bpoint of A and B

Figure 1.1 − Two trajectories A, and B, of engine operating points ending at the same

operating point

5

Transient Period

BS
FC

Time

BSFC value at the BSFC value at the
terminal operating point terminal operating point

reached from trajectory Areached from trajectory A
BSFC value at the BSFC value at the

terminal operating point terminal operating point
reached from trajectory Breached from trajectory B

BSFC value of the BSFC value of the
terminal operating point terminal operating point

at steadyat steady--state operationstate operation
Transient Period

BS
FC

Time

BSFC value at the BSFC value at the
terminal operating point terminal operating point

reached from trajectory Areached from trajectory A
BSFC value at the BSFC value at the

terminal operating point terminal operating point
reached from trajectory Breached from trajectory B

BSFC value of the BSFC value of the
terminal operating point terminal operating point

at steadyat steady--state operationstate operation

Figure 1.2 − BSFC value of the terminal engine operating point as reached from

trajectories A, and B

1.3.1 Design of Experiments

Exhaustive investigation of the controllable variables with respect to all potential

engine operating points requires a huge amount of testing. With the increasing number of

these variables in current engine technologies, the required effort for testing grows

exponentially. Design of Experiments (DoE) [20-23] is typically used to reduce the scope

of the experiments required to derive the optimal engine calibration correlation under

steady-state operating conditions. The main objective of this method is to expedite

dynamometer tests significantly using a smaller subset of tests. This subset is utilized

either in implementing engine calibration experimentally or in developing mathematical

models for evaluating engine output. Using these models, optimization methods can

determine the engine calibration static correlations between steady-state operating points

and the controllable engine variables [24].

DoE has been widely used as the baseline calibration method for the last several

years. Major applications include catalyst system optimization [25], optimization of

variable valvetrains for performance and emissions [26-28], and implementation of

6

dynamic model-based engine calibrations. DoE employs statistics to generate a matrix of

test points to explore the behavior or a physical system. The method relies on statistical

data to determine a set of models that describe the system responses when some variables

vary. In applying DoE to engine calibration, the objective is to define the coefficients of

polynomial equations that can represent engine output over the range of the various

controllable variables.

1.3.2 Dynamic Model-Based Calibration Systems

Dynamic model-based calibration methods utilize high-fidelity dynamic engine

models. The data required to develop these models are obtained by operating the engine

through a set of transient dynamometer tests while the engine calibration is perturbed in

real time by a reconfigurable rapid prototyping control system. The predictive engine

model produced in this fashion utilizes a combination of equation-based and neural

network methods. DoE-experimental calibration is well suited only for steady-state

engine operation over some driving cycle. In contrast, dynamic modeling produces

a transient or dynamic engine model capable of predicting engine operating cycle.

The steady-state optimal engine calibration can be produced from the transient engine

model as a sub-set of the transient engine operation. Guerrier et al. [9] employed DoE

and advanced statistical modeling to develop empirical models to enhance the powertrain

control module calibration tables. Stuhler et al. [2] implemented a standardized and

automated calibration environment, supporting the complexity of gasoline direct injection

engines, for an efficient calibration process using an online DoE to decrease the

calibration cost. Rask et al. [10] developed a dynamic-based calibration method to

rapidly generate optimized maps for a V6 engine equipped with two-step variable valve

actuation and intake cam phasing. Engine models employed in dynamic model-based

calibration methods can predict engine output over transient operation within the data

7

utilized to calibrate the models. However, not all the correlations of optimal values of the

controllable engine variables associated with the transient operating points can be

quantified explicitly; to pre-specify the entire transient engine operation is impractical,

and thus, engine calibration correlations cannot be optimized for these cases a priori.

1.3.3 Calibration using Artificial Neural Networks

Various approaches have been proposed for using artificial neural networks

(ANNs) to promote modeling and calibration of engines [11, 29-32]. Neural networks are

non-linear statistical data modeling tools. They can be used to model complex

relationships between inputs and outputs or to find patterns in data. ANNs are

application-specific and exhibit unpredictable behavior when previously unfamiliar data

are presented to them. These difficulties increase if a nonlinear dynamic presentation of a

system is to be realized, because of the increasing number of possibilities related to the

dynamics and the interactions between the input signals. ANNs are suited for

formulating objective functions, evaluating the specified engine performance indices with

respect to the controllable engine variables and, thus, deriving the engine calibration

correlations. They are computationally efficient for optimization requiring hundreds of

function evaluations. However, optimal engine calibration for the entire engine operating

domain is seldom guaranteed even for steady-state operating points. Moreover, the

correlations between optimal values of the controllable engine variables and the transient

operating points, overall, cannot be quantified explicitly, prohibiting a priori optimal

engine calibration.

1.3.4 Simulation-Based Calibration Systems

Research efforts in addressing transient operation have focused on simulation-

based methods to derive calibration maps for transients of particular driving cycles. Burk

8

et al. [33] presented the necessary procedures required to utilize co-simulation techniques

with regard to predicting engine drive cycle performance for a typical vehicle. Jacquelin

et al. [34] utilized analytical tools to run the FTP-75 driving cycle through pre-computed

engine performance maps, depending on engine speed, load, intake and exhaust cam

centerline positions. Atkinson et al. [14] implemented a dynamic system to provide

optimal calibration for transient engine operation of particular driving cycles. These

methods utilize engine models sufficiently accurate to portray fuel economy and feed-gas

emissions during transient engine operation. However, identifying all possible transients,

and thus deriving optimal values of the controllable variables through calibration maps

for those cases a priori, is infeasible.

1.4 Research Objective

This dissertation reports research work towards implementing the theory and the

algorithmic implementation that allow the engine of a vehicle to become an autonomous

intelligent system. The engine should be able to realize in real time its optimal calibration

with respect to both steady-state and transient operating points designated by the driver’s

driving style.

The problem of deriving the optimal values of the controllable variables for

engine operating point transitions compromises of two major sub-problems. The first

concerns exploitation of the information acquired from the engine operation to identify its

behavior, that is, how an engine representation can be built by observing engine operating

point transitions. In control theory, this is addressed as a state estimation and system

identification problem. The second concerns assessing the engine output with respect to

alternative values of the controllable variables (control policies), and selecting those that

optimize specified engine performance indices. This forms a stochastic control problem.

9

In this context, the engine is treated as a controlled stochastic system and engine

calibration is formulated as a sequential decision-making problem under uncertainty.

The research objective is to make the engine capable of learning the optimal

values of the engine variables in real time while the driver drives the vehicle. The engine

progressively perceives the driver’s driving style and eventually learns the optimal

calibration for this driving style. The longer the engine runs during a particular driving

style, the better the engine’s specified performance criteria will be. The engine’s ability

to learn its optimum operation is not limited, however, to a particular driving style. The

engine can learn to operate optimally for different drivers, although the drivers should

indicate their identities before starting the vehicle. The engine can then adjust its

calibration to be optimal for a particular driver based on what it has learned in the past

regarding his/her driving style.

The ultimate goal of the research work reported here is to fully exploit the

engine’s given technology in terms of the maximum specified performance criteria, e.g.,

engine power, fuel economy, and pollutant emissions that can be achieved. It aims to

provide an answer to the following question: “For an engine with a given technology,

what are the maximum performance criteria that a driver can get with respect to his/her

driving habits?”

1.5 Outline of Dissertation

The dissertation is organized as follows. Chapter 2 presents the theory for

building computational models suitable for real-time sequential decision-making under

uncertainty. These models are essential traits of any intelligent or rational system that

selects control actions after every perception, so that a long-term reward (cost) is

maximized (minimized). Research efforts in implementing these models are reviewed in

that chapter. Chapter 3 portrays a real-time computational learning model suitable to

10

solve the state estimation and system identification sub-problem. Chapter 4 introduces

the algorithmic structure of the decision-making mechanism suitable for real-time

implementation. The algorithm solves the stochastic control sub-problem by utilizing

accumulated data acquired over the learning process of the computational model. The

increase of the problem’s dimensionality, when more than one controllable variable is

considered, is addressed by a decentralized learning control scheme presented in Chapter

5. This scheme draws from multi-agent learning research in a range of areas, including

reinforcement learning, and game theory, to coordinate optimal behavior among the

various controllable variables. The engine is considered as a cooperative multi-agent

system, in which the subsystems, i.e., controllable variables, are treated as autonomous

rational agents who strive interactively and jointly to optimize engine performance

indices. In Chapter 6, the research contributions are summarized and future work is

proposed. Relevant references are included at the end of each chapter.

11

1.6 References

[1] Roepke, K. and Fischer, M., "Efficient Layout and Calibration of Variable Valve
Trains," SAE Transactions-Journal of Engines, v. 110, 2001, SAE 2001-01-0668.

[2] Stuhler, H., Kruse, T., Stuber, A., Gschweitl, K., Piock, W., Pfluegl, H., and Lick,
P., "Automated Model-Based GDI Engine Calibration Adaptive Online DoE
Approach," SAE 2002 World Congress, Detroit, Michigan, March 3-7, 2002, SAE
2002-01-0708.

[3] Brooks, T., Lumsden, G., and H.Blaxill, "Improving Base Engine Calibrations for
Diesel Vehicles Through the Use of DoE and Optimization Techniques," Powertrain
and Fluid Systems Conference and Exhibition, San Antonio, Texas, USA,
September 24-27, 2005, SAE 2005-01-3833.

[4] Knafl, A., Hagena, J. R., Filipi, Z. S., and Assanis, D. N., "Dual-Use Engine
Calibration: Leveraging Modern Technologies to Improve Performance-Emissions
Tradeoff," SAE Word Congress, Detroit, Michigan, April 11-14, 2005, SAE 2005-
01-1549.

[5] Steiber, J., Trader, A., Reese, R., Bedard, M., Musial, M., and Treichel, B.,
"Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain
Technologies Using Model-Controlled Dynamometers," SAE Transactions-Journal
of Passenger Cars- Electronics & Electrical Systems, v. 115, 2006, SAE 2006-01-
1409.

[6] Schuette, H. and Ploeger, M., "Hardware-in-the-Loop Testing of Engine Control
Units - A Technical Survey," SAE 2007 World Congress and Exhibition, Detroit,
Michigan, April 16-19, 2007, SAE 2007-01-0500.

[7] Philipp, O., Buhl, M., Diehl, S., Huber, M., Roehlich, S., and Thalhauser, J.,
"Engine ECU Function Development Using Software-in-the-Loop Methodology,"
SAE 2005 World Congress and Exhibition, Detroit, Michigan, 2005, SAE 2005-01-
0049.

[8] Caraceni, A., Cristofaro, F. D., Ferrana, F., and Scala, S., "Benefits of Using a Real-
Time Engine Model During Engine ECU Development," SAE 2003 World
Congress and Exhibition, March 3-6, 2003, SAE 2003-01-1049.

[9] Guerrier, M. and Cawsey, P., "The Development of Model-Based Methodologies
for Gasoline IC Engine Calibration," SAE Transactions-Journal of Engines, v. 113,
2004, SAE 2004-01-1466.

[10] Rask, E. and Sellnau, M., "Simulation-Based Engine Calibration: Tools,
Techniques, and Applications," SAE Transactions-Journal of Engines, v. 113, 2004,
SAE 2004-01-1264.

12

[11] Wu, H., "Decentralized Iterative Learning Control for a Class of Large Scale
Interconnected Dynamical Systems," Journal of Mathematical Analysis and
Applications, vol. 327, pp. 233-45, 2007.

[12] Jankovic, M. and Magner, S., "Fuel Economy Optimization in Automotive
Engines," Proceedings of the 2006 American Control Conference, Minneapolis,
MN, USA, 2006.

[13] Hagena, J. R., Filipi, Z. S., and Assanis, D. N., "Transient Diesel Emissions:
Analysis of Engine Operation During a Tip-In," SAE 2006 World Congress,
Detroit, Michigan, April 3-6, 2006, SAE 2006-01-1151.

[14] Atkinson, C. and Mott, G., "Dynamic Model-Based Calibration Optimization: An
Introduction and Application to Diesel Engines," SAE World Congress, Detroit,
Michigan, April 11-14, 2005, SAE 2005-01-0026.

[15] Rakopoulos, C. D., Giakoumis, E. G., Hountalas, D. T., and Rakopoulos, D. C.,
"The Effect of Various Dynamic, Thermodynamic and Design Parameters on the
Performance of a Turbocharged Diesel Engine Operating under Transient Load
Conditions," SAE 2004 World Congress and Exhibition, Detroit, Michigan, April 8-
11, 2004, SAE 2004-01-0926.

[16] Wijetunge, R. S., Brace, C. J., Hawley, J. G., Vaughan, N. D., Horroocks, R. W.,
and Bird, G. L., "Dynamic Behavior of a High-Speed, Direct-Injection Diesel
Engine," SAE Transactions-Journal of Engines, v. 108, 1999, SAE 1999-01-0829.

[17] Clark, N. N., Gautam, M., Rapp, B. L., Lyons, D. W., Graboski, M. S., McCormick,
R. L., Alleman, T. L., and National, P. N., "Diesel and CNG Transit Bus Emissions
Characterization by Two Chassis Dynamometer Laboratories: Results and Issues,"
SAE Transactions-Journal of Fuels and Lubricants, v. 108, 1999, SAE 1999-01-
1469.

[18] Samulski, M. J. and Jackson, C. C., "Effects of Steady-State and Transient
Operation on Exhaust Emissions from Nonroad and Highway Diesel Engines," SAE
Transactions-Journal of Engines, v. 107, 1998, SAE 982044.

[19] Green, R. M., "Measuring the Cylinder-to-Cylinder EGR Distribution in the Intake
of a Diesel Engine During Transient Operation," SAE Transactions-Journal of
Engines, v. 109, 2000, SAE 2000-01-2866.

[20] Clarke, G. M. and Kempson, R. E., Introduction to the Design and Analysis of
Experiments, Hodder Arnold, November 1996.

[21] Hicks, C. R. and Turner, K. V., Fundamental Concepts in the Design of
Experiments, 5th edition, Oxford University Press, USA, March 1999.

[22] Diamond, W. J., Practical Experiment Designs : for Engineers and Scientists, 3rd
edition, John Wiley & Sons, February 2001.

13

[23] Montgomery, D. C., Design and Analysis of Experiments, 4th edition, John Wiley
and Sons, 1997.

[24] Papalambros, P. Y. and Wilde, D. J., Principles of Optimal Design: Modeling and
Computation, 2nd edition, Cambridge University Press, July 2000.

[25] Edwards, S. P., Grove, D. M., and Wynn, H. P., Statistics for Engine Optimization,
1st edition, John Wiley & Sons Canada, December 2000.

[26] Amann, M., Buckingham, J., and Kono, N., "Evaluation of HCCI Engine Potentials
in Comparison to Advanced Gasoline and Diesel Engines," Powertrain and Fluid
Systems Conference and Exhibition, Toronto, Ontario, Canada, September 16-19,
2006, SAE 2006-01-3249.

[27] Ghauri, A., Richardson, S. H., and Nightingale, C. J. E., "Variation of Both
Symmetric and Asymmetric Valve Events on a 4-Valve SI Engine and the Effects
on Emissions and Fuel Economy," SAE 2000 World Congress, Detroit, Michigan,
March 6-9, 2000, SAE 2000-01-1222.

[28] Regner, G., Teng, H., Wieren, P. V., Park, J. I., Park, S. Y., and Yeom, D. J.,
"Performance Analysis and Valve Event Optimization for SI Engines Using Fractal
Combustion Model," Powertrain and Fluid Systems Conference and Exhibition,
Toronto, Ontario, Canada, September 16-19, 2006, SAE 2006-01-3238.

[29] Ayeb, M., Theuerkauf, H. J., and Winsel, T., "SI Engine Emissions Model Based on
Dynamic Neural Networks and D- Optimality," SAE World Congress, Detroit,
Michigan, April 11-14, 2005, SAE 2005-01-0019.

[30] Brahma, I., He, Y., and Rutland, C. J., "Improvement of Neural Network Accuracy
for Engine Simulations," Powertrain and Fluid Systems Conference and Exhibition,
Pittsburgh, Pennsylvania, September 27-30, 2003, SAE 2003-01-3227.

[31] Lowe, D. and Zapart, K., "Validation of Neural Networks in Automotive Engine
Calibration," Proceedings of the Fifth International Conference on Artificial Neural
Networks, pp. 221-6, Cambridge, UK, 1997.

[32] Meyer, S. and Greff, A., "New Calibration Methods and Control Systems with
Artificial Neural Networks," SAE 2002 World Congress, Detroit, Michigan, March
4-7, 2002, SAE 2002-01-1147.

[33] Burk, R., Jacquelin, F., and Wakeman, R., "A Contribution to Predictive Engine
Calibration Based on Vehicle Drive Cycle Performance," SAE 2003 World
Congress, Detroit, Michigan, USA, March 3-6, 2003, SAE 2003-01-0225.

[34] Jacquelin, F., Burk, R., and Wakeman, R. J., "Cam Phaser Actuation Rate
Performance Impact on Fuel Consumption and NOx Emissions Over the FTP-75
Drive Cycle," SAE 2003 World Congress, Detroit, Michigan, USA, 2003, SAE
2003-01-0023.

14

CHAPTER 2

SYSTEM IDENTIFICATION AND STOCHASTIC CONTROL

This chapter presents the underlying theory for building computational models

suitable for real-time sequential decision-making under uncertainty. The engine is treated

as a controlled stochastic system and engine calibration is formulated as a sequential

decision-making problem under uncertainty. The goal is to make the engine an

autonomous intelligent system that can select the values of the controllable variables in

real time, for each engine operating point transition, which optimize specified engine

performance criteria. In essence, we seek an optimal calibration that can be achieved for

steady-state and transient engine operating points resulting from the driver’s driving

style.

2.1 Modeling Engine Operation as a Stochastic Process

Engines are streamlined syntheses of complex physical processes determining a

convoluted dynamic system. They are operated with reference to engine operating points

and the values of various engine controllable variables. At each operating point, these

values highly influence engine performance criteria, e.g., fuel economy, emissions, or

acceleration. This influence becomes more important at engine operating point transitions

designated partly by the driver’s driving style and partly by the engine’s controllable

variables. Consequently, the engine is a system whose behavior is not completely

15

foreseeable, and its future evolution (operating point transitions) depends on the driver’s

driving style.

We seek a method to derive the optimal values of the controllable variables for

each engine operating point transition that optimize engine performance criteria. These

values are selected at points of time referred to as decision epochs (or stages), when the

time domain can be either discrete or continuous. In our case, discrete time is employed

because of the discreteness in the values of the controllable variables (control actions).

The engine output is sampled at the decision epochs.

The engine performance criteria are treated as controlled random functions, the

engine is treated as a controlled stochastic system, and engine operation is modeled as a

stochastic process. The problem of engine calibration is thus reformulated as a sequential

decision-making problem under uncertainty. The goal is to select the values of the

controllable variables for each engine operating point in real time that optimize the

random functions representing the engine performance criteria.

2.2 Sequential Decision-Making Problems Under Uncertainty

Sequential decision models [1, 2] are mathematical abstractions of situations in

which decisions must be made in several decision epochs while incurring a certain cost

(or reward) at each epoch. Each decision may influence the circumstances under which

future decisions will be made, and thus, the decision maker must balance his/her desire to

minimize (maximize) the cost (reward) of the present decision against his/her desire to

avoid future situations where high cost is inevitable.

An example of a decision-making process involves portfolio management. An

investor must balance his/her desire to achieve immediate return against a desire to avoid

investments in areas where low long-term yield is probable. The current decision will

depend also on his/her assessment of the areas with high long-term profit. This

16

assessment is a problem of state estimation, and the decision to be made by the decision

maker is formulated as a stochastic control problem, which requires a solution of the

estimation problem first. The prediction of areas with high profit can be expressed as the

conditional expectation 1{ | }k kE r r+ of the next period’s value given the present period’s

value. Consequently, the state estimation problem requires the knowledge of the

probability distribution of the value of the areas to be invested. The estimation of the

relevant probability distribution is the problem of identification (or system identification).

In most situations of decision-making in a stochastic environment, the problems of

identification, estimation, and control are all tied together. The deterministic and

stochastic system models aim to provide the mathematical framework for analysis of the

sequential decision-making problem in deterministic and stochastic environments,

respectively.

2.2.1 Deterministic System Model

A broadly applicable model of discrete-time deterministic optimal control of a

dynamic system over a finite number of stages M ∈` (a finite horizon) has two

principal features: (a) an underlying discrete-time dynamic system, and (b) a cost

function that is additive over time. The dynamic system expresses the evolution of the

system’s “state,” under the influence of decisions made at discrete instances of time. The

deterministic dynamic system [3] is described by the general system equation

1 (,), 0,1,..., -1,k k k k k M+ = =s f s α (2.1)

where n
k ∈s \ is the column vector of system’s states, which belong to some state space

S , and m
k ∈α \ is the input at time k; kα represents the vector of control actions chosen

by the decision maker from some feasible action set ()kA s , which is a subset of some

control space A . The system output is represented by the equation

17

(,), 0,1,..., -1,k k k k k M= =y h s α (2.2)

where .p
k ∈y \

Without loss of generality, the following discussion will refer to the one-

dimensional deterministic system model, namely,

1 (,), 0,1,..., -1,k k k ks f s k Mα+ = = (2.3)

(,).k k k ky h s α= (2.4)

An important property of the system described by Eq. (2.3) is that the current state

ks and the sequence of control actions 1, ,...,k k k ma a a+ + determine the state 1k ms + +

independently of the past values of state and control actions 1 2 1 2, ,..., , ,...k k k ks s a a− − − − , that

is, there is a function 1,k m kf + + such that

1 1, (, ,...,).k m k m k k k k ms f s a a+ + + + += (2.5)

The cost incurred at the kth decision epoch is given by a function (,)k kc s a . We

seek a finite sequence of functions 0 1 1{ , ,..., },Mπ µ µ µ −= defined as a control policy,

which minimizes the total cost over M decision epochs. The functions kµ specify the

control ()k ka sµ= that will be chosen when at kth decision epoch the state is ks .

Consequently, the total cost corresponding to a policy 0 1 1{ , ,..., },Mπ µ µ µ −= and initial

state 0s is given by

1

0
0

() (, ()),
M

k k
k

J s c s sπ µ
−

=

= ∑ (2.6)

18

where the states 1 2 1, ,..., Ms s s − are generated from 0s and π via the systems equation

1 (, ()), 0,1,..., 1.k k k ks f s s k Mµ+ = = − (2.7)

At each initial state 0s and π , there is a corresponding sequence of control

actions 0 1 1, ,..., Ma a a − , where ()k ka sµ= and ks is generated by Eq. (2.7). An alternative

formulation of the problem includes the selection of a sequence of control actions, rather

than a policy π , minimizing the following total cost

1

0
0

() (,).
M

k k
k

J s c s a
−

=

= ∑ (2.8)

The deterministic optimal control problem is representative of a plethora of

sequential decision-making problems of practical interest, and it constitutes the basis of

the stochastic system model.

2.2.2 Stochastic System Model

The stochastic system model [3, 4] establishes the mathematical framework for

the representation of dynamic systems such as engines that evolve stochastically over

time. The discrete-time stochastic optimal control problem is obtained from the

deterministic problem when the system includes a stochastic disturbance or noise at time

k, kw , in its portrayal. Consequently, Eq. (2.3) is replaced by the equation

1 (, ,), 0,1,..., 1.k k k k ks f s w k Mα+ = = − (2.9)

The sequence { ,kw k ≥ 0} is a stochastic process with a given probability law; that

is, the joint probability distribution of the random variables 0 1, ,..., kw w w is known for

19

each k. When the state is not directly observed, it is necessary to augment the state Eq.

(2.9) with the equation

(,), 0,1,..., -1,k k k ky h s v k M= = (2.10)

where ky is the observation or system’s output and kv is the measurement error or noise.

The sequence { ,kv k ≥ 0} is a stochastic process with known probability distribution. If in

Eq. (2.10) (,)k k k kh s v s= , then the system is completely observed, namely, k ky s= ,

whereas if k ky s≠ the system is partially observed.

The system’s state ks depends upon the input sequence 0 1 1, ,..., Ma a a − as well as

the random variables 0 1, ,..., kw w w , Eq. (2.9). Consequently, ks is a random variable; the

system output (,)k k k ky h s v= is a function of the random variables 0 1 0 1, ,..., , ,...,s s v v and

thus, is also a random variable. Similarly, the sequence of control actions ()k ka sµ= ,

{ ,ka k ≥ 0} , constitutes a stochastic process.

Definition 2.1 [4]. The random variables 0 0 1 0 1, , ,..., , ,...,s w w v v are addressed as

basic random variables, since the sequences { ,ks k ≥ 0} and { ,ka k ≥ 0} are constructed

from them.

As shown in the previous section, the deterministic system model, Eq. (2.3),

imposes the property that the state 1ks + at time k+1 is completely determined once ks and

ka are known. It is desirable for the stochastic system model, Eq. (2.9), to retain an

analogous property by imposing a condition directly on the basic random variables. That

is, whether the conditional probability distribution of 1ks + given ks and ka is independent

of previous values of states and control actions. Suppose the control policy

0 1 1{ , ,..., }Mπ µ µ µ −= is employed. The corresponding stochastic processes { ,ks kπ ≥ 0} ,

{ ,ky kπ ≥ 0} , and { ,ka kπ ≥ 0} , are defined by

1 0 0(, ,), ,k k k k ks f s a w s sπ π π π
+ = = (2.11)

20

(,).k k k ky h s vπ π=

Suppose further that the values realized by the random variables ks and ka are known.

These values are insufficient to determine the value of 1ks + since kw is not known. The

value of 1ks + is statistically determined by the conditional distribution of 1ks + given ks

and ka , namely

1| , (| ,).
k k ks s a k kP s aπ
+

⋅ (2.12)

For any subset 1k+S , that is, the state space at time k+1, and from Eq. (2.11), we have

1| , 1 | ,(| ,) (| ,),
k k k k k ks s a k k k w s a k k kP s a P s aπ π
+ + =S W (2.13)

where : { | (, ,) }.k k k k kw f s a w= ∈W S

The interpretation of Eq. (2.13) is that the conditional probability of reaching the

state space 1k+S at time k+1 given ks and ka is equal to the probability of being at the

disturbance space kW at time k. Suppose that the previous values of the random variables

ms and ma , 1m k≤ − are known. The conditional distribution of 1ks + given these values

will be

1| , 1 0 0 | , 0 0(| ,..., , ,...,) (| ,..., , ,...,).
k k k k k ks s a k k k w s a k k kP s s a a P s s a aπ π
+ + =S W (2.14)

The conditional probability distribution of 1ks + given ks and ka can be

independent of the previous values of states and control actions, if it is guaranteed that for

every control policy π , kw is independent of the random variables ms and ma , 1m k≤ − .

21

Kumar and Varaiya [4] proved that this property is imposed under the following

assumption.

Assumption 2.1. The basic random variables 0 0 1 0 1, , ,..., , ,...,s w w v v are all

independent.

Assumption 2.1 imposes a condition directly to the basic random variables which

eventually yields that the state 1ks + depends only on ks and ka . Moreover, the

conditional probability distributions do not depend on the control policy π , and thus, the

suuperscript π can be dropped

1| , 1 0 0 | , 1(| ,..., , ,...,) (| ,),
k k k k k ks s a k k k w s a k k kP s s s a a P s s aπ π
+ + += (2.15)

or
1 1| , 1 0 0 | , 1(| ,..., , ,...,) (| ,).

k k k k k ks s a k k k s s a k k kP s s s a a P s s a
+ ++ +=

A stochastic process { ,ks k ≥ 0} satisfying the condition of Eq. (2.15) is called a

Markov Process and the condition is addressed as a Markov property.

Definition 2.2 [5]. A Markov process is a random process { ,ks k ≥ 0} with the

property that given the values of the process from time zero up through the current time,

the conditional probability of the value of the process at any future time depends only on

its value at the current time. That is, the future and past are conditionally independent

given the present.

Definition 2.3 [6]. When the state of a Markov process is discrete, then the

process is called a Markov chain.

A large class of sequential decision-making problems under uncertainty can be

modeled as a Markov Decision Process (MDP). MDP [7] provides the mathematical

framework for modeling decision-making in situations where outcomes are partly random

and partly under the control of the decision maker. Decisions are made at points of time

referred to as decision epochs, and the time domain can be either discrete or continuous.

22

2.3 Markov Decision Process

The Markov decision process model consists of five elements: (a) decision

epochs; (b) states; (c) actions; (d) the transition probability matrix; and (e) the transition

cost (or reward) matrix. In this framework, the decision maker is faced with the problem

of influencing system behavior as it evolves over time, by making decisions (choosing

actions). The objective of the decision maker is to select the course of action (control

policy) which causes the system to perform optimally with respect to some predetermined

optimization criterion. Decisions must anticipate costs (or rewards) associated with future

system states-actions.

At each decision epoch k, the system occupies a state ks i= from the finite set of

all possible system states S

{1,2,..., }, .N N= ∈S ` (2.16)

In this state ks ∈S , the decision maker has available a set of allowable

actions, (), ()k k kA s A sα ∈ ⊆A , where A is the finite action space

().
k ks A s∈= SA ∪ (2.17)

The decision-making process occurs at each of a sequence of decision epochs

0,1,2,..., , k M M= ∈` . At each epoch, the decision maker observes a system’s

state ,ks i i= ∈S , and executes an action ()k kA sα ∈ , from the feasible set of actions

()kA s ⊆A at this state. At the next epoch, the system transits to the state 1 ,ks j j+ = ∈S

imposed by the conditional probabilities 1(| ,)k k kp s j s i α+ = = , designated by the

transition probability matrix P(⋅,⋅). The conditional probabilities of

P(⋅,⋅), : [0,1]p × →S A , satisfy the constraint

23

1
1

(| ,) 1,
N

k k k
j

p s j s i α+
=

= = =∑ (2.18)

where N is the cardinality of S, | | .N = S

Following this state transition, the decision maker receives a cost associated with

the action αk, 1(| ,), :k k kR s j s i Rα+ = = × →S A \ as imposed by the transition cost

matrix R(⋅,⋅).

2.3.1 The Cost of a Markov Control Policy

The solution to an MDP can be expressed as an admissible control policy so that a

given performance criterion is optimized over all admissible policies Π. An admissible

policy consists of a sequence of functions

0 1 1{ , ,..., },Mπ µ µ µ −= (2.19)

where kµ maps states ks into actions ()k k ksα µ= and is such that

() (), .k k k ks A s sµ ∈ ∀ ∈S

A Markov policy π determines the probability distribution of state process

{ ,ks k ≥ 0} and the control process { ,ka k ≥ 0} . Different policies will lead to different

probability distributions. In optimal control problems, the objective is to derive the

optimal control policy that minimize (maximize) the accumulated cost (reward) incurred

at each state transition per decision epoch. If a policy π is fixed, the cost incurred by π

when the process starts from an initial state 0s and up to the time horizon M is

1

0 1
0

() (| ,),
M

k k k k
k

J s R s j s i aπ
−

+
=

= = =∑ (2.20)

24

, , ().k ki j a A s∀ ∈ ∀ ∈S

The accumulated cost 0()J sπ is a random variable since ks and ka are random

variables. Hence the expected accumulated cost of a Markov policy is given by

1 1

0 1 1 0 0() ()

() { (| ,)} { (| , ())}.
k k

k k k k

M M

k k k k k k k k ks S s Sk ka A s a A s

J s E R s j s i a E R s j s i sπ µ
− −

+ +∈ ∈
= =∈ ∈

= = = = = =∑ ∑ (2.21)

The expectation is with respect to the probability distribution of { ,ks k ≥ 0} and

{ ,ka k ≥ 0} determined by the Markov policy π . Eq. (2.21) can readily be evaluated in

terms of the transition probability matrix as follows:

1

0 1 1
0 1

() (| ,) (| ,).
M N

k k k k k k k k
k j

J s P s j s i a R s j s i aπ
−

+ +
= =

= = = ⋅ = =∑∑ (2.22)

Consequently, the control policy that minimizes Eq. (2.22) is defined as the

optimal Markov policy π ∗ . Dynamic programming (DP) has been widely employed as

the principal method for computing global optimal policies in sequential decision-making

problems under uncertainty. Algorithms, such as value iteration, policy iteration, and

linear programming, have been extensively utilized in solving deterministic and

stochastic optimal control problems, Markov and semi-Markov decision problems, min-

max control problems, and sequential games. While the nature of these problems may

vary significantly, their underlying structures are very similar.

2.4 Dynamic Programming Algorithm

The Dynamic Programming (DP) [8] algorithm rests on the principle of

optimality. The principle of optimality states the following fact [1]. Let

0 1 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗
−= be an optimal policy for a finite decision-making problem, and

25

assume that, when using π ∗ , a given state ks i= occurs at time k with positive

probability. Consider the sub-problem whereby the process occupies the state ks i= at

time k and wishes to minimize the accumulated cost from time k to time M, namely,

1

1
()

{ () (| ,)},
k

k k

M

M M k k k ks S k ka A s

E R s R s s a
−

+∈
=∈

+ ∑
(2.23)

where 1() (| ,).M M M M M MR s R s s a+=

Then the truncated policy 1 1{ , ,..., }k k Mµ µ µ∗ ∗ ∗
+ − is optimal for the sub-problem.

The principle of optimality essentially suggests that an optimal policy can be

constructed in piecemeal fashion, first constructing an optimal policy for the “tail sub-

problem” involving the last decision epoch, then extending the optimal policy to the “tail

sub-problem” involving the last two decision epochs, and continuing in this manner until

an optimal policy for the entire problem is derived. The DP algorithm is founded on the

principle of backward induction. It proceeds sequentially, by solving all the tail sub-

problems of a given number of decision epochs, utilizing the solution of the tail sub-

problems of shorter number of decision epochs. The DP algorithm is stated as follows.

For every initial state 0s , the optimal cost 0()J sπ ∗

, given by Eq. (2.22), of the sequential

decision-making problem under uncertainty is equal to 0 0()J s , given by the last step of

the following algorithm, which proceeds backward in time from the decision epoch M-1

to decision epoch 0:

1() () (| ,),M M M M M M M MJ s R s R s s a+= = (2.24)

1()
() min { () ((, ,))}, 0,1,..., 1.

k k k
k k M M k k k k ka A s s S

J s E R s J f s a w k M+∈ ∈
= + = −

26

2.4.1 Optimal Control Policy

The optimal policy 0 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗= for the finite horizon problem can be

derived by

0 0arg min ().J s
π

π ∗

∈
=

Π

(2.25)

The finite-horizon model is appropriate when the decision-maker’s “lifetime” is

known, namely, the terminal epoch of the decision-making sequence. For problems with

a very large number of decision epochs, however, the infinite-horizon model is more

appropriate. In this context, the overall expected undiscounted cost is:

0 0 0 0() lim min ().
M

J s J s
π→∞ ∈

=
Π

 (2.26)

This relation is valuable computationally and analytically, and it holds under certain

conditions [3].

2.5 Engine Identification and Stochastic Control: Problem Definition

The problem of deriving the optimal values of the controllable variables for

engine operating transitions involves two major sub-problems. The first is exploitation of

the information acquired from the engine output to identify its behavior. That is, how an

engine representation can be built by observing engine operating point transitions is the

state estimation and system identification problem. The second is assessment of the

engine output with respect to alternative values of the controllable variables (control

policies), and selecting those that optimize specified engine performance criteria, e.g.,

fuel economy, emissions, engine power, etc. The latter forms a stochastic control

problem. Although computational considerations in many instances lead us to treat these

three aspects separately, in our approach they are considered simultaneously in solving

the engine calibration problem in real time, while the engine is running the vehicle.

27

The stochastic system model, Eq. (2.9), can provide a systematic treatment of the

general engine identification and stochastic control problem. The model adapted to the

engine, as illustrated in Figure 2.1, is repeated here for easy reference

1 (, ,), 0,1,..., 1,k k k k ks f s a w k M+ = = − (2.27)

(,),k k k ky h s v=

where ks represents the engine operating point, which belongs to the finite engine

operating space S , and ka represent the values of the controllable variables at time k.

These values belong to some feasible action set ()kA s , which is a subset of the control

space A . The sequence { ,kw k ≥ 0} is an unknown disturbance representing the driver

while commanding the engine through the gas pedal position. This sequence is treated as

a stochastic process with an unknown probability distribution; ky is the observation or

engine’s output, and kv is the measurement sensor error or noise. The sequence

{ ,kv k ≥ 0} is a stochastic process with unknown probability distribution.

The initial engine operating point 0s along with the sequences of gas pedal

position { ,kw k ≥ 0} , and the sensor error { ,kv k ≥ 0} are assumed to be independent,

which is a reasonable assumption in reality. In this context, the engine is treated as a

stochastic system and engine operation can be considered as a stochastic process

{ ,ks k ≥ 0} which satisfies the condition of Eq. (2.15). Consequently, engine operation

can be modeled as a Markov decision process with the cost function at each state (engine

operating point) transition to be represented by the engine output (e.g., fuel economy,

emissions, and engine power). The problem of engine calibration is thus formulated as a

sequential decision-making problem under uncertainty.

At each decision epoch k, the engine operates at a given state ks designated partly

by the driver 1kw − , and partly by the controllable variable 1ka − at time k-1. On that basis

28

the self-learning controller selects a value ka . One decision epoch later, the engine

transits to a new state 1ks + and the controller observes the engine output

1 1 1 1 1(,) (| ,)k k k k k k k ky h s v R s s a+ + + + += = associated with this state transition, as illustrated in

Figure 2.2 .

ykEngine
fk

Driver

Self-Learning
Controller

πk

Sensors

wk

sk Engine Output
hk

vk

αk

ykEngine
fk

Driver

Self-Learning
Controller

πk

Sensors

wk

sk Engine Output
hk

vk

αk

Figure 2.1 − The stochastic system model adapted for the engine calibration problem.

The controller (decision maker) is faced with the problem of influencing engine

operation as it evolves over time by selecting values of the controllable variables. The

goal of the controller is to select the optimal control policy (optimum values of the

controllable variables) for the sequences of engine operating point transitions,

corresponding to the driver’s driving style, that cause the engine to perform optimally

with respect to some predetermined performance criterion (cost function).

A key aspect of this process is that decisions are not viewed in isolation since the

controller simultaneously solves the state estimation and system identification sub-

problem by using the conditional probabilities of the sequence { ,ks k ≥ 0} given the

sequence { ,ka k ≥ 0} . Consequently, in the stochastic control problem the self-learning

controller can select those values that balance the desire to minimize the cost function of

the next engine operating transition against the desire to avoid future operating point

29

transitions where high cost is inevitable. This approach aims to provide engine calibration

that can capture transient engine designated by the driver’s driving style.

sk

Rk (sk+1| sk, αk)

…

Decision
Epoch

k

Decision
Epoch

k+1

Decision
Epoch

k+2

…
sk+1 sk+2

Rk+1 (sk+2| sk+1, αk+1)

sk

Rk (sk+1| sk, αk)

…

Decision
Epoch

k

Decision
Epoch

k+1

Decision
Epoch

k+2

…
sk+1 sk+2

Rk+1 (sk+2| sk+1, αk+1)

Figure 2.2 − Sequential decision-making problem.

30

2.6 References

[1] Bertsekas, D. P., Dynamic Programming and Optimal Control (Volumes 1 and 2),
Athena Scientific, September 2001.

[2] Bertsekas, D. P. and Shreve, S. E., Stochastic Optimal Control: The Discrete-Time
Case, 1st edition, Athena Scientific, February 2007.

[3] Bertsekas, D. P. and Tsitsiklis, J. N., Neuro-Dynamic Programming (Optimization
and Neural Computation Series), 1st edition, Athena Scientific, May 1996.

[4] Kumar, P. R. and Varaiya, P., Stochastic Systems, Prentice Hall, June 1986.

[5] Kemeny, J. G. and Snell, J. L., Finite Markov Chains, 1st edition, Springer,
December 5, 1983.

[6] Krishnan, V., Probability and Random Processes, 1st edition, Wiley-Interscience,
July 11, 2006.

[7] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 2nd Rev. edition, Wiley-Interscience, 2005.

[8] Bellman, R., Dynamic Programming. Princeton, NJ, Princeton University Press,
1957.

31

CHAPTER 3

REAL-TIME, SELF-LEARNING SYSTEM IDENTIFICATION

Modeling dynamic systems incurring stochastic disturbances for deriving a

control policy is a ubiquitous task in engineering. However, in some instances obtaining a

model of a system may be impractical or impossible. Alternative approaches employ a

simulation-based stochastic framework, in which the system interacts with its

environment in real time and obtains information that can be processed to produce an

optimal control policy. In this context, the problem of developing a policy for controlling

the system’s behavior is formulated as a sequential decision-making problem under

uncertainty. This problem involves two major sub-problems: (a) the state estimation and

system identification problem, and (b) the stochastic control problem. The first is

exploitation of the information acquired from the system output to identify its behavior,

that is, how a state representation can be built by observing the system’s state transitions.

The second is assessment of the system output with respect to alternative control policies,

and selecting those that optimize specified performance criteria.

This chapter reports research on implementing a computational model suitable to

solve the state estimation and system identification sub-problem. The evolution of the

system is modeled as a Markov Decision Process (MDP). A state-space representation is

constructed through a learning mechanism which can then be used in solving the

stochastic control problem. The model allows decision making based on gradually

32

enhanced knowledge of system response as it transitions from one state to another, in

conjunction with actions taken at each state.

3.1 Reinforcement Learning Algorithms

Deriving a control policy for dynamic systems is an off-line process in which

various methods from control theory are utilized iteratively. These methods aim to

determine the policy that satisfies the system’s physical constraints while optimizing

specific performance criteria. A challenging task in this process is to derive a

mathematical model of the system’s dynamics that can adequately predict the response of

the physical system to all anticipated inputs. Exact modeling of complex engineering

systems, however, may be infeasible or expensive. Alternative methods have been

developed enabling the real-time implementation of control policies for systems when an

accurate model is not available. In this framework, the system interacts with its

environment, and obtains information enabling it to improve its future performance by

means of costs (or rewards) associated with control actions taken. This interaction

portrays the learning process conveyed by the progressive enhancement of the system’s

“knowledge” regarding the course of action (control policy) that maximizes the

accumulated rewards with respect to the system’s operating point (state) transitions. The

environment is assumed to be non-deterministic; namely, taking the same action in the

same state on two different decision time steps (decision epochs or stages), the system

may transit to a different state and incur a dissimilar cost in the subsequent step.

Consequently, the problem of developing a policy for controlling the system’s behavior is

formulated as a sequential decision-making problem under uncertainty.

Dynamic programming (DP) has been widely employed as the principal method

for analysis of sequential decision-making problems [1]. Algorithms, such as value

iteration and policy iteration, have been extensively utilized in solving deterministic and

33

stochastic optimal control problems, Markov and semi-Markov decision problems,

minimax control problems, and sequential games. However, the computational

complexity of these algorithms in some occasions may be prohibitive and can grow

intractably with the size of the problem and its related data, referred to as the DP “curse

of dimensionality” [2]. In addition, DP algorithms require the realization of the

conditional probabilities of state transitions and the associated costs, implying a priori

knowledge of the system dynamics. However, even if the transition probabilities are

known, the problem of analytic computation might be too hard, and one might seek an

approximation method that exploits the possibilities of simulation.

Simulation-based methods for solving sequential decision-making problems under

uncertainty have been primarily developed in the field of Reinforcement Learning (RL)

[2-4]. RL has aimed to provide algorithms, founded on DP, for learning control policies

when analytical methods cannot be used effectively, or the system’s state transition

probabilities are not known [5]. A major influence on research leading to current RL

algorithms has been Samuel’s method [6, 7], used to modify a heuristic evaluation

function for deriving optimal board positions in the game of checkers. In this algorithm,

Samuel represented the evaluation function as a weighted sum of numerical features and

adjusted the weights based on an error derived from comparing evaluations of current and

predicted board positions. This approach was refined and extended by Sutton [8, 9] to

introduce a class of incremental learning algorithms, Temporal Difference (TD). TD

algorithms are specialized for deriving optimal policies for incompletely known systems,

using past experience to predict their future behavior. Watkins [10] extended Sutton’s TD

algorithms and developed an algorithm for systems to learn how to act optimally in

controlled Markov domains by explicitly utilizing the theory of DP. A strong condition

implicit in the convergence of Q-learning to an optimal control policy is that the sequence

of decision epochs that forms the basis of learning must include an infinite number of

decision epochs for each initial state and action. Q-learning is considered the most

34

popular and efficient model-free learning algorithm in deriving optimal control policies

in Markov domains [11]. Schwartz [12] explored the potential of adapting Q-learning to

an average-cost framework with his R-learning algorithm; Bertsekas and Tsitsiklis [3]

presented a similar to Q-learning average-cost algorithm. Mahadevan [13] surveyed

reinforcement-learning average-cost algorithms and showed that these algorithms do not

always produce bias-optimal control policies.

The aforementioned algorithms consist of evaluation functions attempting to

successively approximate the Bellman equation. These evaluation functions assign to

each state the total cost expected to accumulate over time starting from a given state

when a policy π is employed. Although many of these algorithms are eventually

guaranteed to find suboptimal policies in sequential decision-making problems under

uncertainty, their use of the accumulated data acquired over the learning process is

inefficient, and they require a significant amount of experience to achieve acceptable

performance [11]. This requirement arises due to the formation of these algorithms in

deriving optimal policies without learning the system models en route; that is they do not

solve the state estimation and system identification problem simultaneously.

Algorithms for computing optimal policies by learning the models are especially

important in applications in which real-world experience is considered expensive.

Sutton’s Dyna architecture [14, 15] exploits strategies which simultaneously utilize

experience in building the model and adjust the derived policy. Prioritized sweeping [11]

and Queue-Dyna [16] are similar methods concentrating on the interesting subspaces of

the state-action space. Barto et al. [4] developed another method, called Real-Time

Dynamic Programming (RTDP), referring to the cases in which concurrently executing

DP and control processes influence one another. RTDP focuses the computational effort

on the state-subspace that the system is most likely to occupy. However, these methods

are specific to problems in which the system needs to achieve particular goal states and

the initial cost of every goal state is zero.

35

3.2 Identification and Stochastic Adaptive Control

Adaptive control algorithms provide a systematic treatment in deriving optimal

control policies in stochastic systems where exact modeling is not available a priori. In

this context, the evolution of the system is modeled as a countable state controlled

Markov chain whose transition probability is specified up to an unknown parameter

taking values in a compact metric space.

In general, the analysis of optimal control in dynamic systems starts with a given

state space model

1 (, ,),k k k k ks f s wα+ = (3.1)

(,).k k k ky h s v= (3.2)

Stating that the model is given implies that the functions kf , kh , and the

probability distribution of the basic random variables 0 0 1 0 1, , ,..., , ,...,s w w v v are all known.

Moreover, the conditional distributions of 1(,)k ks y+ given (,)k ks a are also known. This

is the off-line information in contrast to the on-line one which at time k consists of the

observations 1(,)k k kz y a −= . Consequently, the off-line information specifies a unique

system. However, the off-line information is often insufficient to characterize a model

completely; that is, the system model is not known initially. In this context, we are faced

with the problem of how to make a rational choice of the control values 0 1, ,...,a a when

the model is unspecified. This problem can be reformulated as a problem with partial

observation. Nevertheless, the resulting computational burden increases making this

formulation impractical except in the case when the unspecified system model is known

to belong to a finite set.

Suppose the system model is unknown. As we make more observations kz , i.e.,

as k increases, we ought to be able to characterize better the system model. The abstract

36

framework that describes and analyzes this learning process is quite simple. A particular

model is specified by a triple [17]

: (, ,),M f h= P (3.3)

where f is the function in the state equation, h is the function in the observation

equation, and P is the probability distribution of the basic random variables. It is

assumed that the off-line information is such as to guarantee that the true system model

belongs to the family of models : (, ,)M f hθ θ θ θ= P parameterized by the finite-

dimensional vector θ which is known to belong to the set Θ . Consequently, it is known

a priori that the true system model corresponds to some true parameter θ ∈ΘD , which is

unidentified initially. At time k, an estimation k̂θ of the true parameter is made based on

the on-line observation kz . If the estimation or identification procedure is sufficient then

k̂θ should approach θ D as k increases.

The initial uncertainty about the system is reflected in the parameterization, i.e.,

the function (, ,)f hθ θ θθ → P , and the size of the parameter set Θ . This size may be

large or small, and the parameterization may be more or less complex, i.e., linear vs.

nonlinear, one-to-one vs. many-to-one. In practice, however, the set of models { }M θ can

only approximately represent the true system. Better approximations will lead to more

complex parameterizations and a larger model set Θ making the identification problem

more complicated. Consequently, the choice of parameterization must keep a balance

between the demand for accuracy and the need to limit the computational burden.

The stochastic adaptive control problem has been extensively reported in the

literature. Mandl [18] considered an adaptive control scheme providing a minimum

contrast estimate of the unknown model of the systems at each decision epoch (stage),

and then applying the optimal feedback control corresponding to this estimate. If the

system satisfies a certain “identifiability condition”, the sequence of parameter estimates

37

converges almost surely to the true parameter. Borkar and Variaya [19] removed this

identifiability condition and showed that when Θ is finite, the maximum likelihood

estimate k̂θ converges almost surely to a random variable. Borkar and Variaya [20], and

Kumar [21] examined the performance of the adaptive control scheme of Mandl without

the “identifiability condition,” but under varying degrees of generality of the state,

control, and model spaces with the attention restricted to the maximum likelihood

estimate. Doshi and Shreve [22] proved that if the set of allowed control laws is

generalized to include the set of randomized controls, then the cost of using this scheme

will almost surely equal to the optimal cost achievable if the true parameter were known.

Kumar and Becker [23] implemented a novel approach to the adaptive control problem

when a set of possible models is given including a new criterion for selecting a parameter

estimate. This criterion is obtained by a deliberate biasing of the maximum likelihood

criterion in favor of parameters with lower optimal costs. These results were extended by

assuming that a finite set of possible models is not available [24]. Sato, Abe, and Takeda

[25-27] proposed a learning controller for Markovian decision problems with unknown

probabilities. The controller was designed to be asymptotically optimal considering a

conflict between estimation and control for determination of a control policy. Kumar

[28], and Varaiya [29] have provided comprehensive surveys of the aforementioned

research efforts.

Certainty Equivalence Control (CEC) [17, 28] is a common approach in

addressing stochastic adaptive control problems. The unknown system parameter is

estimated at each decision epoch while assuming that the decision maker selects a control

action as if the estimated parameter is the true one. The major drawback of this approach

is that the decision maker may get locked in a false parameter when there is a conflict

between learning and control. Forcing controls, different actions from those imposed by

the certainty equivalence control, at some random decision epochs are often utilized to

address this issue. The certainty equivalence control employing a forcing strategy is

38

optimal in stochastic adaptive optimization problems with the average-cost-per-unit-time

criterion.

Various stochastic adaptive control schemes have considered the classical

example of the multi-armed bandit problem. Lai and Robbins [30] developed a solution

methodology for bandits with independent identically distributed arms by introducing the

average-cost-per-unit-time criterion. Ananthanam, Varaiya, and Walrand [31], and

Agrawal, Hedge, and Teneketzis [32] generalized this result by developing various

extensions of the Lai-Robbins formulation in the multi-armed bandit problem. Agrawal,

Teneketzis, and Ananthanam [33] developed a “translation scheme” which along with the

construction of an “extended probability space” solved the controlled Markov chain

problem by converting it to a form similar to that for the controlled Markov independent

sequence problem [34]. These results were utilized by Graves and Lai [35] to develop

adaptive control rules considering compact parameter set and general state-space while

assuming finite set of admissible policies. In these adaptive control schemes, the best

possible performance depends on the on-line forcing strategy. Agrawal and Teneketzis

[36] studied the rate of forcing to asses the performance of a certainty equivalence control

with forcing for the multi-armed bandit problem and the adaptive control of Markov

chains.

Although the aforementioned research work has successfully led to

asymptotically optimal adaptive control schemes, their underlying framework imposes

limitations in implementing these schemes on the engine calibration problem defined as a

sequential decision-making problem under uncertainty in Chapter 2. In particular, in the

engine calibration problem, the engine model is assumed to be completely unknown, and

thus, parameterization cannot be developed. Moreover, the requirement of real-time

derivation of the values of the engine controllable variables over an unknown horizon

imposes an additional computational burden in implementing such control schemes.

39

In this chapter, a computational model suited for real-time sequential decision-

making under uncertainty modeled as controlled Markov chain is proposed. The model

consists of a new state-space representation that addresses the state estimation and system

identification sub-problem for the entire system (engine) operating domain. Furthermore,

it utilizes an evaluation function suitable for lookahead control algorithms, and thus, for

real-time implementation.

3.3 Finite State Controlled Markov Chains

The evolution of the system (engine) is modeled as a Markov Decision Process

with a finite state space (engine operating domain) S and action space (values of the

engine controllable variables) A . So, a discrete-time Markov process { , 0}ks k ≥ is

considered that takes values in some countable set S , that is, the state belongs to a finite

state space {1,2,..., },N N= ∈S ` . The control action ka takes values in a pre-specified

space A . Consequently, the process is a controlled Markov chain. The transition

probabilities are specified by the N N× matrix valued function on A ,

() : { (), , },ija a a i j a→ = ∀ ∈ ∀ ∈P P S A (3.4)

with the interpretation

1 1 0 0Prob{ | , ,..., , ,..., } () , 0, , .k k k k ij k ijs j s i s s a a a p k i j+ −= = = = ≥ ∀ ∈SP (3.5)

Definition 3. 1 [37]. The chain { , 0}ks k ≥ is called homogeneous if

1 1 0(|) (|),ij k k ijs j s i s j s i+ = = = = =P P 0, , .k i j∀ ≥ ∀ ∈S (3.6)

40

Theorem 3. 1 [38]. The transition probability matrix ()aP is a stochastic matrix,

that is
(a) ()aP has non-negative entries, or 0, ,ijp i j≥ ∀ ∈S ,

(b) the sum of its rows is equal to one, or 1,ij
j

p i
∈

= ∀ ∈∑
S

S .

Proof. The proof is provided by Grimmett and Stirzaker [38].

,

Definition 3. 2 [39]. The n-step transition probability matrix (,) ()m m n

ij ka+P is the

matrix of n-step transition probabilities (,) (,)() (|)m m n m m n
ij k ij m n ma s j s i+ +

+= = =P P .

The n-step transition probability matrix satisfies the Chapman-Kolmogorov

equation,

(,) () () ,m m n m n
ij il lj

l

p p p+

∈

= ⋅∑
S

(3.7)

or (,) () .m m n n
a k aa+ =P P

3.3.1 Classification of States in a Markov Chain

The evolution of a Markov chain can be seen as the motion of a notional particle

which jumps between the states of the state space i∈S at each decision epoch. The

classification of the states in a Markov chain aims to provide insight towards modeling

appropriately the evolution of a controlled dynamic system.

Definition 3. 3 [38]. A Markov state i∈S is called recurrent (or persistent), if

0(for some 0 |) 1,ij ks i k s i= ≥ = =P (3.8)

that is, the probability of eventual return to state i , having started from i , is one.

41

The first time the chain { , 0}ks k ≥ visits a state i∈S is given by

1() : min{ 1: }.kT i k s i= ≥ = (3.9)

1()T i is called the first entrance time or first passage time of state i . It may

happen that ks i≠ for any 1k ≥ . In this case, 1() minT i = ∅ , which is taken to be ∞ .

Consequently, if the chain never visits state i for any time 1k ≥ , 1()T i = ∞ . Given that

the chain starts in state i , the conditional probability that the chain returns to state i in

finite time is

1 0: (() |).iif T i s i= < ∞ =P (3.10)

Consequently, for a recurrent state i 1iif = . Furthermore, if the expected time for the

chain to return to a recurrent state i is finite, the state is said to be positive recurrent;

otherwise, the state is said to be null recurrent. The nth entrance time of state i is given

by

1() : min{ () : }.n n kT i k T i s i−= ≥ = (3.11)

Definition 3. 4 [38]. The mean recurrence time iµ of a state i is defined as

1 0: { () | }.i E T i s iµ = = (3.12)

Definition 3. 5 [38]. The period ()d i of a state i is defined by

() : { : () 0},nd i gcd n T i= > (3.13)

42

that is, the greatest common divisor of the decision epochs at which return is possible.

The state i is periodic if () 1d i > and aperiodic if () 1d i = .

Definition 3. 6 [38]. A Markov state is called ergodic, if it is positive recurrent,

and aperiodic.

Definition 3. 7 [38]. If the chain started from state i and visits state j , that is
()

0(|) 0n
ij ns j s i= = >P for some 0n > , it is said that i communicates with j , and it is

denoted i j→ . It is said that i and j intercommunicate if i j→ and j i→ , in which

case it is denoted i j↔ .

Definition 3. 8 [39]. A Markov chain is called irreducible if all states intercom-
municate in a finite number of decision epochs, that is, ()

0(|) 0, ,n
ij ns j s i i j= = > ∀ ∈SP .

3.4 The Predictive Optimal Decision-Making Computational Model

The Predictive Optimal Decision-making (POD) [40] learning model

implemented in this dissertation consists of a new state-space system representation. The

state-space representation accumulates gradually enhanced knowledge of the system’s

transition from each state to another in conjunction with actions taken for each state. This

knowledge is expressed in terms of transition probabilities and an expected evaluation

function associated with each Markov state. The major differences between the proposed

computational model and the existing RL methods are: (a) the model solves the state

estimation and system identification sub-problem for the entire system’s operating

domain by learning the transition probability and cost matrices, and (b) the model utilizes

an evaluation function suitable for lookahead control algorithms, and thus, for real-time

implementation. While the model’s knowledge regarding the transition probabilities is

advanced, a real-time lookahead control algorithm, which is developed in Chapter 4, can

realize the control actions in the stochastic control sub-problem. This approach is

especially appealing to learning engineering systems in which the initial state is not fixed

43

[41, 42], and recursive updates of the evaluation functions to approximate the Bellman

equation would demand a huge number of iterations to achieve the desired system

performance.

The model considers controlled systems that their evolution is modeled as a

Markov chain, with the following assumptions.

Assumption 3. 1. The Markov chain is homogeneous.

Assumption 3. 2. The Markov chain is ergodic, that is, the states are positive

recurrent and aperiodic.

Assumption 3. 3. The Markov chain is irreducible. Consequently, each state i of

the Markov chain intercommunicates with each other , ,i j i j↔ ∀ ∈S , that is, each

system’s state can be reached with a positive probability from any other state in finite

decision epochs.

3.4.1 Construction of the POD State Space Representation

The new state-space representation defines the POD domain S� , which is

implemented by a mapping H from the Cartesian product of the finite state space and

action space of the Markov chain { , 0}ks k ≥

,× × →H : S A S S� (3.14)

where {1,2,..., }, N N= ∈S ` denotes the Markov state space, and

(),
k k ks A s s i∈= ∀ = ∈SA S∪ stands for the finite action space. Each state of the POD

domain represents a Markov state transition from ks i= ∈S to 1ks j+ = ∈S for all 0k ≥ ,

as illustrated in Figure 3.1, that is

1 1 1 1() () 1

: | = , (| ,) 1, | | ,
k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i N
µ

α+ + + +∈
=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � � (3.15)

44

, , () ().k ki j s A sµ∀ ∈ ∀ ∈S

Definition 3. 9. The mapping H generates an indexed family of subsets, iS� , for

each Markov state ks i= ∈S , defined as Predictive Representation Nodes (PRNs). Each

PRN is constituted by the set of POD states 1
ij
k is + ∈S�� representing the state transitions

from the state ks i= ∈S to all other Markov states

{ }1 1() ()
| = , .

k k

ij
k k ks A si s s i s j j

µ+ +∈
= = → ∀ ∈S S� � (3.16)

Markovian
domain

POD domainMarkovian
domain

POD domain

Figure 3.1 − Construction of the POD domain.

PRNs partition the POD domain insofar as the POD underlying structure captures

the state transitions in the Markov domain as depicted in Figure 3.2, namely

, withiij
iks ∈

= SS S��
� �∪

(3.17)

45

.iij
iks ∈

=∅S S��
�∩

PRNs, constituting the fundamental aspect of the POD state representation,

provide an assessment of the Markov state transitions along with the actions executed at

each state. This assessment aims to establish a necessary embedded property of the new

state representation so as to consider the potential transitions that can occur in subsequent

decision epochs. The assessment is expressed by means of the PRN value, 1(| ())ij
i k iR s sµ+� ,

which accounts for the minimum expected cost that can be achieved by transitions

occurring inside a PRN.

Definition 3. 10. The PRN value 1(| ())ij
i k iR s sµ+� is defined as

1 1 1() 1

(| ()) : min (| , ()) (| , ()),
k

N
ij

i k k k k k k k ks j
R s s i p s j s i s R s j s i s

µ
µ µ µ+ + +∈

=

= = = = ⋅ = =∑A
� (3.18)

1 , , , () (), and | | .ij
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��

lS�

jS�

iS�

…

lS�

jS�

iS�

…

Figure 3.2 − Partition of POD through the PRNs.

46

The PRN value is exploited by POD state representation as an evaluation metric

to estimate the subsequent Markov state transitions. The estimation property is founded

on the assessment of POD states by means of an expected evaluation

function, 1(, ())i ij
PRN k kR s sµ+� , defined as

{1 1 1

2 1

(, ()) (| , ()) (| , ())

 (| ())},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (3.19)

2 1 1, , , , (), (), () ().jm
k k k k ks i j m s A s s A sµ µ+ + +∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈S S��

Consequently, employing the POD evaluation function through Eq. (3.19), each

POD state, 1
ij
k is + ∈S�� , is comprised of an overall cost corresponding to: (a) the expected

cost of transiting from state ks i= to 1ks j+ = (implying also the transition from the PRN

iS� to jS�); and (b) the minimum expected cost when transiting from 1ks j+ = to any other

Markov state at k+2 (transition occurring into jS�).

3.4.2 Self-Learning System Identification

While the system interacts with its environment, the POD model learns the system

dynamics in terms of the Markov state transitions. The POD state representation attempts

to provide a process in realizing the sequences of state transitions that occurred in the

Markov domain, as infused in PRNs. The different sequences of the Markov state

transitions are captured by the POD states and evaluated through the expected evaluation

functions given in Eq. (3.19). Consequently, the lowest value of the expected evaluation

function at each POD state essentially estimates the subsequent Markov state transitions

with respect to the actions taken. As the process is stochastic, however, the real-time

learning method still has to build a decision-making mechanism of how to select actions,

namely, how to solve the stochastic control problem. This problem is addressed in

Chapter 4.

47

The learning performance is closely related to the exploration-exploitation

strategy of the action space. More precisely, the decision maker has to exploit what is

already known regarding the correlation involving the admissible state-action pairs that

minimize the costs, and also to explore those actions that have not yet been tried for these

pairs to assess whether these actions may result in lower costs. A balance between an

exhaustive exploration of the environment and the exploitation of the learned policy is

fundamental to reach nearly optimal solutions in a few decision epochs and, thus, to

enhance the learning performance. This exploration-exploitation dilemma has been

extensively reported in the literature. Iwata et al. [43] proposed a model-based learning

method extending Q-learning and introducing two separated functions based on statistics

and on information by applying exploration and exploitation strategies. Ishii et al. [44]

developed a model-based reinforcement learning method utilizing a balance parameter,

controlled through variation of action rewards and perception of environmental change.

Chan-Geon et al. [45] proposed an exploration-exploitation policy in Q-learning

consisting of an auxiliary Markov process and the original Markov process. Miyazaki et

al. [46] developed a unified learning system realizing the tradeoff between exploration

and exploitation. Hernandez-Aguirre et al. [47] analyzed the problem of exploration-

exploitation in the context of the approximately correct framework and studied whether

it is possible to set bounds on the complexity of the exploration needed to achieve a fixed

approximation error over the action value function with a given probability.

An exhaustive exploration of the environment is necessary to evade premature

convergence on a sub-optimal solution even if this may result in both sacrificing the

system’s performance in the short run and increasing the learning time. In our case it is

assumed that, for any state ks i= ∈S , all actions of the feasible action

set () ()k ks i A s iµ = ∈ = are selected by the decision maker at least once. At the early

decision epochs and until full exploration of the action set (),kA s i i= ∀ ∈S occurs, the

48

mapping from the states to probabilities of selecting the actions is constant; namely, the

actions for each state are selected randomly with the same probability

1(() |) , () (), .
()

p i i i A i i
A i

µ µ= ∀ ∈ ∀ ∈S (3.20)

When the exploration phase is complete, a lookahead control algorithm can be

utilized to build up the decision-making mechanism.

3.4.3 Stationary Distributions and the Limit Theorem

The behavior of a Markov chain after a long time k has elapsed is described by

the stationary distributions and the limit theorem. The sequence { , 0}ks k ≥ does not

converge to some particular state i∈S since it enjoys the inherent random fluctuation

which is specified by the transition probability matrix. Subject to certain conditions, the

distribution of { , 0}ks k ≥ settles down.

Definition 3. 11 [38]. The vector ρ is called a stationary distribution of the chain

if ρ has entries (,)i iρ ∈S such that:
(a) 0iρ ≥ for all i , and 1i

i
ρ

∈

=∑
S

,

(b) = ⋅ρ ρ P , that is i j ji
j

ρ ρ
∈

= ⋅∑
S

P , where jiP is the transition probability

1(|)ji k ks i s j+ = =P , for all i .

If the transition probability matrix of a Markov chain ijP is raised to a higher

power, the resulting matrix is also a transition probability matrix. If the matrix is kept

raising to higher powers, then the elements in any given column start converging to the

same number. This property can be illustrated further in the following simple example.

Let us consider a Markov chain with two states {1,2}=S and a transition probability

matrix

49

0.7 0.3
.

0.4 0.6
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P

This matrix represents the one-step transition probabilities of the states.

Consequently, if the chain is at state 1 there is a probability of 0.7 that it will remain there

and of 0.3 that it will transit to state 2. Similarly, if the chain is at state 2, there is a

probability of 0.4 that it will transit to state 1 and of 0.6 that it will remain at state 2. If

this matrix is raised to the second order, the resulting matrix yields the two-step transition

probabilities

2 0.7 0.3 0.7 0.3 0.61 0.39
.

0.4 0.6 0.4 0.6 0.52 0.48
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P

The elements of the two-step transition probability matrix essentially return the

conditional probability that the chain will transit to a particular state within two decision

epochs. Consequently, the value 2
12 1(2 | 1) 0.39k ks s+ = = =P in the above matrix is the

conditional probability that the chain will go from state 1 to state 2 in two decision

epochs. If the one-step transition probability matrix is raised to the 8th power, it is noticed

that the elements in any given column start converging to 0.57 and 0.43, respectively,

namely,

8 0.5715 0.4285
.

0.5714 0.4286
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P

These numbers constitute the stationary distribution of the chain, vector ρ , that is,

1

2

0.57
.

0.43
ρ
ρ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

ρ

50

The limit theorem states that if a chain is irreducible with positive recurrent states,

the following limit exists

1lim (|) ().n
j ij k k nn

s j s i s jρ +→∞
= = = = =P P (3.21)

Theorem 3. 2 (“Limit Theorem”) [38]. An irreducible Markov chain has a

stationary distribution ρ if and only if all the states are positive recurrent. Furthermore,

ρ is the unique stationary distribution and is given by 1
i iρ µ−= for each i∈S , where iµ

is the mean recurrence time of i .

Proof. The proof is provided by Grimmett and Stirzaker [38].

,

Stationary distributions have the following property

, 0n n= ⋅ ∀ ≥ρ ρ P (3.22)

3.4.4 Convergence of POD Model

As the system interacts with its environment, the POD state representation

realizes the sequences of state transitions that occurred in the Markov domain, as infused

in PRNs. In this section, it is shown that this realization determines the stationary

distribution of the Markov chain.

Definition 3. 12. Given a set C ⊂ \ and a variable x , the indicator function,

denoted by ()CI x , is defined by

1,
() :

0,C

x C
I x

x C
∈⎧

= ⎨ ∉⎩
 (3.23)

51

Lemma 3. 1. Each PRN is irreducible, that is , ,i j i j↔ ∀ ∈S S S� � .

Proof. At the decision epoch k , the state transition from i to j corresponds to

the ij
ks� inside the PRN iS� . The next state transition will occur from the state j to any

other Markov state. Consequently, by Definition 3.9, the next state transition will occur
in jS� . By Assumption 3.3, all states intercommunicate with each other, that is,

, ,i j i j↔ ∀ ∈S . So PRNs intercommunicate and thus they are irreducible. The lemma is

proved.

,

The number of visits of the chain to the state j∈S between two successive visits

to state i∈S at the decision epoch k M= , that is, the number of visits of the POD state
ij
Ms ∈S�� , is given by

1{ } { () }
1

() : ()
k

M
ij
M s j T i k k

k
V s I s= ≥

=

=∑ ∩� (3.24)

where 1()T i is the time of the first return to state i∈S .

Definition 3. 13. The mean number of visits of the chain to the state j∈S

between two successive visits to state i∈S is

() : { () | },ij ij
M M kV s E V s s i= =� � (3.25)

or 1 0
1

() : (, () |).
M

ij
M k

k

V s s j T i k s i
=

= = ≥ =∑� P

Definition 3. 14. The mean recurrence time time

i
µS� that the chain spends at the

PRN iS� is

1 0
1

: () (, () |).
i

M
ij
M k

j j k
V s s j T i k s iµ

∈ ∈ =

= = = ≥ =∑ ∑∑S
S S

� � P (3.26)

52

Lemma 3. 2. The mean recurrence time of each PRN iS� ,
i

µS� , is equal to the mean

recurrence time of state i∈S , iµ .

Proof. It was shown (Lemma 3.1) that each time the Markov chain transits from

one state i∈S to a state j∈S there is a corresponding transition from the PRN iS� to

jS� . Consequently, the number of visits of the chain to the state i∈S is equal to the

number of visits to the PRN iS� . Taken the expectation of this number yields the mean

recurrence time, by Definition 3. 13. The lemma is proved.

,

Proposition 3. 1. If A, B, and C are some events and

(|) (|)A B C A B∩ =P P , (3.27)

then

(|) (|) (|)A C B A B C B∩ = ⋅P P P (3.28)

Proof.

()(|)
()

A B CA C B
B

∩ ∩
∩ =

PP
P

 (3.29)

using the identity (|) () ()A B B A B⋅ = ∩P P P , Eq. (3.29) yields

(|) () (|) ()
() ()

A C B C B A B C B
B B

∩ ⋅ ∩ ⋅ ∩
=

P P P P
P P

 by using Eq. (3.27)

(|) () (|) (|) ()
() ()

A B C B A B C B B
B B
⋅ ∩ ⋅ ⋅

= =
P P P P P

P P

(|) (|).A B C B= ⋅P P

,

53

It remains to present the main result of the POD computational model, namely,

that the realization of the sequences of state transitions that occurred in the Markov

domain as infused by the PRNs determines the stationary distribution of the Markov

chain.

Theorem 3. 3. The POD state representation generates the stationary distribution

ρ of the Markov chain. Moreover, the stationary probability is given by the mean

recurrence time of each PRN iS� , 1

iiρ µ−= S� .

Proof. Since the chain is ergodic with irreducible states, it is guaranteed that the

chain has a unique stationary distribution, and for each state i∈S the stationary

probability is equal to 1
i iρ µ−= .

i iρ µ⋅ =

Siiρ µ= ⋅ � by Lemma 3. 2

1 0 0
S 1

(, () |) ()
M

k
j k

s j T i k s i s i
∈ =

= = ≥ = ⋅ =∑∑P P (3.30)

1 0
S 1

(, () ,)
M

k
j k

s j T i k s i
∈ =

= = ≥ =∑∑P (3.31)

by using the identity (|) () ()A B B A B⋅ = ∩P P P .

For 1k = , Eq. (3.31) yields

1 0
S

(, () 1,) 1.k
j

s j T i s i
∈

= ≥ = =∑P
(3.32)

For k ≥ 2 , Eq. (3.30) yields

1 0 0
S 1

(, () |) ()
M

k
j k

s j T i k s i s i
∈ =

= ≥ = ⋅ =∑∑P P

54

0
S 1

(, for 1 1,)
M

k m
j k

s j s i m k s i
∈ =

= = ≠ ≤ ≤ − =∑∑P (3.33)

0 0 0
S 1

(|) (for 1 1|) ()
M

k m
j k

s j s i s i m k s i s i
∈ =

= = = ⋅ ≠ ≤ ≤ − = ⋅ =∑∑P P P

0 0
S 1

(|) (for 1 1,)
M

k m
j k

s j s i s i m k s i
∈ =

= = = ⋅ ≠ ≤ ≤ − =∑∑P P

0 0
1 S

(|) (for 1 1,)
M

k m
k j

s j s i s i m k s i
= ∈

⎛ ⎞
= = = ⋅ ≠ ≤ ≤ − =⎜ ⎟

⎝ ⎠
∑ ∑P P

0
1

(for 1 1,)
M

m
k

s i m k s i
=

= ≠ ≤ ≤ − =∑P (3.34)

by using the identity () () () ()A B A B A B∪ = + − ∩P P P P , Eq. (3.34) becomes

0
1

() (for 1 1) (for 0 1)
M

m m
k

s i s i m k s i m k
=

= + ≠ ≤ ≤ − − ≠ ≤ ≤ −∑P P P

Since the Markov chain is homogeneous (Assumption 3. 1)

0 0
1

{ () () (for 0 3)

(for 0 1)}

M

m
k

m

s i s i s i m k

s i m k
=

= = + ≠ + ≠ ≤ ≤ − −

≠ ≤ ≤ −

∑�P P P

P

{ } ()

()

0 0
1

() () lim (for 0 3)

lim (for 0 1) ,

M

mkk

mk

s i s i s i m k

s i m k

→∞
=

→∞

= = + ≠ + ≠ ≤ ≤ − −

− ≠ ≤ ≤ −

∑ P P P

P
 (3.35)

since the Markov states are irreducible (Assumption 3. 3)

()lim (for 0 3) 0mk
s i m k

→∞
≠ ≤ ≤ − =P , and

()lim (for 0 1) 0mk
s i m k

→∞
≠ ≤ ≤ − =P .

55

Eq. (3.35) becomes

{ } { }0 0
1 1

() () 1 1.
M M

k k
s i s i

= =

= = + ≠ = =∑ ∑P P

We have shown that

S 1.
ii i iρ µ ρ µ⋅ = ⋅ =�

Consequently, the stationary distribution is given by the mean recurrence time of
each PRN iS� ,

i
µS�

S

1 .
i

iρ µ
=

�

,

3.5 Concluding Remarks

In this chapter, a computational model suited for real-time sequential decision-

making under uncertainty was implemented. The evolution of the system was modeled as

a Markov chain. A state-space representation was constructed through a learning

mechanism and used in solving the state estimation and system identification problem.

The model accumulates gradually enhanced knowledge of system response as it

transitions from one state to another, in conjunction with actions taken at each state. As

the system interacts with its environment, the state representation of the model realizes

the sequences of state transitions that occurred in the Markov domain, as infused in the

Predictive Representation Nodes (PRNs). It was shown that this realization determines

the stationary distribution of the Markov chain (Theorem 3. 3). Utilizing this model, a

lookahead control algorithm can be employed simultaneously to address the stochastic

control problem in real time. This problem is addressed in Chapter 4.

56

3.6 References

[1] Bertsekas, D. P. and Shreve, S. E., Stochastic Optimal Control: The Discrete-Time
Case, 1st edition, Athena Scientific, February 2007.

[2] Gosavi, A., "Reinforcement Learning for Long-Run Average Cost," European
Journal of Operational Research, vol. 155, pp. 654-74, 2004.

[3] Bertsekas, D. P. and Tsitsiklis, J. N., Neuro-Dynamic Programming (Optimization
and Neural Computation Series, 3), 1st edition, Athena Scientific, May 1996.

[4] Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning), The MIT Press, March 1998.

[5] Borkar, V. S., "A Learning Algorithm for Discrete-Time Stochastic Control,"
Probability in the Engineering and Information Sciences, vol. 14, pp. 243-258,
2000.

[6] Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers,"
IBM Journal of Research and Development, vol. 3, pp. 210-229, 1959.

[7] Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers. II
-Recent progress," IBM Journal of Research and Development, vol. 11, pp. 601-
617, 1967.

[8] Sutton, R. S., Temporal Credit Assignment in Reinforcement Learning, PhD Thesis,
University of Massachusetts, Amherst, MA, 1984.

[9] Sutton, R. S., "Learning to Predict by the Methods of Temporal Difference,"
Machine Learning, vol. 3, pp. 9-44, 1988.

[10] Watkins, C. J., Learning from Delayed Rewards, PhD Thesis, Kings College,
Cambridge, England, May 1989.

[11] Kaelbling, L. P., Littman, M. L., and Moore, A. W., "Reinforcement Learning: a
Survey," Journal of Artificial Intelligence Research, vol. 4, 1996.

[12] Schwartz, A., "A Reinforcement Learning Method for Maximizing Undiscounted
Rewards," Proceedings of the Tenth International Conference on Machine Learning,
pp. 298-305, Amherst, Massachusetts, 1993.

[13] Mahadevan, S., "Average Reward Reinforcement Learning: Foundations,
Algorithms, and Empirical Results," Machine Learning, vol. 22, pp. 159-195, 1996.

[14] Sutton, R. S., "Integrated Architectures for Learning, Planning, and Reacting Based
on Approximating Dynamic Programming," Proceedings of the Seventh
International Conference on Machine Learning, pp. 216-224, Austin, TX, USA,
1990.

57

[15] Sutton, R. S., "Planning by Incremental Dynamic Programming," Proceedings of the
Eighth International Workshop on Machine Learning (ML91), pp. 353-357,
Evanston, IL, USA, 1991.

[16] Peng, J. and Williams, R. J., "Efficient Learning and Planning Within the Dyna
Framework," Proceedings of the IEEE International Conference on Neural
Networks (Cat. No.93CH3274-8), pp. 168-74, San Francisco, CA, USA, 1993.

[17] Kumar, P. R. and Varaiya, P., Stochastic Systems, Prentice Hall, June 1986.

[18] Mandl, P., "Estimation and Control in Markov Chains," Advances in Applied
Probability, vol. 6, pp. 40-60, 1974.

[19] Borkar, V. and Varaiya, P., "Adaptive control of Markov chains. I. Finite parameter
set," IEEE Transactions on Automatic Control, vol. AC-24, pp. 953-7, 1979.

[20] Borkar, V. and Varaiya, P., "Identification and adaptive control of Markov chains,"
SIAM Journal on Control and Optimization, vol. 20, pp. 470-89, 1982.

[21] Kumar, P. R., "Adaptive Control With a Compact Parameter Set," SIAM Journal on
Control and Optimization, vol. 20, pp. 9-13, 1982.

[22] Doshi, B. and Shreve, S. E., "Strong Consistency of a Modified Maximum
Likelihood Estimator for Controlled Markov Chains," Journal of Applied
Probability, vol. 17, pp. 726-34, 1980.

[23] Kumar, P. R. and Becker, A., "A new Family of Optimal Adaptive Controllers for
Markov Chains," IEEE Transactions on Automatic Control, vol. AC-27, pp. 137-46,
1982.

[24] Kumar, P. R. and Lin, W., "Optimal Adaptive Controllers for Unknown Markov
Chains," IEEE Transactions on Automatic Control, vol. AC-27, pp. 765-74, 1982.

[25] Sato, M., Abe, K., and Takeda, H., "Learning Control of Finite Markov Chains with
Unknown Transition Probabilities," IEEE Transactions on Automatic Control, vol.
AC-27, pp. 502-5, 1982.

[26] Sato, M., Abe, K., and Takeda, H., "An Asymptotically Optimal Learning
Controller for Finite Markov Chains with Unknown Transition Probabilities," IEEE
Transactions on Automatic Control, vol. AC-30, pp. 1147-9, 1985.

[27] Sato, M., Abe, K., and Takeda, H., "Learning Control of Finite Markov Chains with
an Explicit Trade-off Between Estimation and Control," IEEE Transactions on
Systems, Man and Cybernetics, vol. 18, pp. 677-84, 1988.

[28] Kumar, P. R., "A Survey of Some Results in Stochastic Adaptive Control," SIAM
Journal on Control and Optimization, vol. 23, pp. 329-80, 1985.

58

[29] Varaiya, P., "Adaptive Control of Markov Chains: A Survey," Proceedings of the
IFAC Symposium, pp. 89-93, New Delhi, India, 1982.

[30] Lai, T. L. and Robbins, H., "Asymptotically Efficient Adaptive Allocation Rules,"
Advances Appl. Math., vol. 6, pp. 4-22, 1985.

[31] Anantharam, V., Varaiya, P., and Walrand, J., "Asymptotically Efficient Allocation
Rules for the Multiarmed Bandit Problem with Multiple Plays. I. IID Rewards,"
IEEE Transactions on Automatic Control, vol. AC-32, pp. 968-76, 1987.

[32] Agrawal, R., Hedge, M. V., and Teneketzis, D., "Asymptotically Efficient Adaptive
Allocation Rules for the Multiarmed Bandit Problem With Switching Cost," IEEE
Transactions on Automatic Control, vol. 33, pp. 899-906, 1988.

[33] Agrawal, R., Teneketzis, D., and Anantharam, V., "Asymptotically Efficient
Adaptive Allocation Schemes for Controlled Markov Chains: Finite Parameter
Space," IEEE Transactions on Automatic Control, vol. 34, pp. 1249-59, 1989.

[34] Agrawal, R., Teneketzis, D., and Anantharam, V., "Asymptotically Efficient
Adaptive Allocation Schemes for Controlled I.I.D. Processes: Finite Parameter
Space," IEEE Transactions on Automatic Control, vol. 34, pp. 258-267, 1989.

[35] Graves, T. L. and Tze Leung, L., "Asymptotically Efficient Adaptive Choice of
Control Laws in Controlled Markov Chains," SIAM Journal on Control and
Optimization, vol. 35, pp. 715-43, 1997.

[36] Agrawal, R. and Teneketzis, D., "Certainty Equivalence Control with Forcing:
Revisited," Proceedings of, pp. 2107, Tampa, FL, USA, 1989.

[37] Gubner, J. A., Probability and Random Processes for Electrical and Computer
Engineers, 1st edition, Cambridge University Press, June 5, 2006.

[38] Grimmett, G. R. and Stirzaker, D. R., Probability and Random Processes, 3rd
edition, Oxford University Press, July 16, 2001.

[39] Krishnan, V., Probability and Random Processes, 1st edition, Wiley-Interscience,
July 11, 2006.

[40] Malikopoulos, A. A., Papalambros, P. Y., and Assanis, D. N., "A State-Space
Representation Model and Learning Algorithm for Real-Time Decision-Making
Under Uncertainty," Proceedings of the 2007 ASME International Mechanical
Engineering Congress and Exposition, Seattle, Washington, November 11-15, 2007.

[41] Malikopoulos, A. A., Papalambros, P. Y., and Assanis, D. N., "A Learning
Algorithm for Optimal Internal Combustion Engine Calibration in Real Time,"
Proceedings of the ASME 2007 International Design Engineering Technical
Conferences Computers and Information in Engineering Conference, Las Vegas,
Nevada, September 4-7, 2007.

59

[42] Malikopoulos, A. A., Assanis, D. N., and Papalambros, P. Y., "Real-Time, Self-
Learning Optimization of Diesel Engine Calibration," Proceedings of the 2007 Fall
Technical Conference of the ASME Internal Combustion Engine Division,
Charleston, South Carolina, October 14-17, 2007.

[43] Iwata, K., Ito, N., Yamauchi, K., and Ishii, N., "Combining Exploitation-Based and
Exploration-Based Approach in Reinforcement Learning," Proceedings of the
Intelligent Data Engineering and Automated - IDEAL 2000, pp. 326-31, Hong
Kong, China, 2000.

[44] Ishii, S., Yoshida, W., and Yoshimoto, J., "Control of Exploitation-Exploration
Meta-Parameter in Reinforcement Learning," Journal of Neural Networks, vol. 15,
pp. 665-87, 2002.

[45] Chan-Geon, P. and Sung-Bong, Y., "Implementation of the Agent Using Universal
On-Line Q-learning by Balancing Exploration and Exploitation in Reinforcement
Learning," Journal of KISS: Software and Applications, vol. 30, pp. 672-80, 2003.

[46] Miyazaki, K. and Yamamura, M., "Marco Polo: a Reinforcement Learning System
Considering Tradeoff Exploitation and Exploration under Markovian
Environments," Journal of Japanese Society for Artificial Intelligence, vol. 12, pp.
78-89, 1997.

[47] Hernandez-Aguirre, A., Buckles, B. P., and Martinez-Alcantara, A., "The Probably
Approximately Correct (PAC) Population Size of a Genetic Algorithm," 12th IEEE
Internationals Conference on Tools with Artificial Intelligence, pp. 199-202, 2000.

60

CHAPTER 4

REAL-TIME STOCHASTIC CONTROL

This chapter presents the algorithmic implementation that provides the decision-

making mechanism suitable for real-time implementation. The algorithm solves the

stochastic control sub-problem by utilizing accumulated data acquired over the learning

process of the POD model developed in Chapter 3. A lookahead control algorithm is

proposed that assigns at each state the control actions that minimize the transition cost of

the next two decision epochs. The principle of the algorithm is founded on the theory of

stochastic control problems known as games against nature. The efficiency of the POD

model and the lookahead algorithm is demonstrated on four applications: (a) the single

cart-pole balancing problem; (b) a vehicle cruise-control problem; (c) a gasoline engine

that learns the optimal spark advance over aggressive acceleration profiles; and (d) a

diesel engine that learns the optimal injection timing in a segment of a driving cycle.

4.1 The Predictive Optimal Stochastic Control Algorithm

The POD state representation attempts to provide an efficient process in realizing

the state transitions that occurred in the Markov domain. The different sequences of the

state transitions are captured by the POD states and evaluated through the expected

evaluation functions. Consequently, the lowest value of the expected evaluation function

at each PRN essentially estimates the Markov state transitions that will occur. As the

process is stochastic, however, it is still necessary for the decision maker to build a

61

decision-making mechanism for making decisions (selecting control actions). The

Predictive Optimal Stochastic Control Algorithm (POSCA), proposed in this dissertation,

aims to provide this mechanism.

The principle of POSCA is founded on the theory of stochastic control problems

with unknown disturbance distribution, also known as games against nature. The

decision-making mechanism is modeled as a stochastic game between the decision maker

(controller) and an “opponent” (environment). The solution of this game is derived

utilizing the mini-max theorem. Each POD state 1
ij
k is + ∈S�� corresponds to a completed

game that started at the Markov state ks i= ∈S and ended up at 1ks j+ = ∈S . At state

ks i= , the decision maker has a set of strategies (control actions) () ()k ks A sµ ∈ available

to play. Similarly, the environment’s set of strategies are the Markov

states {1,2,..., }, N N= ∈S ` . During the learning process of the POD model, this game

has been played insofar as the decision maker forms a belief about the environment’s

behavior by fully exploring all available strategies, () ()k ks A sµ ∈ . This property arises

when the state representation converges to the stationary distribution of the Markov

chain. Consequently, at state ks i= ∈S , the decision maker can select those control

actions by means of the PRN expected evaluation functions, 1(, ())i ij
PRN k kR s sµ+� . However,

to handle the uncertainty of this prediction, the decision maker seeks a policy *π ∈Π ,

which guarantees the best performance in the worst possible situation, namely,

{ }
1

*
1

() ()
() arg min max (, ()) .

kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

� (4.1)

This approach is especially appealing for real-time implementation when the time

between decision epochs is small. In this situation, the controller needs to select control

actions quickly and there is not enough time to search for an optimal policy for a

relatively distant future.

62

The implementation of the POD model and POSCA is illustrated in Figure 4.1. At

each decision epoch k , the POD model observes the system’s state ks i= ∈S and

control action ()k ka A s∈ selected from the feasible action set ()kA s , which is a subset of

some control space A . At the next decision epoch, the system transits to another state

1ks j+ = ∈S imposed by the transition probability ()ij ⋅P , and receives a numerical cost

()ijR ⋅ . The POD state representation realizes the sequences of state transitions ()ij ⋅P that

occurred in the Markov domain and the associated costs ()ijR ⋅ . When the POD model

converges to the stationary distribution, POSCA is employed to derive the control policy

π ∗ by means of Eq. (4.1).

4.1.1 Performance Bound of POSCA

This section evaluates the performance bound of POSCA in terms of the

accumulated cost over the decision epochs. The following Lemma aims to provide a

useful step toward presenting the main result (Theorem 4. 1).

Lemma 4. 1 [1]. Let : [,]f → −∞ ∞S and : [,]g × → −∞ ∞S A be two functions

such that

()min (,) ,
a

g i a i
∈

> −∞ ∀ ∈
A

S . (4.2)

Then we have

()
min max[() (, ())] max[() min (,)],

i ai i
f i g i i f i g i a

µ
µ

∈ ∈∈ ∈
+ = +

A AS S

where :µ →S A , such that ()a iµ= , and ,S A are some sets.

Proof. The proof is provided by Bertsekas [1].

,

63

System’s State
sk

System’s State
sk

POD Model
Realization of State

Transitions Pij(·)

POD Model
Realization of State

Transitions Pij(·)

Compute Control
Policy Using

POSCA

Compute Control
Policy Using

POSCA

Convergence
of POD Model to

Stationary Distribution?

Convergence
of POD Model to

Stationary Distribution?
Explore

Action Space A
Explore

Action Space A

NO

YES

π*(sk)

POD Model
Realization of

Associated Costs Rij(·)

POD Model
Realization of

Associated Costs Rij(·)

αk

System’s State
sk

System’s State
sk

POD Model
Realization of State

Transitions Pij(·)

POD Model
Realization of State

Transitions Pij(·)

Compute Control
Policy Using

POSCA

Compute Control
Policy Using

POSCA

Convergence
of POD Model to

Stationary Distribution?

Convergence
of POD Model to

Stationary Distribution?
Explore

Action Space A
Explore

Action Space A

NO

YES

π*(sk)

POD Model
Realization of

Associated Costs Rij(·)

POD Model
Realization of

Associated Costs Rij(·)

αk

Figure 4.1 − Implementation of POD model and POSCA.

Assumption 4. 1. The accumulated cost incurred at each decision epoch k is

bounded, that is, 0δ∃ > such that ()k kJ s δ< .

Theorem 4. 1. The accumulated cost ()k kJ s� incurred by the two step lookahead

policy 0 1 1{ , ,..., }Mπ µ µ µ −= of POSCA

{ }
1 1 21

1 2 1 1()() ()
() arg min max (| ,) min (| ,) ,

k k kkk k k

k k k k k k ka A s sss A s
s R s s E R s s

µ
π α α

+ + ++
+ + + +∈ ∈∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
 (4.3)

64

is bounded by the accumulated cost ()k kJ s incurred by the minimax control policy

0 1 1{ , ,..., }Mπ µ µ µ −= of Dynamic Programming (DP), namely,

[]
1

1 1 1
() ()

arg min max (| ,) ()
kk k k

k k k k kss A s
R s s J s

µ
π α

+
+ + +∈∈

= +
S

.
(4.4)

with probability 1.

Proof. Suppose that the chain starts at a state 0 ,s i i= ∈S at time 0k = and ends

up at k M= . We consider the problem of finding a policy 0 1 1{ , ,..., }Mπ µ µ µ −= with

()k ksµ ∈A for all ks ∈S and k that minimizes the cost function

1

2

1 1 1
0

() max (| ,) (| ,)
k

M

k M M M M k k k ks k

J s R s s a R s s aπ

+

−

− − +∈
=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑S

. (4.5)

The DP algorithm for this problem takes the following form starting from the tail

sup-problem

[]
1

1() ()
() min max (| ,) ()

M M M M
M M M M M M M Ms A s s

J s R s s a R s
µ +

+∈ ∈
= =

S
, and

(4.6)

[]
1

1 1 1() ()
() min max (| ,) () ,

k k k k
k k k k k k ks A s s

J s R s s J s
µ

α
+

+ + +∈ ∈
= +

S

(4.7)

where ()M MR s is the cost of the terminal decision epoch.

Following the steps of the DP algorithm proposed by Bertsekas [1], the optimal

accumulated cost 0()J sπ∗

 starting from the last decision epoch and moving backwards is

0 0 0 1 1 1

0

0 () () () ()

2

1 1 1
0

() min ... min

 max...max (| ,) (| ,) .

M M M

M

s A s s A s

M

M M M M k k k ks s k

J s

R s s a R s s a

π

µ µ

∗

− − −∈ ∈

−

− − +∈ ∈
=

=

⎡ ⎤+⎢ ⎥⎣ ⎦
∑S S

 (4.8)

65

By applying Lemma 4. 1, we can interchange the min over 1µΜ− and the max

over 0 2,..., Ms s − . The required assumption of Lemma 4. 1 (Eq. (4.2)) is implied

by Assumption 4. 1. Eq. (4.8) yields

[]

0 0 0 2 2 2

0 2 1

0 () () () ()

3

1 1 1 2 2
0

() min ... min

max... max (| ,) max (| ,) ()

M M M

M M

s A s s A s

M

k k k k M M M M M Ms s sk

J s

R s s a R s s a J s

π

µ µ

∗

− − −

− −

∈ ∈

−

+ − − − −∈ ∈ ∈
=

=

⎡ ⎤⎡ ⎤
+ +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑S S S

 (4.9)

0 0 0 2 2 2 0 2

3

1 1 1() () () () 0
min ... min max... max (| ,) () .

M M M M

M

k k k k M Ms A s s A s s s k
R s s a J s

µ µ − − − −

−

+ − −∈ ∈ ∈ ∈
=

⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑S S

By continuing backwards in similar way we obtain

0 0 0() ()J s J sπ∗

= . (4.10)

Consequently, an optimal policy for the minimax problem can be constructed by

minimizing the RHS of Eq. (4.5).

The cost incurred by policy 0 1 1{ , ,..., }Mπ µ µ µ −= of POSCA at each decision

epoch k is

()M MJ s = (4.11)

{ }
1 1 21

1 1 2 1 1() () ()

1

min max (| ,) min (| ,)

(| ,) (),
M M M M M MM

M M M M M M M Ms A s a A s ss

M M M M M M

R s s E R s s

R s s a R s
µ

α α
+ + ++

+ + + + +∈ ∈ ∈∈

+

⎡ ⎤= +⎢ ⎥⎣ ⎦
= =

SS (4.12)

since the terminal decision epoch is at k M= , and thus,

1 2 1 1(| ,) 0M M M MR s s α+ + + + = .

1 1()M MJ s− − =

66

{ }
1 1 1 1

1 1 1 1() () ()
min max (| ,) min (| ,) ,

M M M M M MM
M M M M M M M Ms A s a A s ss

R s s E R s s
µ

α α
− − − +

− − − +∈ ∈ ∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
 (4.13)

2 2()M MJ s− − =

{ }
2 2 2

1 11

() ()

2 1 2 2 1 1 1()

min

max (| ,) min (| ,) ,

M M M

M M MM

s A s

M M M M M M M Ma A s ss
R s s E R s s

µ

α α

− − −

− −−

∈

− − − − − − −∈ ∈∈

=

⎡ ⎤+⎢ ⎥⎣ ⎦SS

 (4.14)

…

{ }
0 0 0 1 1 21

0 0 0 1 0 0 1 2 1 1() () ()
() min max (| ,) min (| ,)

s A s a A s ss
J s R s s E R s s

µ
α α

∈ ∈ ∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
. (4.15)

Performing the same task as we did with DP algorithm by starting from the last

epoch of the decision-making process and moving backwards, the accumulated cost

incurred by POSCA ()k kJ s� is

()M MJ s =�

{ }
1 1 21

1 1 2 1 1() () ()

1

min max (| ,) min (| ,)

(| ,) () (),
M M M M M MM

M M M M M M M Ms A s a A s ss

M M M M M M M M

R s s E R s s

R s s a R s J s
µ

α α
+ + ++

+ + + + +∈ ∈ ∈∈

+

⎡ ⎤= +⎢ ⎥⎣ ⎦
= = =

SS (4.16)

1 1()M MJ s− − =�

{ }
1 1 1

1

() ()

1 1 1 1()

min

max (| ,) min (| ,) ()

M M M

M M MM

s A s

M M M M M M M M M Ma A s ss
R s s E R s s J s

µ

α α

− − −

+

∈

− − − +∈ ∈∈

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦SS
�

 (4.17)

[]
1 1 1

1 1 1() ()
min max (| ,) ()

M M M M
M M M M M Ms A s s

R s s J s
µ

α
− − −

− − −∈ ∈
= +

S
� ,

(4.18)

since 1(| ,) 0M M M MR s s α+ = .

67

1
1 1 1 1 1() ()
() min max (| ,) () (),

M M M M
M M M M M M M M Ms A s s

J s R s s J s J s
µ

α
+

− − + − −∈ ∈
⎡ ⎤= + =⎣ ⎦S

� � (4.19)

since ()M MJ s� is a constant quantity.

2 2()M MJ s− − =�

{ }
2 2 2

1 11

() ()

2 1 2 2 1 1 1()

1 1

min

max (| ,) min (| ,)

().

M M M

M M MM

s A s

M M M M M M M Ma A s ss

M M

R s s E R s s

J s

µ

α α

− − −

− −−

∈

− − − − − − −∈ ∈∈

− −

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦
+

SS

�

 (4.20)

However,

{ }

[]

2 2 2

1 11

2 2 2 1

() ()

2 1 2 2 1 1()

1 1 2 2() ()

min

max (| ,) min (| ,)

min max (| ,) ,

M M M

M M MM

M M M M

s A s

M M M M M M M Ma A s ss

M M M Ms A s s

R s s E R s s

R s s a

µ

µ

α α

− − −

− −−

− − − −

∈

− − − − − −∈ ∈∈

− − − −∈ ∈

⎡ ⎤+ ≤⎢ ⎥⎣ ⎦SS

S

 (4.21)

since the LHS of the inequality will return a cost 2 (| ,)MR − ⋅ ⋅ ⋅ which is not only

maximum over when the chain transits from 2Ms − to 1Ms − but also minimum

when the chain transits from 1Ms − to Ms . So, the LHS can be at most equal to

the cost which is maximum over the transition from 2Ms − to 1Ms − .

Consequently, comparing the accumulated cost of POSCA in Eq. (4.20) with

the one resulted from the DP at the same decision epoch, namely,

[]
2 2 2 1

2 2 1 1 2 2 1 1() ()
() min max (| ,) ()

M M M M
M M M M M M M Ms A s s

J s R s s a J s
µ − − − −

− − − − − − − −∈ ∈
= +

S
,

(4.22)

we conclude that

2 2 2 2() ()M M M MJ s J s− − − −≤� (4.23)

68

By continuing backward with similar arguments we have

0 0 0 0 0() () ().J s J s J sπ∗

≤ =� (4.24)

Consequently, the accumulated cost resulting from the control policy

0 1 1{ , ,..., }Mπ µ µ µ −= of POSCA is bounded by the accumulated cost of the optimal

minimax control policy of DP with probability 1.

,

4.2 Application: Single Cart-Pole Balancing Problem

The overall performance of the POD model and POSCA is evaluated on the basis

of its application to the inverted pendulum balancing problem. The inverted pendulum

involves a pendulum hinged to the top of a wheeled cart as illustrated in Figure 4.2. The

objective of POD is to balance the pendulum having no prior knowledge about the system

dynamics, utilizing only real-time measurements.

Realizing the balance control policy of a single inverted pendulum without a

priori knowledge of the system’s model has been extensively reported in the literature for

the evaluation of learning algorithms. Anderson [2] implemented a neural network

reinforcement-learning method to generate successful action sequences. Two neural

networks having a similar structure were employed to learn two functions: (a) an action

function mapping the current state into control actions, and (b) an evaluation action

mapping the current state into an evaluation of that state. These two networks were

trained utilizing reinforcement learning by evaluating the performance of the network and

compared to real-time measurements. Williams et al. [3] proposed a learning architecture

for training a neural network controller to provide the appropriate control force to balance

69

the inverted pendulum. One network for the identification of the plant dynamics and one

for the controller were employed. Zhidong et al. [4] implemented a “neural-fuzzy

BOXES” control system by neural networks and utilized reinforcement learning for the

training. Jeen-Shing et al. [5] proposed a defuzzification method incorporating a genetic

algorithm to learn the defuzzification factors. Mustapha et al. [6] developed an actor-

critic reinforcement learning algorithm represented by two adaptive neural-fuzzy

systems. Si et al. [7] proposed a generic on-line learning control system similar to

Anderson’s utilizing neural networks and evaluated it through its application to both a

single and double cart-pole balancing problem. The system utilizes two neural networks,

and employs the action- dependent heuristic dynamic programming to adapt the weights

of the networks.

MM

x

ϕ

,m I

U MM

x

ϕ

,m I

U

Figure 4.2 − The inverted pendulum.

In the implementation of the POD on the single inverted pendulum presented

here, two major variations are considered: (a) a single look-up table-based representation

is employed for the controller to develop the mapping from the system’s Markov states to

optimal actions, and (b) two of the system’s state variables are selected to represent the

Markov state. The latter introduces uncertainty and thus a conditional probability

70

distribution associating the state transitions with respect to the actions taken.

Consequently, the POD model is evaluated in deriving the optimal policy (balance

control policy) in a sequential decision making problem under uncertainty.

MM

x

L

,m I
U

VN

HN

�bx

x��
VNHN

ϕ��I

2ϕ�I

ϕ

mg

��x

MM

x

L

,m I
U

VN

HN

�bx

x��
VNHN

ϕ��I

2ϕ�I

ϕ

mg

��x

Figure 4.3 − Free body diagram of the system.

The governing equations, derived from the free body diagram of the system,

shown in Figure 4.3, are:

2() cos sin ,M m x bx mL mL Uϕ ϕ ϕ ϕ+ + + − =�� ��� � (4.25)

2cos () sin 0,mLx I mL mgLϕ ϕ ϕ+ + + =����

2
2

N secwhere 0.5 kg, 0.2 kg, 0.1 ,
m

m 0.006 kg m , 9.81 ,and 0.3 m.
sec

M m b

I g L

= = =

= = =

The goal of the learning controller is to realize in real time the force, U, of a fixed

magnitude to be applied either to the right or the left direction so that the pendulum

stands balanced when released from any angle, φ, between 3° and -3°. The system is

simulated by numerically solving the nonlinear differential equations (4.25) employing

71

the explicit Runge-Kutta method with a time step of τ =0.02 sec. The simulation is

conducted by observing the system’s states and executing actions (control force U) with a

sample rate T =0.02 sec (50 Hz). This sample rate defines a sequence of decision-making

epochs, 0,1, 2,..., , k M M= ∈N .

The system is fully specified by four state variables: (a) the position of the cart on

the track, ()x t ; (b) the cart velocity, ()x t� ; (c) the pendulum’s angle with respect to the

vertical position, ()tϕ ; and (d) the angular velocity, ()tϕ� . However, to incorporate

uncertainty, the Markov states are selected to be only the pair of the pendulum’s angle

and angular velocity, namely, the finite state space S is defined as

{ | (,)}.i i ϕ ϕ= =S � (4.26)

Consequently, at state ks i= ∈S and executing a control force value, kU , the

system will end up at state 1ks j+ = ∈S with a conditional probability

1(| ,)k k kp s j s i U+ = = . The control force, kU , selects values from the finite set A ,

defined as

() [3 ,3], 0, ,kA s i N N k i= = = − ∀ ≥ ∀ ∈A S (4.27)

where 1,2,..., , | | .i N N= = S

Each state of the POD state space S� represents a Markov state transition from

ks i= ∈S to 1ks j+ = ∈S for all 0k ≥ , that is

1 1 1 1() () 1
: | = , (| ,) 1, | | .

k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i U N
µ+ + + +∈

=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � � (4.28)

The decision-making process occurs at each of a sequence of epochs

0,1,2,..., , k M M= ∈` . At each decision epoch k , the learning controller observes the

72

system’s state ks i= ∈S , and executes a control force value ()k kU A s∈ . At the next

decision epoch, the system transits to another state 1ks j+ = ∈S imposed by the

conditional probability 1(| ,)k k kp s j s i U+ = = , and receives a numerical cost

1(| ,)k k kR s j s i U+ = = (the pendulum’s angle φ). The control policy 0 1 1{ , ,..., },Mπ µ µ µ −=

where the functions kµ specify the control ()k kU sµ= , is derived by means of the

following equation

{ }
1

1
() ()

() arg min max (, ()) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

� (4.29)

where

{1 1 1

2 1

(, ()) (| , ()) (| , ())

 (| ())},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (4.30)

where

1

2 1

2 1 1 2 1 1() 1

(| ()) :

: min (| , ()) (| , ()),
k

jm
j k k

N

k k k k k ks j

R s s

p s m s j s R s m s j s
µ

µ

µ µ
+

+ +

+ + + + + +∈
=

=

= = = ⋅ = =∑A

�
 (4.31)

2 , , , () (), and | | .jm
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��

The inverted pendulum is simulated repeatedly for different initial angles, φ,

between 3° and -3° utilizing the POD learning method. The simulation lasts for 50 sec

and each complete simulation defines one iteration. If at any instant during the

simulation, the pendulum’s angle, φ, becomes greater than 3° or less than -3°, this

constitutes a failure, denoted by stating that there was one iteration associated with a

failure. If, however, no failure occurs during the simulation, this is denoted by stating that

there was one iteration associated with no failure.

73

4.2.1 Simulation Results

After completing the learning process, the controller employing the POD learning

method realizes the balance control policy of the pendulum, as illustrated in Figure 4.4.

In some instances, however, the system’s response demonstrates some overshoots or

delays during the transient period, shown in Figure 4.5. This can be handled by a denser

parameterization of the state-space or adding a penalty in long transient responses. The

efficiency of the POD learning method in deriving the optimal balance control policy that

stabilizes the system is illustrated in Figure 4.6. It is noted that after POD realizes the

optimal policy in 749 failures and, afterwards, as the number of iterations continues, no

further failures occur.

0 10 20 30 40 50
-4

-3

-2

-1

0

1

2

3

4

time [sec]

P
hi

 [d
eg

]

Simulation of the Controlled Pendulum with POD

Figure 4.4 − Simulation of the system after learning the balance control policy with POD

for different initial conditions.

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3

-2

-1

0

1

2

3

time [sec]

P
hi

 [d
eg

]

Simulation of the Controlled Pendulum with POD

Figure 4.5 − Simulation of the system after learning the balance control policy with POD

for different initial conditions (zoom in).

0 0.5 1 1.5 2

x 10
4

0

100

200

300

400

500

600

700

800

Fa
ilu

re
s

Iterations

Number of Failures of POD in deriving
 the balance control policy

Figure 4.6 − Number of failures until POD derives the balance control policy.

75

4.3 Application: Autonomous Vehicle Cruise Control

In this section, the overall performance of the POD model and POSCA is

demonstrated on a vehicle cruise-control problem. Cruise control automatically regulates

the vehicle’s longitudinal velocity by suitably adjusting the gas pedal position. A vehicle

cruise-control system is activated by the driver who desires to maintain a constant speed

in long highway driving. The driver activates the cruise controller while driving at a

particular speed, which is then recorded as the desired or set-point speed to be maintained

by the controller. The main goal in designing a cruise control algorithm is to maintain

vehicle speed smoothly but accurately, even under large variation of plant parameters

(e.g., the vehicle’s varying mass in terms of the number of passengers) and road grade. In

the case of passenger cars, however, vehicle mass may change noticeably but is within a

small range. Therefore, powertrain behavior might not vary significantly.

The objective of the POD learning cruise controller is to realize in real time the

control policy (gas pedal position) that maintains the vehicle speed as set by the driver

under a great range of different road grades. Implementing learning vehicle cruise

controllers has been addressed previously, employing learning and active control

approaches. Zhang et al. [8] implemented learning control based on pattern recognition to

regulate in real time the parameters of a PID cruise controller. Shahdi et al. [9] proposed

an active learning method to extract the driver's behavior and to derive control rules for a

cruise control system. However, no attempt has been reported in implementing a learning

automotive vehicle cruise controller utilizing the principle of reinforcement learning, i.e.,

enabling the controller to improve its performance over time by learning from its own

failures through a reinforcement signal from the external environment, and thus

attempting to improve future performance.

The software package enDYNA by TESIS [10], suitable for real-time simulation

of internal combustion engines, is used to evaluate the performance of the POD learning

76

cruise controller. The software simulates the longitudinal vehicle dynamics with a highly

variable drivetrain including the modules of starter, brake, clutch, converter, and

transmission. In the driving mode the engine is operated by means of the usual vehicle

control elements just as a driver would do. In addition, a mechanical parking lock and the

uphill grade can be set. The driver model is designed to operate the vehicle at given speed

profiles (driving cycles). It actuates the starter, accelerator, clutch and brake pedals

according to the profile specification, and also shifts gears. In this example, an existing

vehicle model is selected representing a midsize passenger car carrying a 1.9-L

turbocharged diesel engine.

When activated, the learning cruise controller bypasses the driver model and takes

over the vehicle’s cruising. The Markov states are defined to be the pair of the

transmission gear and the difference between the desired and actual vehicle speed, ∆V,

namely,

{ | (,)}.i i gear V= = ∆S (4.32)

The actions, a , correspond to the gas pedal position and can take values from the

feasible set A, defined as

() [0,0.7],kA s i= = =A (4.33)

where 1,2,..., , | | .i N N= = S

To incorporate uncertainty the vehicle is simulated in a great range of different

road grades from 0° to 10°. Each state of the POD state space represents a Markov state

transition from ks i= ∈S to 1ks j+ = ∈S for all 0k ≥ , that is

1 1 1 1() () 1
: | = , (| ,) 1, | | .

k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i a N
µ+ + + +∈

=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � � (4.34)

77

The decision-making process occurs at each of a sequence of epochs

0,1,2,..., , k M M= ∈` . At each decision epoch k , the cruise controller observes the

system’s state ks i= ∈S , and selects a pedal position ()ka A s∈ . At the next decision

epoch, the system transits to another state 1ks j+ = ∈S imposed by the conditional

probability 1(| ,)k k kp s j s i a+ = = , and receives a numerical cost 1(| ,)k k kR s j s i a+ = =

(difference between the desired and actual vehicle speed). The control policy

0 1 1{ , ,..., },Mπ µ µ µ −= where the functions kµ specify the pedal position ()k ka sµ= , is

derived by means of the following equation

{ }
1

1
() ()

() arg min max (, ()) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

� (4.35)

where

{1 1 1

2 1

(, ()) (| , ()) (| , ())

 (| ())},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (4.36)

where

1

2 1

2 1 1 2 1 1() 1

(| ()) :

: min (| , ()) (| , ()),
k

jm
j k k

N

k k k k k ks j

R s s

p s m s j s R s m s j s
µ

µ

µ µ
+

+ +

+ + + + + +∈
=

=

= = = ⋅ = =∑A

�
 (4.37)

2 , , , () (), and | | .jm
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��

4.3.1 Simulation Results

After completing the learning process for each road grade, the POD cruise

controller realizes the control policy (gas pedal position) to maintain the vehicle’s speed

at the desired set point. The vehicle model was initiated from zero speed. The driver

model, following the driving cycle, accelerated the vehicle up to 40 mph and at 10 sec

78

activated the POD cruise controller. The desired and actual vehicle speeds for three

different road grades as well as the gas pedal rates of the POD controller are illustrated in

Figure 4.7. The small discrepancy between the desired and actual vehicle speed before

the cruise controller activation is due to the steady-state error of the driver’s model.

However, since the desired driving cycle set the vehicle’s speed at 40 mph, activation of

the POD cruise controller helps to correct this error and, afterwards, maintains the

vehicle’s actual speed at the set point. The accelerator pedal position is at different values

because, in the case of road grades 2º and 6º, the selected transmission gear is 2, shown in

Figure 4.8, while in case of road grade 10º the selected transmission gear is 1. So, at

different selected gears, the accelerator pedal position varies to maintain constant vehicle

speed. In Figure 4.9, the performance of the POD cruise controller is evaluated on a

severe driving scenario where the road grade changes from 0° to 10°, while the POD

cruise controller is active. In this scenario, the POD is activated again at 10 sec when the

road grade is 0°, and at 14 sec the road grade becomes 10°. The engine speed and the

selected transmission gear for this scenario are shown in Figure 4.10. While the vehicle is

cruising at constant speed and the road grade changes from 0º to 10º, the vehicle’s speed

starts to decrease after some time. Once this occurs, the self-learning cruise controller

senses the discrepancy between the desired and actual vehicle speed and commands the

accelerator pedal so as to correct the error. Consequently, there is a small time delay in

the acceleration pedal command, shown in Figure 4.9, which depends on vehicle inertia.

79

0 5 10 15 20
0

10

20

30

40

Cruise Control with POD

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

0 5 10 15 20
0

0.5

1

A
cc

el
er

at
or

 P
ed

al

Time [sec]

Driving Cycle
Grade 2o

Grade 6o

Grade 10o

Figure 4.7 − Vehicle speed and accelerator pedal rate for different road grades by self-

learning cruise control with POD.

0 5 10 15 20
0

1000

2000

3000

Cruise Control with POD

E
ng

in
e

S
pe

ed
 [R

P
M

]

0 5 10 15 20
0

1

2

3

Tr
an

sm
is

si
on

 G
ea

r

Time [sec]

Grade 2o

Grade 6o

Grade 10o

Figure 4.8 − Engine speed and transmission gear selection for different road grades by

self-learning cruise control with POD.

80

0 5 10 15 20
0

10

20

30

40

Cruise Control with POD
At 14 sec the road grade increases from 0o to 10o

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

0 5 10 15 20
0

0.5

1

A
cc

el
er

at
or

 P
ed

al

Time [sec]

Driving Cycle
Vehicle Speed

Figure 4.9 − Vehicle speed and accelerator pedal rate for a road grade increase from 0° to

10°.

0 5 10 15 20
0

1000

2000

3000

Cruise Control with POD
At 14 sec the road grade increases from 0o to 10o

E
ng

in
e

S
pe

ed
 [R

P
M

]

0 5 10 15 20
0

1

2

3

Tr
an

sm
is

si
on

 G
ea

r

Time [sec]
Figure 4.10 − Engine speed and transmission gear selection for a road grade increase

from 0° to 10°.

81

4.4 Real-Time, Self-Learning Optimization of Engine Calibration

In this section, the POD model and POSCA are applied to make the engine an

autonomous intelligent system that can learn the values of the controllable variables in

real time for each engine operating point transition that optimize specified engine

performance criteria, e.g., engine power, fuel economy, or pollutant emissions. The

learning process transpires while the engine is running the vehicle and interacting with

the driver. Taken in conjunction with assigning values of the controllable variables from

the feasible action space, A, this interaction portrays the progressive enhancement of the

controller’s “knowledge” of the driver’s driving style with respect to the controllable

variables. This property arises due to the learning process required by the POD state

representation to capture the stationary distribution of the engine operation with respect

to the driver’s driving style. More precisely, at each of a sequence of decision epochs

0,1,2,...,k M= , the driver introduces a state ks i= ∈S (engine operating point) to the

engine’s self-learning controller, and on that basis the controller selects an action,

()k kA sα ∈ (values of the controllable variables). This state arises as a result of the

driver’s driving style corresponding to particular engine operating points. One decision

epoch later, as a consequence of its action, the engine receives a numerical cost, 1kR + ∈\ ,

and transits to a new state 1 ,ks j j+ = ∈S as illustrated in Figure 4.11.

The POD state-space representation S� , is implemented by a mapping H from

the Cartesian product of the finite state space and action space of the Markov chain

,× × →H : S A S S� (4.38)

where {1,2,..., }, N N= ∈S ` denotes the engine operating domain, and

(),
k k ks A s s i∈= ∀ = ∈SA S∪ stands for the values of the controllable variables. Each

state of the POD domain represents a Markov state transition from ks i= ∈S to

1ks j+ = ∈S for all 0k ≥ , that is

82

1 1 1 1() () 1
: | = , (| ,) 1, | | ,

k k

N
ij ij
k k k k k k ks A s j

s s s i s j p s j s i N
µ

α+ + + +∈
=

⎧ ⎫
= ≡ = → = = = =⎨ ⎬
⎩ ⎭

∑S S� � � (4.39)

, , () ().k ki j s A sµ∀ ∈ ∀ ∈S

EngineEngine

DriverDriver

engine output
(performance indices, Rk)

engine operating point
(state, sk)

SelfSelf--LearningLearning
ControllerController

SensorsSensors

EngineEngine

DriverDriver

engine output
(performance indices, Rk)

engine operating point
(state, sk)

SelfSelf--LearningLearning
ControllerController

SensorsSensors

Figure 4.11 − The learning process during the interaction between the engine and the
driver.

At each decision epoch, the controller implements a mapping from the Cartesian

product of the state space and action space to the set of real numbers, × × →S A S \ , by

means of the costs that it receives 1(| ,)k k kR s j s i α+ = = . Similarly, another mapping

from the Cartesian product of the state space and action space to the closed set [0,1] is

executed, [0,1]× × →S A S , that provides the realization of the engine operating point

transitions 1(| ,)k k kp s j s i α+ = = . The implementation of these two mappings aims

POSCA to compute the optimal control policy π of the self-learning controller

{ }
1

1
() ()

() arg min max (, ()) ,
kk k k

i ij
k PRN k kss A s

s R s s
µ

π µ
+

+∈∈
⎡ ⎤= ⎣ ⎦S

� (4.40)

where

83

{1 1 1

2 1

(, ()) (| , ()) (| , ())

 (| ())},

i ij
PRN k k k k k k k k

jm
j k k

R s s p s j s i s R s j s i s

R s s

µ µ µ

µ
+ + +

+ +

= = = ⋅ = = +

+

�

�
 (4.41)

where

1

2 1

2 1 1 2 1 1() 1

(| ()) :

: min (| , ()) (| , ()),
k

jm
j k k

N

k k k k k ks j

R s s

p s m s j s R s m s j s
µ

µ

µ µ
+

+ +

+ + + + + +∈
=

=

= = = ⋅ = =∑A

�
 (4.42)

2 , , , () (), and | | .jm
k k ks i j s A s Nµ+∀ ∈ ∀ ∈ ∀ ∈ =S S S��

4.5 Application: Self-Learning Spark Ignition in a Gasoline Engine

An example of real-time, self-learning optimization of the calibration with respect

to spark ignition timing in a spark ignition engine is presented in this section. In spark

ignition engines the fuel and air mixture is prepared in advance before it is ignited by the

spark discharge. The major objectives for the spark ignition are to initiate a stable

combustion and to ignite the air-fuel mixture at the crank angle resulting in maximum

efficiency, while fulfilling emissions standards and preventing the engine from knocking.

Simultaneous achievement of the aforementioned objectives is sometimes inconsistent;

for instance, at high engine loads the ignition timing for maximum efficiency has to be

abandoned in favor of prevention of engine destruction by way of engine knock. Two

essential parameters are controlled with the spark ignition: ignition energy and ignition

timing. Control of ignition energy is important for assuring combustion initiation, but the

focus here is on the spark timing that maximizes engine efficiency. Ignition timing

influences nearly all engine outputs and is essential for efficiency, drivability, and

emissions. The optimum spark ignition timing generating the maximum engine brake

torque is defined as Maximum Brake Torque (MBT) timing [11]. Any ignition timing

84

that deviates from MBT lowers the engine’s output torque as illustrated in Figure 4.12. A

useful parameter for evaluating fuel consumption of an engine is the Brake-Specific Fuel

Consumption (BSFC), defined as the fuel flow rate per unit power output. This parameter

evaluates how efficiently an engine is utilizing the fuel supplied to produce work

(/)
(/) ,

()
fm g h

bsfc g kW h
P kW

⋅ =
�

 (4.43)

where fm� is the fuel mass flow rate per unit time and P is engine’s power output.

Continuous engine operation at MBT ensures optimum fuel economy with respect to the

spark ignition timing.

For a successful engine calibration with respect to spark ignition timing, the

engine should realize the MBT timing for each engine operating point (steady-state and

transient) dictated by the driving style of a driver. Consequently, by achieving MBT

timing for all steady-state and transient operating points an overall improvement of the

BSFC is expected. Aspects of preventing knocking are not considered in this example;

however, they can be easily incorporated by defining the spark ignition space to include

the maximum allowable values.

The software package enDYNA is employed for the implementation or real-time,

self-learning optimization of engine calibration. The software utilizes thermodynamic

models of the gas path and is well suited for testing and development of Electronic

Control Units (ECUs). In the example, a four-cylinder gasoline engine is used from the

enDYNA model database. The software’s static correlation involving spark ignition

timing and engine operating points is bypassed to incorporate the self-learning controller.

This correlation is designated by the baseline calibration that enDYNA model is

accompanied by, and is included in, the engine’s ECU.

85

The control actions, ka , correspond to the spark ignition timing that can take

values from the feasible set A, defined as

() [5 ,35],kA s i= = = ° °A (4.44)

where 1,2,..., , | | .i N N= = S

The engine model is run repeatedly over the same driving style represented by the

pedal position. Every run over this driving style constitutes one complete simulation. To

evaluate the efficiency of our approach in both steady-state and transient engine

operation, the pedal position rate is chosen to represent an aggressive acceleration, as

illustrated in Figure 4.13.

E
ng

in
e

To
rq

ue

RETARDRETARD TDCTDC ADVANCEADVANCE
Spark Ignition Timing

Maximum Brake Torque
(MBT)

E
ng

in
e

To
rq

ue

RETARDRETARD TDCTDC ADVANCEADVANCE
Spark Ignition Timing

Maximum Brake Torque
(MBT)

Figure 4.12 − Effect of spark ignition timing on the engine brake torque at constant

engine speed.

86

2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

Time [sec]

G
as

-P
ed

al
 P

os
iti

on
 [d

eg
]

Figure 4.13 − Gas-pedal position rate representing a driver’s driving style.

4.5.1 Simulation Results

After completing the learning process, the self-learning controller specified the

optimal policy in terms of the spark ignition timing, as shown in Figure 4.14, and

compared with the spark ignition timing designated by the baseline calibration of the

enDYNA model. The optimal policy resulted in higher engine brake torque compared to

the baseline calibration as shown in Figure 4.15 and Figure 4.16. This improvement

indicates that the engine with self-learning calibration was able to operate closer to MBT

timing. Having the engine operate at MBT timing resulted in an overall minimization of

the BSFC, illustrated in Figure 4.17. Figure 4.18 compares the velocity of the two

vehicles, one carrying the engine with the baseline calibration and the other with the self-

calibrated one.

The two vehicles were simulated for the same driving style, namely, the same

pedal-position rate. The vehicle carrying the engine with the self-learning calibration

demonstrated higher velocity, since the engine produced higher brake torque for the same

87

gas-pedal position rate. Consequently, if the driver wishes to follow a specific vehicle’s

speed profile, this can now be achieved by stepping on the gas-pedal more lightly than

required in the engine with the baseline calibration and, therefore, directly enabling in

additional benefits in fuel economy.

2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

Time [sec]

S
pa

rk
 Ig

ni
tio

n
[d

eg
]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.14 − Spark ignition timing over the driving style.

88

2 2.5 3 3.5 4
20

40

60

80

100

120

140

Time [sec]

E
ng

in
e

B
ra

ke
 T

or
qu

e
[N

m
]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.15 − Engine brake torque.

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

110

115

120

125

130

135

Time [sec]

E
ng

in
e

B
ra

ke
 T

or
qu

e
[N

m
]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.16 − Engine brake torque (zoom-in).

89

2 2.5 3 3.5 4
200

205

210

215

220

225

230

235

240

Time [sec]

B
S

FC
 [g

/k
W

 h
]

Baseline Engine Calibration
Real-Time Engine Calibration throuh Learning

Figure 4.17 − BSFC comparison between the baseline and self-learning calibration.

2.8 3 3.2 3.4 3.6 3.8
11

12

13

14

15

16

17

18

Time [sec]

V
el

oc
ity

 o
f t

he
 V

eh
ic

le
 [m

ph
]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.18 − Velocity of the two vehicles carrying the engine with baseline and self-

learning calibration.

90

To evaluate the efficiency of the algorithm in learning, the vehicles were

simulated for three additional acceleration profiles, shown in Figure 4.19. The algorithm

specified successfully the optimal policy in terms of the spark ignition timing minimizing

the BSFC compared to the baseline calibration, as illustrated in Figures 4.20 - 4.22.

2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

Time [sec]

G
as

-P
ed

el
 P

os
iti

on
 [d

eg
]

Profile A
Profile B
Profile C

Figure 4.19 − Three different acceleration profiles.

91

2 2.5 3 3.5 4
200

205

210

215

220

225

230

235

240
Acceleration Profile A

B
S

FC
 [g

/k
W

 h
]

Time [sec]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.20 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile A).

2 2.5 3 3.5 4
200

205

210

215

220

225

230

235

240
Acceleration Profile B

B
S

FC
 [g

/k
W

 h
]

Time [sec]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.21 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile B).

92

2 2.5 3 3.5 4
200

205

210

215

220

225

230

235

240
Acceleration Profile C

B
S

FC
 [g

/k
W

 h
]

Time [sec]

Baseline Engine Calibration
Real-Time Engine Calibration through Learning

Figure 4.22 − BSFC comparison between the baseline and self-learning calibration

(Acceleration profile C).

4.6 Application: Self-Learning Injection Timing in a Diesel engine

The objective of this study is to evaluate the efficiency of the self-learning

controller in deriving the optimal control policy (injection timing) during transient engine

operation. A desired speed profile, shown in Figure 4.23, including an acceleration and

deceleration segment designated by a hypothetical driver, was selected. The model with

the baseline ECU and the model with the self-learning controller are run repeatedly over

the same profile. The first model incorporates a static calibration map for injection timing

corresponding to steady-state operating points. Before initiating the first simulation, the

model with the self-learning controller has no knowledge regarding the particular

transient engine operation and injection timing associated with it.

The control actions, ka , correspond to the injection timing that can take values

from the feasible set A, defined as

() [2 ,18],kA s i= = = − ° °A (4.45)

93

where 1,2,..., , | | .i N N= = S

0 5 10 15 20 25
0

5

10

15

20

25

Time [sec]

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

Desired Speed Profile
Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.23 − Desired speed profile.

4.6.1 Simulation Results

After completing the exploration phase, the self-learning controller derived the

values of injection timing, shown in Figure 4.24. The significant variation of injection

timing is attributed to the engine behavior during the transient period before steady-state

operation occurs. During this period, the maximum brake torque (MBT), and thus, brake-

specific fuel consumption and emissions, are varied for the same engine operating point

[12]. These values, corresponding to a particular operating point, highly depend on the

previous operating points from which they have been arrived. Consequently, start of

injection at steady-state operating points is not optimal for the same points when

transiting one from another.

The injection timing computed by the self-learning controller maximized engine

torque during transient operation, and the desired speed profile was achieved requiring

94

lower pedal position rates for the same engine speed as illustrated in Figure 4.25 and

Figure 4.26. The implication is that injection timing altered the brake mean effective

pressure (BMEP) for this range of engine speed, and engine operation was modified as

shown in Figure 4.27. Lower pedal position rates required less injected fuel mass into the

cylinders since injection duration was reduced (Figure 4.28), resulting in minimization of

fuel consumption as illustrated in Figure 4.29.

0 5 10 15 20 25

-2

0

2

4

6

8

10

12

14

16

18

Time [sec]

In
je

ct
io

n
Ti

m
in

g
B

TD
C

 [d
eg

]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.24 − Injection timing.

95

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Time [sec]

P
ed

al
 P

os
iti

on
 [%

]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.25 − Pedal position rate.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

Time [sec]

E
ng

in
e

S
pe

ed
 [R

P
M

]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.26 − Engine speed.

96

Figure 4.27 − Engine operating point transitions.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

In
je

ct
io

n
D

ur
at

io
n

[m
s]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.28 − Injection duration.

97

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

x 10
-3

Time [sec]

Fu
el

 C
on

su
m

pt
io

n
[k

g/
se

c]

 Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.29 − Fuel consumption.

While the fuel mass injected into the cylinders is reduced, the mass air flow was

kept almost constant (Figure 4.30) providing excess of air. These conditions degraded the

formation of HC, CO and PM as illustrated in Figures 4.31 - 4.33. The injection timing of

the baseline ECU provided higher emission temperatures in the exhaust manifold, shown

in Figure 4.34, and consequently, NOx formation was progressed much faster as depicted

in Figure 4.35.

98

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

Time [sec]

M
as

s
A

ir
Fl

ow
 [k

g/
se

c]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.30 − Mass air flow into the cylinders.

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

Time [sec]

H
C

 C
on

ce
nt

ra
tio

n
[%

]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.31 − HC concentration of emissions.

99

0 5 10 15 20 25
0

1

2

3

4

5

6

7
x 10

-6

Time [sec]

P
M

 C
on

ce
nt

ra
tio

n
[%

]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.32 − PM Concentration.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
-3

Time [sec]

C
O

 C
on

ce
nt

ra
tio

n
[%

]

 Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.33 − CO concentration of emissions.

100

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Time [sec]

E
xh

au
st

 M
an

ifo
ld

 T
em

pe
ra

tu
re

 [K
]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.34 − Exhaust manifold temperature.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
-3

Time [sec]

N
O

x
C

on
ce

nt
ra

tio
n

[%
]

Model with Baseline ECU
Model with Self-Learning Controller

Figure 4.35 − NOx concentration of emissions.

101

Table 1 summarizes the quantitative assessment of the improvement of fuel

consumption, and emissions, by employing the self-learning controller in ECU

development.

Table 1: Quantification assessment of benefits in fuel consumption and emissions
compared to baseline ECU.

Engine Performance
Indices

Improvement
[%]

Fuel consumption 8.4

NOx 7.7

HC 32.9

CO 5.0

PM 9.8

4.7 Concluding Remarks

This chapter has presented the algorithmic implementation that provides the

decision-making mechanism suitable for real-time implementation. The algorithm solves

the stochastic control sub-problem by utilizing accumulated data acquired over the

learning process of the POD model. The solution of the algorithm exhibits performance

bound that is superior compared to the solution provided by the minimax control policy

of the dynamic programming algorithm (Theorem 4.1).

The overall performance of the POD model and POSCA in deriving an optimal

control policy was evaluated through application to several examples. In the cart-pole

balancing problem, POD and POSCA realized the balancing control policy for an

inverted pendulum when the pendulum was released from any angle between 3° and -3°.

In implementing the real-time cruise controller, POD and POSCA maintained the desired

102

vehicle’s speed at any road grade between 0° and 10°. The engine calibration problem

demonstrated that the POD model and POSCA can make the engine of a vehicle an

autonomous intelligent system. The engine can learn by means of a self-learning

controller the optimal values of the controllable variables in real time while the driver

drives the vehicle. The longer the engine runs during a particular driving style, the better

the engine’s specified performance indices will be. This property arises due to the

learning process required by the state representation to capture the stationary distribution

of the engine operation with respect to the driver’s driving style. The engine’s ability to

learn its optimum calibration is not limited, however, to a particular driving style. The

engine can learn to operate optimally for different drivers by assigning the transition

probability P(⋅,⋅), and cost matrices R(⋅,⋅) for each driver. The drivers should indicate

their identities before starting the vehicle to denote the pair of these matrices that the

engine should employ. The engine can then adjust its operation to be optimal for a

particular driver based on what it has learned in the past regarding his/her driving style.

It is left for future research to explore the impact of traffic patterns, and terrain, on

the general applicability of having the engine learn its optimal calibration for an

individual driving style. Future research should also investigate the potential of

advancing the POD model to accommodate more than one decision maker in sequential

decision-making problems under uncertainty, known as multi-agent systems [13]. These

problems are found in systems in which many intelligent decision makers (agents)

interact with each other. The agents are considered to be autonomous entities. Their

interactions can be either cooperative or selfish, i.e., the agents can share a common goal,

e.g., control of vehicles operating in platoons to improve throughput on congested

highways by allowing groups of vehicles to travel together in a tightly spaced platoon at

high speeds. Alternatively, the agents can pursue their own interests.

103

4.8 References

[1] Bertsekas, D. P., Dynamic Programming and Optimal Control (Volumes 1 and 2),
Athena Scientific, September 2001.

[2] Anderson, C. W., "Learning to Control an Inverted Pendulum Using Neural
Networks," IEEE Control Systems Magazine, vol. 9, pp. 31-7, 1989.

[3] Williams, V. and Matsuoka, K., "Learning to Balance the Inverted Pendulum Using
Neural Networks," Proceedings of the 1991 IEEE International Joint Conference on
Neural Networks (Cat. No.91CH3065-0), pp. 214-19, Singapore, 1991.

[4] Zhidong, D., Zaixing, Z., and Peifa, J., "A Neural-Fuzzy BOXES Control System
with Reinforcement Learning and its Applications to Inverted Pendulum,"
Proceedings of the 1995 IEEE International Conference on Systems, Man and
Cybernetics. Intelligent Systems for the 21st Century (Cat. No.95CH3576-7), pp.
1250-4, Vancouver, BC, Canada, 1995.

[5] Jeen-Shing, W. and McLaren, R., "A Modified Defuzzifier for Control of the
Inverted Pendulum Using Learning," Proceedings of the 1997 Annual Meeting of
the North American Fuzzy Information Processing Society - NAFIPS (Cat.
No.97TH8297), pp. 118-23, Syracuse, NY, USA, 1997.

[6] Mustapha, S. M. and Lachiver, G., "A Modified Actor-Critic Reinforcement
Learning Algorithm," Proceedings of the 2000 Canadian Conference on Electrical
and Computer Engineering, pp. 605-9, Halifax, NS, Canada, 2000.

[7] Khamsi, M. A. and Kirk, W. A., An Introduction to Metric Spaces and Fixed Point
Theory, 1st edition, Wiley-Interscience, March 6, 2001.

[8] Zhang, B. S., Leigh, I., and Leigh, J. R., "Learning Control Based on Pattern
Recognition Applied to Vehicle Cruise Control Systems," Proceedings of the the
American Control Conference, pp. 3101-3105, Seattle, WA, USA, 1995.

[9] Shahdi, S. A. and Shouraki, S. B., "Use of Active Learning Method to Develop an
Intelligent Stop and Go Cruise Control," Proceedings of the the IASTED
International Conference on Intelligent Systems and Control, pp. 87-90, Salzburg,
Austria, 2003.

[10] TESIS, <http://www.tesis.de/en/>.

[11] Heywood, J., Internal Combustion Engine Fundamentals, 1 edition, McGraw-Hill
Science/Engineering/Math, April 1988.

[12] Malikopoulos, A. A., Papalambros, P. Y., and Assanis, D. N., "A Learning
Algorithm for Optimal Internal Combustion Engine Calibration in Real Time,"
Proceedings of the ASME 2007 International Design Engineering Technical

104

Conferences Computers and Information in Engineering Conference, Las Vegas,
Nevada, September 4-7, 2007.

[13] Panait, L. and Luke, S., "Cooperative Multi-Agent Learning: The State of the Art,"
Autonomous Agents and Multi-Agent Systems, vol. 11, pp. 387-434, 2005.

105

CHAPTER 5

DECENTRALIZED LEARNING

This chapter proposes a decentralized learning control scheme in finite Markov

chains that aims to address the problem of dimensionality, when more than one decision

makers are engaged. This scheme draws from multi-agent learning research in a range of

areas including reinforcement learning, and game theory to coordinate optimal behavior

among the decision makers. The solution of the decentralized scheme attempts to provide

a Nash equilibrium coordinated control policy.

In applying this scheme to the engine calibration problem, the engine is treated as

a cooperative multi-agent system, in which the subsystems, i.e., controllable variables,

are considered autonomous intelligent agents who strive interactively and jointly to

optimize engine performance criteria.

5.1 Decentralized Learning in Finite Markov Chains

Decentralized decision making requiring limited information is a highly desirable

feature of large complex systems. It is necessary when complete information among

decision makers, which is required in centralized decision making, is impractical due to

the increase of the problem’s dimensionality. Moreover, decentralized decision making

can often be useful in complex systems with uncertainties regarding their behavior and

the nature of external events [1]. Even in the absence of such uncertainties the

coordination of decentralized decision makers is still a formidable problem; local

106

optimality and global optimality are often inconsistent. Uncertainty adds to the difficulty

of an identification problem, the feature that motivates the use of a learning approach.

Mathematical learning theory has been developed in systems to address the modeling and

control aspects of sequential decision making under uncertainty [2-4]. Learning automata

have been applied to network routing in which decentralization is attractive and large

uncertainties are present [5, 6]. The resulting system performance has demonstrated that

decentralized learning schemes can be successful while the problem’s dimensionality

remains tractable.

The problem of decentralized iterative control for a class of large scale

interconnected dynamic systems in continuous time domain was studied by Wu [7]. In

this off-line approach, it is assumed that the considered systems are linear time varying,

and the interconnections between each subsystem are unknown. Szer et al. [8] proposed a

model-free distributed reinforcement learning algorithm that utilizes communication to

improve learning among the decision makers in a Markov decision process formalism.

Scherre et al. [9] developed a general iterative heuristic approach in which at each

decision epoch the focus is on a sub-group of decision makers and their policies given the

rest of the decision makers have fixed plans. Beynier et al. [10] introduced the notion of

expected opportunity cost to better assess the influence of a local decision of an agent on

the others. An iterative version of the algorithm was implemented to incrementally

improve the policies of agents leading to higher quality solutions in some settings. Yagan

et al. [11] implemented a model-free coordinated reinforcement learning for

decentralized optimal control assuming that each decision maker can partially observe the

state condition. This decentralized scheme is suited for partially observable Markov

decision processes. Shen et al. [12] developed a decentralized Markov game model to

estimate the belief among the decision makers. In the proposed model, the model-free Q-

learning algorithm was employed to adjust dynamically the payoff function of each

player.

107

Although many of these algorithms addressed the decentralized learning problem

their use of the accumulated data acquired over the learning process is inefficient, and

they require a significant amount of experience to achieve acceptable performance. This

requirement arises due to the formation of these algorithms in deriving optimal policies

without learning the system models en route; that is, they do not solve the state

estimation and system identification problem simultaneously.

The study of interacting decision makers inevitably entails game theory [13-16].

The use of learning schemes by players does not circumvent the basic complexities of N-

player games. In general, rational behavior is not well defined even when the payoff

structure is known to all players. Wheeler et al. [1] employed a game-theoretic approach

and developed a decentralized learning control scheme in finite Markov chains with

unknown transition probabilities and costs. In this scheme, the decision makers

demonstrate a myopic behavior, namely, they are unaware of the surrounding world. In

attempting to improve his/her performance, each decision maker selects a control action,

observes the corresponding cost associated with the occupied state, and then updates the

action.

The decentralized learning control scheme proposed in this dissertation differs

from Wheeler’s scheme: Here the decision makers do not demonstrate myopic behavior

explicitly. On the contrary, a random hierarchy among them is assumed, based on which

each one observes the control actions of the other. In particular, POSCA is employed to

derive the control actions of the first member in the hierarchy of decision makers with

respect to the sequence of state transitions. At the same time, the algorithm is engaged

separately to derive the control actions of the second member in the hierarchy of decision

makers with respect to the optimal policy as being learned from the first one. Similarly,

the algorithm is employed to derive the control actions of the third decision maker with

respect to the second one and so forth.

108

This decentralized learning scheme entails a game-theoretic approach. In

particular, the interaction among the controllers is modeled as an identical payoff game.

The game involves Σ∈` players (controllers) interacting through a stationary random

environment. At each decision epoch k , the environment presents a state ks i= ∈S to

the players, and on that basis each player selects a strategy (control action) from his/her

feasible set of strategies (),{ 1,..., }r
kA s r = Σ . The players seek a Nash equilibrium

strategy that exists under certain conditions.

5.2 Game Theory

Game theory is defined as the study of mathematical models of conflict and

cooperation between intelligent rational decision makers. Game theory provides the

mathematical framework for analyzing situations in which two or more individuals make

decisions that will influence one another’s welfare. A game refers to any situation

involving two or more decision makers who are called players.

There is a main assumption that game theorists generally make about the players:

they are rational and intelligent. A decision maker is rational if he makes decisions

consistently in pursuit of his own objectives. In game theory, building on the fundamental

results of decision theory, it is assumed that each player’s objective is to maximize the

expected value of his/her own payoff, which is measured in some utility scale.

Formally, a game Γ in the strategic form is represented by

(): , () , ()r r
r rA R∈Σ ∈ΣΓ = Σ , (5.1)

where Σ is the set of players, rA is the set of feasible strategies for each player r , and
rR is the payoff function of each player that implements a mapping from the Cartesian

product of the state space S (stationary environment) and the set of feasible strategies of

each player rA to the set of real numbers, 1: ...rR A AΣ× × × →S \ .

109

5.3 The Decentralized Learning Control Scheme in POD Domain

In the proposed decentralized learning scheme, the interaction among the

controllers is modeled as an identical payoff game. First, a random hierarchy among the

controllers is assumed, based on which each one observes the control actions (strategies)

of the other. More precisely, the first member in the hierarchy of the decision makers

observes the sequence of state transitions. At the same time, the second member in the

hierarchy of the decision makers observes the control actions as being learned from the

first one and so forth. The game between the first controller and the environment is

defined

()()1 1 1 2
1 , , (), (, , ,...,) ,ra A i R i a a a iΣΓ = ∀ ∈S S , (5.2)

where S is the state space, 1a is the action of the first controller, 1()A i is its the feasible

set of strategies (control actions), and 1 2(, , ,...,)rR i a a aΣ is the common payoff that all

controllers receive when they select control actions at a particular state i∈S . The second

game between the second controller in the hierarchy and the first one is defined as

()()1 2 2 1 1 2
2 , , (), (, , ,...,) ,ra a A a R i a a a iΣΓ = ∀ ∈S , (5.3)

where 2a denotes the action of the second controller, and 2 1()A a is its feasible set of

control actions with respect to the control actions of the first controller 1a . Similarly, the

game between the last two in the hierarchy of controllers is defined as

()()1 1 1 2, , (), (, , ,...,) ,ra a A a R i a a a iΣ− Σ Σ Σ− Σ
ΣΓ = ∀ ∈S . (5.4)

These games are played simultaneously at each decision epoch k , while the chain

{ 0}ks k, ≥ visits a state ks i= ∈S . The POD state representation is employed to provide

the realization of the state transitions that occurred in the Markov domain. The different

110

sequences of the state transitions are captured by the POD states and evaluated through

the expected evaluation functions that correspond to the common payoff
1 2(, , ,...,)rR i a a aΣ . POSCA selects the lookahead policy that determines the control

actions at each decision epoch.

Definition 5. 1 (“Nash Equilibrium”) [14]. In a strategic game, an action a∗ is

called Nash equilibrium if no player r has an action yielding an outcome that he/she

prefers to that generated when he/she chooses ra∗ , given that every other player l∈Σ

chooses his/her equilibrium actions la∗ . Briefly, no player can profitably deviate, given

the actions of the other players.

The decentralized learning control scheme seeks to reach a Nash equilibrium

strategy 1 2(, ,...,)a a a∗ ∗ ∗Σ for all players that is guaranteed the maximum common payoff
1 2(, , ,...,)rR i a a aΣ .

Definition 5. 2. For each controller r , the function rF is defined as

{ }1 2 1 2max 0, (, , ,..., ,...,) (, , ,..., ,...,) ,r r r r rF R i a a a a R i a a a a iΣ ∗ ∗ ∗ ∗ ∗Σ= − ∀ ∈S , (5.5)

where 1()r ra A a −∈ is the action of the controller r from the feasible set of actions, and

rR∗ is the maximum common payoff at the current decision epoch when all controllers

believe that their Nash equilibrium control actions is 1 2(, ,..., ,...,)ra a a a∗ ∗ ∗ ∗Σ .

Definition 5. 3. For each controller r , the function rR′ is defined as the mapping

:rR′ →\ \ , namely,

1 2 1 2(, , ,..., ,...,) (, , ,..., ,...,) , .
1

r r r r r

r r

R i a a a a F R i a a a aR i
F

∗ ∗ ∗ ∗ ∗Σ Σ+ ⋅′ = ∀ ∈
+

S (5.6)

The decentralized learning scheme seeks the control actions that provide the fixed

point of the mapping :rR′ →\ \ .

111

Suppose that during the learning process the belief of the controllers for the Nash

equilibrium control actions is 1 2(, ,..., ,...,)ra a a a∗ ∗ ∗ ∗Σ , which results in a common payoff

equal to 1 2(, , ,..., ,...,)r rR i a a a a∗ ∗ ∗ ∗ ∗Σ . Suppose that at the next decision epoch, they switch

to any tupleΣ − 1 2(, ,..., ,...,)ra a a aΣ with a payoff 1 2(, , ,..., ,...,)r rR i a a a aΣ . If this payoff

is less than 1 2(, , ,..., ,...,)r rR i a a a a∗ ∗ ∗ ∗ ∗Σ , then the function rF in Eq. (5.5) becomes zero.

This means that no controller can improve the payoff by changing its control action, and

thus the Nash equilibrium control actions 1 2(, ,..., ,...,)ra a a a∗ ∗ ∗ ∗Σ vanishes all functions
rF for each controller, and makes 1 2(, ,..., ,...,)ra a a a∗ ∗ ∗ ∗Σ fixed under the mapping

:rR′ →\ \ . On the other hand, if the tupleΣ − 1 2(, ,..., ,...,)ra a a aΣ yields a payoff

higher than 1 2(, , ,..., ,...,)r rR i a a a a∗ ∗ ∗ ∗ ∗Σ , then the controller change their belief and make

this tuple to be the Nash equilibrium control actions for that decision epoch and on.

5.3.1 Existence of a Nash Equilibrium

The conditions under which a Nash equilibrium of a game exists have been

extensively reported in the literature. An existence result has two purposes. First, if a

game satisfies the hypothesis of the result, then it is known that our effort to find an

equilibrium will meet with success. Second, the existence of an equilibrium shows that

the game is consistent with a steady state solution. Nash [17] proved that every finite

game that has at least on equilibrium strategy.

Kakutani’s Fixed Point Theorem gives conditions on the mapping :rR′ →\ \

under which there indeed exists a Nash equilibrium.

Theorem 5. 1 (“Kakutani’s Fixed Point Theorem”) [18]. Let X be a compact

convex subset of n\ and let :f X X→ be a set-valued function for which

1. For all x X∈ the set ()f x is nonempty and convex,

2. the graph of f is closed.

Then there exists x X∗ ∈ such that (),x f x∗ ∗∈ or ()x f x∗ ∗= .

112

Proof. The proof is provided by Khamsi and Kirk [18].

,

If the mapping :rR′ →\ \ in Eq. (5.6) satisfies the conditions imposed in

Theorem 5. 1, then it is guaranteed that a Nash equilibrium control action for the

controllers exists.

The decentralized learning scheme is illustrated with a simple example including

a state space with two states {1,2}=S , and two controllers 1a and 2a . Each controller

has available two control actions, that is, 1 1 1
1 2{ , }a a a= and 2 2 2

1 2{ , }a a a= . In the

centralized form the game with the corresponding common payoffs is formalized as

follows

1 2 1 2 1 2 1 2
1 1 1 2 2 1 2 2/ , , , ,

1 10 8 2 40
2 9 7 20 3

States Actions a a a a a a a a
. (5.7)

Obviously, at state 1 the optimal control actions are the pair 1 2
2 2,a a , whereas at

state 2 the optimal actions are 1 2
2 1,a a that maximize the common payoffs. In the proposed

decentralized learning scheme, two games are formed. The first one is between the

environment and controller 1,

1 1
1 2/ 1

1 ? ?
2 ? ?

States Controller a a
 (5.8)

and the second game is between the two controllers.

2 2
1 1

1
1
1
2

 1/ 2
? ?
? ?

Controller Controller a a
a
a

 (5.9)

113

The states appear with an unknown probability distribution that is captured by the

POD state representation. The controllers should explore their action space to learn the

corresponding payoffs, and eventually, find the control actions resulting in the maximum

payoffs.

The decentralized scheme is applied for one thousand decision epochs. At state 1,

the controllers converge to their Nash equilibrium control actions after 356 decision

epochs, illustrated in Figure 5.1. At state 2, the controllers converge to their Nash

equilibrium after 227 decision epochs as depicted in Figure 5.2.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Decision Epochs

P
ay

of
f

Figure 5.1 − Common payoff at state 1 with respect to decision epochs.

114

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Decision Epochs

P
ay

of
f

Figure 5.2 − Common payoff at state 2 with respect to decision epochs.

5.4 Decentralized Learning in Engine Calibration

The decentralized learning method [19] establishes a learning process that enables

the derivation of the optimal values of the controllable variables to occur in parallel

phases. The algorithm is employed to derive the optimal policy of one controllable

variable with respect to the sequence of state transitions imposed by the driver’s driving

style. Concurrently, the algorithm is also engaged separately to derive the optimal policy

of the second controllable variable with respect to the optimal policy being learned for

the first one. In case of more than two controllable variables, the algorithm is employed

in a similar fashion, namely, the third variable with respect to the second one and so

forth.

For instance, in implementing a diesel engine calibration with respect to the

injection timing, α, and VGT vane position, β, a feasible set of values, A and B, for each

controllable variable is defined. The decentralized learning enables the engine to

implement two different mappings in parallel. In the first, injection timing is mapped to

115

the states as a result of the correspondence of the driver’s driving style to particular

engine operating points, i.e., × →S A \ . In the second, VGT is mapped to the injection

timing, i.e., × →A B \ . The learning algorithm utilizes these two mappings to derive the

optimal policies, ,απ
∗ ∈A and βπ

∗ ∈Β (optimal values of injection timing and VGT) for

the driver’s driving style as expressed by the incidence in which particular states or

particular sequences of states arise.

The decentralized learning process of the engine transpires at each stage k in

conjunction with the injection timing kα ∈A taken for each state ks i= ∈S , and VGT

vane position kβ ∈B for each kα ∈A . At the early stages, and until full exploration of

the feasible sets A and B, occurs, the mapping from states to probabilities of selecting a

particular value of injection timing kα ∈A , and the mapping from kα ∈A to

probabilities of selecting VGT kβ ∈B are constant; namely, the values of each

controllable variable are selected randomly with the same probability

1(|) , , , andk k kp s i iα α= = ∀ ∈ ∀ ∈A S
A

 (5.10)

1(|) , , ,k kp aβ α β= ∀ ∈ ∀ ∈A B
B

 (5.11)

1,2,..., , | | .i N N= = S

Exploration of the entire feasible set for each variable is important to evade sub-

optimal solutions. POSCA is thus used after the exploration phase to realize the optimal
policies, απ

∗ , and βπ
∗ by means of the expected costs, 1(| ,)k k kV s s a+ and 1(| ,)k k kV α α β+ ,

generated by the mappings × →S A \ , and × →A B \ , respectively. The expected

costs are defined to be

116

1 1 1(| ,) (| ,) (| ,)k k k k k k k k kV s j s i a p s j s i a R s j s i a+ + += = = = = ⋅ = = +

1
2 1 1 1 1

1

min (| ,) (| ,) ,
k

N

k k k k k ka l

p s l s j a R s l s j a and
+

+ + + + +∈
=

⎡ ⎤+ = = ⋅ = =⎢ ⎥⎣ ⎦
∑A

 (5.12)

1 1 1(| ,) (| ,) (| ,)k k k k k k k k kV m n p m n R m nα α β α α β α α β+ + += = = = = ⋅ = = +

1
2 1 1 2 1 1

1
max (| ,) (| ,) ,

k
k k k k k k

p
p p m R p m

β
α α β α α β

+

Λ

+ + + + + +∈
=

⎡ ⎤
+ = = ⋅ = =⎢ ⎥

⎣ ⎦
∑B

 (5.13)

, 1, 2,..., , | |,
, 1, 2,..., , | | .

i j N N and
m n

= =
= Λ Λ =

S
A

In deriving the optimal policies of the injection timing and VGT in self-learning

calibration, which is treated in a stochastic framework, all uncertain quantities are
described by probability distributions. The optimal policies, απ

∗ , and βπ
∗ are based on the

minimax control approach, whereby the worst possible values of the uncertain quantities

within the given set are assumed to occur. This is a pessimistic point of view that

essentially assures the optimal policies will result in at least a minimum overall cost

value. Consequently, at state ,ks i= the algorithm predicts the optimal policy απ
∗ in

terms of the values of injection timing α as

[]
1

1
() ()

() arg min max (| ,) ,
kk k k

k k k kss A s
s V s j s i aα

µ
π

+

∗
+∈∈

= = =
S

(5.14)

, .i j∀ ∈S

For this optimal policy απ
∗ the algorithm predicts the optimal policy βπ

∗ in terms

of the values of the VGT vane position β as

117

[]
1

1
() ()

() arg min max (| ,) ,
kk k k

k k k kaa a
V a m a nβ

β
π α β

+

∗
+∈∈

= = =
AB

(5.15)

, .m n∀ ∈A

Employing decentralized learning, the derivation of the optimal values of more

than one controllable variable can be achieved while the problem’s dimensionality

remains tractable.

5.5 Application: Decentralized Learning in a Diesel Engine

The decentralized learning introduced in the previous section is now applied to a

four-cylinder, 1.9-liter turbocharged diesel engine. The objective is to find the optimal

injection timing and VGT vane position, while the engine is running the vehicle, that

maximize the engine brake torque. Injection timing is an important controllable variable

in the combustion process, and affects performance and emissions [20]. The major

objective of injection timing is to initiate the start of the fuel injection at the crank angle

resulting in the maximum brake torque (MBT). It designates the ignition delay defined to

be the crank angle between the start of injection (SOI) and the start of combustion (SOC).

The VGT technology was originally considered to increase engine brake torque at tip-ins

and reduce turbo-lag. VGT has a system of movable guide vanes located on the turbine

stator. By adjusting the guide vanes, the exhaust gas energy to the turbocharger can be

regulated, and thus the compressor mass airflow and exhaust manifold pressure can be

controlled.

The software package enDYNA Themos CRTD by TESIS [21] suitable for real-

time simulation of diesel engines is employed. In the example, the existing static

correlation involving injection timing and VGT is bypassed to incorporate the learning

method and is used as a baseline comparison. The engine models with the baseline and

self-learning calibration are run repeatedly over the same driving style represented by a

118

segment of the FTP-75 driving cycle, illustrated in Figure 5.3. Every run over this driving

style constitutes one complete simulation. Before initiating the first simulation of the

engine model, the elements of the transition probability and cost matrix are assigned to be

zero. That is, the engine at the beginning has no knowledge regarding the particular

driving style and the values of the costs associated with the controllable variables

(injection timing and VGT).

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Time [sec]

V
eh

ic
le

 V
el

oc
ity

 [m
ph

]

Driving cycle
Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.3 − Segment of the FTP-75 driving cycle.

5.5.1 Simulation Results

Applying the decentralized learning method, the vehicle with the self- learning

calibration was able to follow the segment of the driving cycle requiring lower gas pedal

position rates for the same engine speed, as illustrated in Figures 5.4 – 5.6. The

implication is that the derived policy of injection timing and VGT resulted in higher

engine torque compared to the baseline calibration. The injection timing (before top dead

center BTDC) for both vehicles is illustrated in Figures 5.7 and 5.8. While the baseline

119

calibration interpolates values of the injection timing of steady-state operating points, the

injection timing derived by the learning algorithm corresponded to the engine operating

point transitions imposed by the driver’s driving style, and thus, self-learning calibration

was able to capture transient engine operation. Lower gas pedal position rates resulted in

reducing the fuel mass injection duration, shown in Figure 5.9, and consequently, less

fuel mass was injected into the cylinders, as illustrated in Figure 5.10 (in zoom-in for

clarity). In the decentralized learning of the engine, the injection timing was mapped to

the engine operating points (states) while the VGT vane position was mapped to the

optimal injection timing. The derived VGT policy is illustrated in Figure 5.11 – 5.12.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time [sec]

E
ng

in
e

S
pe

ed
 [R

P
M

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.4 − Engine speed.

120

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Time [sec]

A
cc

el
er

at
or

 P
ed

al
 [%

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.5 − Gas-pedal position rate representing a driver’s driving style.

90 95 100 105 110
0

5

10

15

20

25

30

35

40

Time [sec]

A
cc

el
er

at
or

 P
ed

al
 [%

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.6 − Gas-pedal position rate representing a driver’s driving style (zoom-in).

121

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Time [sec]

In
je

ct
io

n
Ti

m
in

g
B

TD
C

 [r
ad

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.7 − Injection timing.

90 95 100 105 110
0

0.05

0.1

0.15

0.2

0.25

Time [sec]

In
je

ct
io

n
Ti

m
in

g
B

TD
C

 [r
ad

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.8 − Injection timing (zoom-in).

122

90 95 100 105 110
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [sec]

In
je

ct
io

n
D

ur
at

io
n

[m
s]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.9 − Fuel mass injection duration (zoom-in).

90 95 100 105 110
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time [sec]

Fu
el

 M
as

s
pe

r C
yl

in
de

r [
g]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.10 − Fuel mass injected per cylinder (zoom-in).

123

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Time [sec]

V
G

T
B

la
de

 P
os

iti
on

 [%
]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.11 − VGT vane position.

90 95 100 105 110
24

26

28

30

32

34

36

38

Time [sec]

V
G

T
B

la
de

 P
os

iti
on

 [%
]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.12 − VGT vane position (zoom-in).

124

Having the engine operate at the maximum brake torque, a 9.3% overall

improvement of fuel economy was accomplished, as illustrated in Figure 5.13, compared

to the baseline calibration. Figures 5.14 and 5.15 show a decrease in the temperature and

NOx concentration of the exhaust gas; this is due to the earlier injection determined for

the engine operating transitions of the particular driver’s driving style. Table 2

summarizes the quantitative assessment of the improvement of fuel economy, and NOx,

by employing the self-learning controller in ECU development.

Table 2: Quantification assessment of benefits with self-learning controller compared to
baseline ECU.

Engine Performance
Indices

Improvement
[%]

Fuel consumption 9.1

NOx 8.6

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time [sec]

Fu
el

 C
on

su
m

pt
io

n
[g

al
lo

ns
]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.13 − Fuel consumption for the driving cycle.

125

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Time [sec]

E
m

is
si

on
 T

em
pe

ra
tu

re
 [K

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.14 − Emission temperature in the exhaust manifold.

90 95 100 105 110
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time [sec]

N
O

x
C

on
ce

nt
ra

tio
n

[%
]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

Figure 5.15 − NOx concentration of emissions (zoom-in).

126

5.6 Concluding Remarks

This chapter has proposed a decentralized learning scheme suitable for finite

Markov chains. In this scheme, the decision makers do not demonstrate myopic behavior

explicitly. Instead, a random hierarchy among them is assumed, based on which each one

observes the control actions of the other while attempting to select a Nash equilibrium

coordinated control policy. Decentralization is a common and often necessary aspect of

large sequential decision-making problems. It is necessary when complete information

among decision makers is impractical due to the increase of the problem’s

dimensionality.

In applying the proposed decentralized scheme to the engine calibration problem,

a learning process was established that enables the derivation of the values of the

controllable variables to occur in parallel phases. The values for more than one

controllable variable can thus be determined while keeping the problem’s dimensionality

tractable. The example presented an application of this scheme in real-time, self-learning

calibration of a diesel engine with respect to injection timing and VGT vane position. The

engine was able to realize the optimal values of injection timing and VGT for a driving

style represented by a segment of the FTP-75 driving cycle, thus, optimizing fuel

economy. Future research should validate this method to more than two controllable

variables and the implications for the required learning time.

The proposed method, in conjunction with the POD model and POSCA, can

guarantee optimal calibration for steady-state and transient engine operating points

resulting from the driver’s driving style. This capability can be valuable in engines

utilized in hybrid-electric powertrain configurations when real-time optimization of the

power management is considered.

127

5.7 References

[1] Wheeler, R. and Narenda, K., "Decentralized Learning in Finite Markov Chains,"
IEEE Transactions on Automatic Control, vol. 31(6), pp. 373-376, 1986.

[2] Tsypkin, Y. Z., Adaptation and Learning in Automatic Systems. New York,
Academic Press, 1971.

[3] Moore, A. W. and Atkinson, C. G., "Prioritized Sweeping: Reinforcement Learning
with Less Data and Less Time," Machine Learning, vol. 13, pp. 103-30, 1993.

[4] Bush, R. R. and Mosteler, F., Stochastic Models for Learning. New York, John
Wiley, 1958.

[5] Narendra, K. S. and Wheeler, R. M., Jr., "N-Player Sequential Stochastic Game with
Identical Payoffs," IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-
13, pp. 1154-1158, 1983.

[6] Srikantakumar, P. R. and Narendra, K. S., "A Learning Model for Routing in
Telephone Networks," SIAM Journal on Control and Optimization, vol. 20, pp. 34-
57, 1982.

[7] Zheng, Y., Luo, S., Lv, Z., and Wu, L., "Control Parallel Double Inverted Pendulum
by Hierarchical Reinforcement Learning," Proceedings of the 2004 7th International
Conference on Signal Processing Proceedings (IEEE Cat. No.04TH8739), pp. 1614-
17, Beijing, China, 2004.

[8] Szer, D. and Charpillet, F., "Improving Coordination with Communication in Multi-
Agent Reinforcement Learning," Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 436-440, Boca
Raton, FL, United States, 2004.

[9] Scherrer, B. and Charpillet, F., "Cooperative Co-Learning: a Model-Based
Approach for Solving Multi-Agent Reinforcement Problems," Proceedings of the
14th IEEE International Conference on Tools with Artificial Intelligence, pp. 463-8,
Washington, DC, USA, 2002.

[10] Beynier, A. and Mouaddib, A.-I., "An Iterative Algorithm for Solving Constrained
Decentralized Markov Decision Processes," Proceedings of the 21st National
Conference on Artificial Intelligence and the 18th Innovative Applications of
Artificial Intelligence Conference, AAAI-06/IAAI-06, pp. 1089-1094, Boston, MA,
United States, 2006.

[11] Yagan, D. and Chen-Khong, T., "Coordinated Reinforcement Learning for
Decentralized Optimal Control," Proceedings of the 2007 First IEEE International
Symposium on Approximate Dynamic Programming and Reinforcement Learning
(IEEE Cat. No.07EX1572), pp. 7 pp., Honolulu, HI, USA, 2007.

128

[12] Shen, D., Chen, G., Cruz, J. B., Jr., Kwan, C., and Kruger, M., "An Adaptive
Markov Game Model for Threat Intent Inference," Proceedings of the IEEE
Aerospace Conference, pp. 4161613, Big Sky, MT, United States, 2007.

[13] Myerson, R. B., Game Theory: Analysis of Conflict, Harvard University Press,
September 15, 1997.

[14] Osborne, M. J. and Rubinstein, A., A Course in Game Theory, The MIT Press, July
12, 1994.

[15] Fudenberg, D. and Tirole, J., Game Theory, The MIT Press, August 29, 1991.

[16] Neumann, J. v., Morgenstern, O., Rubinstein, A., and Kuhn, H. W., Theory of
Games and Economic Behavior, Princeton University Press, March 2007.

[17] Nash, J. F., "Equilibrium Points in N-Person Games," Proceedings of the National
Academy of Sciences, 18, 1950.

[18] Khamsi, M. A. and Kirk, W. A., An Introduction to Metric Spaces and Fixed Point
Theory, 1st edition, Wiley-Interscience, March 6, 2001.

[19] Malikopoulos, A. A., Assanis, D. N., and Papalambros, P. Y., "Real-Time, Self-
Learning Optimization of Diesel Engine Calibration," Proceedings of the 2007 Fall
Technical Conference of the ASME Internal Combustion Engine Division,
Charleston, South Carolina, October 14-17, 2007.

[20] Heywood, J., Internal Combustion Engine Fundamentals, 1 edition, McGraw-Hill
Science/Engineering/Math, April 1988.

[21] TESIS, <http://www.tesis.de/en/>.

129

CHAPTER 6

CONCLUSIONS

6.1 Dissertation Summary

This dissertation has proposed the theory and algorithms toward making the

engine of a vehicle an autonomous intelligent system that can learn the optimal values of

various controllable variables in real time while the driver drives the vehicle. Through

this approach, engine calibration is optimized with respect to both steady-state and

transient operation designated by the driver’s driving style. Consequently, every driver

can realize optimal fuel economy and pollutant emissions as fully as possible.

The engine was treated as a controlled stochastic system, and engine calibration

was formulated as a sequential decision-making problem under uncertainty. This problem

involved two major sub-problems: (a) the state estimation and system identification

problem, and (b) the stochastic control problem. In Chapter 2, the underlying theory for

building computational models suitable for sequential decision-making under uncertainty

was reviewed. These models constitute an essential framework for making intelligent

systems able to learn the control actions that optimize their long-term performance.

In Chapter 3, a real-time computational learning model was implemented suitable

for solution of the state estimation and system identification sub-problem. A state-space

representation was constructed through a learning mechanism that can be employed

simultaneously with a lookahead control algorithm in solving the stochastic control

problem. The model allows decision making based on gradually enhanced knowledge of

130

system response as it transitions from one state to another, in conjunction with control

actions taken at each state.

To enable the engine to select the optimal values of various controllable variables

in real time, a lookahead control algorithm was developed in Chapter 4. The algorithm

solves the stochastic control sub-problem by utilizing accumulated data acquired over the

learning process of the state-space representation. The combination of the state-space

representation and control algorithm make the engine progressively perceive the driver’s

driving style and eventually learn its optimal calibration for this driving style. The longer

the engine runs during a particular driving style, the better the engine’s specified

performance indices will be. This property arises due to the learning process required by

the state representation to capture the stationary distribution of the engine operation with

respect to the driver’s driving style. The engine can learn its optimal calibration for any

other driver who indicates his or her identity before starting the vehicle by assigning the

transition probability P(⋅,⋅), and cost (or reward) matrices R(⋅,⋅) for each driver.

The enhancement of the problem’s dimensionality, when more than one

controllable variable is considered, was addressed by the development of a decentralized

learning control scheme, presented in Chapter 5. This scheme draws from multi-agent

learning research in a range of areas, including reinforcement learning, and game theory,

to coordinate optimal behavior among the various controllable variables. The engine was

modeled as a cooperative multi-agent system, in which the subsystems, i.e., controllable

variables, were treated as autonomous intelligent agents who strive interactively and

jointly to optimize engine performance criteria.

In summary, the research reported in this dissertation has taken steps toward

development engine calibration that can capture transient engine operation designated by

the driver’s driving style. Each individual driving style is different and rarely meets those

driving conditions of testing for which the engine is calibrated to operate optimally by

means of the state-of-the-art calibration methods. The implementation of the proposed

131

approach in a vehicle is expected to significantly reduce the discrepancy between the gas

mileage estimate displayed on the window sticker or featured in advertisements and the

actual gas mileage of the vehicle.

6.2 Summary of Contributions

Three distinct steps were taken toward making the engine an autonomous

intelligent system:

1. A computational model suitable for real-time sequential decision-making

under uncertainty was implemented. A state-space representation was

constructed through a learning mechanism and utilized in solving the state

estimation and system identification sub-problem. The model accumulates

gradually enhanced knowledge of system response as it transitions from

one state to another, in conjunction with actions taken at each state. As the

system interacts with its environment, the state representation realizes the

sequences of state transitions that occurred in the Markov domain. This

realization converges to the stationary distribution of the Markov chain

(Theorem 3.3).

2. A lookahead control algorithm was developed that addresses the stochastic

control sub-problem in real time by utilizing accumulated data acquired

over the learning process of the state-space representation. The principle

of the algorithm is founded on the theory of stochastic control problems

with unknown disturbance distribution, also known as games against

nature. The solution of the algorithm exhibits performance bounds that are

132

better than the solution of any minimax control policy provided by

dynamic programming (Theorem 4.1).

3. A decentralized learning control scheme was proposed to coordinate

optimal behavior among various decision makers for mutual benefit. The

solution of the decentralized scheme provides a Nash equilibrium

coordinated control policy.

6.3 Future Research

The proposed approach toward making the engine of a vehicle an autonomous

intelligent system assumes implicitly that engine output can be perfectly observed. In this

context, engine operation was modeled as a completely observable Markov decision

process. Future research should examine the potential of having limited capabilities in

observing engine output, and thus, should consider modeling engine operation as a

partially observable Markov decision process.

Future research should also investigate the potential of advancing the POD model

to accommodate more than one decision maker with non-cooperative interactions. These

problems are found in systems in which many intelligent decision makers interact with

each other to pursue their own interests, e.g., subsystems of a hybrid-electric vehicle.

Sequential decision-making under uncertainly is a fundamental problem faced by

autonomous intelligent or rational systems, e.g., physical systems, robots, automated

manufacturing systems, etc, embedded in complex environments that choose actions to

achieve long-term goals efficiently. Computational rationality can be achieved by

modeling a system and the interaction with its environment through actions, perceptions,

and costs (or rewards). A widely adopted paradigm for modeling this interaction is the

completely or partially observable Markov decision process. Theory and algorithms

133

related to these problems have been extensively reported in the literature. However, no

research has been reported addressing the computational cost associated with deriving

these optimal policies. Future research should address the impact of the computational

time required in deriving optimal control policies and the coupled tradeoffs. The latter

could result in a quantitative assessment of optimal policies with respect to required

computational time. This assessment would provide an essential treatment in selecting

control policies suitable for real-time stochastic control implementation.

