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Abstract: In this paper, we analyze a network of agents in a partially nested information
structure with a common ancestor. We present the prescription approach applied to different
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demonstrate the proposed approach through an example that aims at establishing time-invariant
domains of the prescriptions without assuming a Linear Quadratic Gaussian problem.
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1. INTRODUCTION

A decentralized control system comprises of multiple
agents acting to control the state of the system over a
finite number of stages to minimize the total cost. The
defining characteristic of these problems is their informa-
tion structure, which is characterized by the topology of
the network and the information sharing pattern. We can
divide information structures into three categories:

(1) The classical information structure: Every agent has
access to the same information.

(2) The quasi-classical information structure: Includes
partially and stochastically nested systems where control
strategies for Linear Quadratic Guassian (LQG) problems
are linear; see Ho and Chu (1972), Yuksel (2009).

(3) The non-classical information structure: Agents influ-
ence the decisions of other agents without sharing their
complete observation history.

The derivation of optimal control strategies for non-LQG
problems with quasi-classical and non-classical informa-
tion structures is computationally challenging; see Wit-
senhausen (1968). A key result that can aim at addressing
the associate computational challenges is finding sufficient
statistics to compress the growing information available
to an agent without loss of optimality. Recent advances
in decentralized control have focused on finding sufficient
statistics for specific information structures. Space con-
straints limit our literature review, and thus, for a com-
plete discussion of the work reported in the literature
to date we refer to Dave and Malikopoulos (2019) and
Mahajan et al. (2012), and the references therein.

The work on partially nested information structures has
primarily focused on LQG problems and specific informa-
tion structures; see Mahajan and Nayyar (2015), Nayyar
and Lessard (2015), Wu and Lall (2014), Wu and Lall
(2010) and references therein. To the best of our knowl-
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edge, no sufficient statistics have been derived in general
for partially nested information structures. The key con-
tribution of this paper is to derive a structural result for
partially nested systems with a common ancestor.

2. PROBLEM FORMULATION

2.1 The Network of Agents

Consider a system of K ∈ N agents represented by a
partially nested network, modeled as a directed acyclic
graph G = (K, E). The set of agents is given by K :=
{1, ...,K} and every k ∈ K is a node of graph G . If there is
a link (or edge) from agent i ∈ K to agent k, it is denoted
by (i, k) ∈ E . Edge (i, k) represents a communication link
from i to k and every agent k ∈ K \ {1} has at least one
link starting at k.

Fig. 1. A partially nested network of agents.
Definition 1. Let j, k ∈ K and N := {1, ...,m : m ∈ N}
be the set of indices. A path from agent k to agent j
denoted by (k → j), if it exists, is given by the sequence
{kn}n∈N such that: (1) k1 = k and km = j, (2) kn ∈ K
for n ∈ N , and (3) there exists a link (kn−1, kn) ∈ E for
n ∈ N \ {1}.
For a partially nested information structure, the topology
of the network of agents has to be acyclic as in Fig. 1. This
implies that if there is a path (k → j) from an agent k ∈ K
to another agent j ∈ K, then there is no path from j to k.
There is always a path from agent k to itself denoted by
(k → k). The set of all paths starting at agent k is Qk.
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By convention we index the agents so that if there is a path
(k → j) ∈ Qk and k �= j, then k > j. The relationship
between the agents in the network can be summarized
through as below.
Definition 2. The set of ancestors for agent k ∈ K is
given by A k :=

{
j ∈ {1, ..., k} : (k → j) ∈ Qk

}
.

Definition 3. The set of descendents for agent k ∈ K is
given by Dk :=

{
l ∈ {k, ...,K} : (l → k) ∈ Ql

}
.

We assume the presence of a common ancestor for the
system and call it agent 1, i.e., D1 = K. Any agents that
have no descendents other than themselves are known as
leaf nodes.

2.2 System Description

We consider a finite horizon discrete time system with a
given time horizon T ∈ N. At time t ∈ {0, 1, ..., T} the
state of the system Xt and control action Uk

t of agent
k ∈ K are random variables that takes values in the finite
sets X and U respectively. The inital state X0 has a known
distribution and the evolution of the system is given by

Xt+1 = ft
(
Xt, U

1
t , ..., U

K
t ,Wt

)
, (1)

where Wt is the uncontrolled disturbance to the system
represented as a random variable with a known distribu-
tion that takes values from a finite set W. At time t, agent
k ∈ K makes an observation Y k

t taking values in a finite
set Yk as

Y k
t = hk

t (Xt, V
k
t ), (2)

where V k
t is the sensor noise represented as a random

variable with a known distribution that takes values in
the finite set Vk. We assume that the random variables
{X0,W0:T , V

1
0:T , ..., V

K
0:T } are independent of one another

and that their distributions are known.

Agent k ∈ K selects a control action Uk
t as a function of its

memory, defined through the partially nested information
structure of the system in Section 2.3. After each agent
k generates a control action Uk

t , the system incurs a
cost ct(Xt, U

1
t , ..., U

K
t ). We assume that the functions

{ft, h1
t , ..., h

K
t , ct : t = 0, ..., T} are known.

2.3 The Partially Nested Information Structure

The information structure of the system is characterized
by the topology of the network (Section 2.1) and the
rules of communication. We set the following rules of
communication from an agent k ∈ K to an agent j ∈ A k:

(1) At time t, agent k transmits information denoted by
the set {Y k

t , Uk
t−1} to every agent j ∈ A k.

(2) The communication path (k → j) has a communication
delay of δ[k,j] ∈ N time steps, i.e, information {Y k

t , Uk
t−1}

transmitted by k at time t is received by j at time t+δ[k,j].

Note that the communication delays are deterministic and
known apriori. By convention we set δ[k,k] = 0. The
information available to an agent k ∈ K at time t is given
by the following definition.
Definition 4. The memory of agent k ∈ K is defined as
the random variable Mk

t that takes values in the finite set
Mk

t and is given by,

Mk
t :=

{
Y l
0:t−δ[l,k] , U

l
0:t−δ[l,k]−1 : l ∈ Dk

}
. (3)

At time t, agent k generates a control action

Uk
t := gkt (M

k
t ), (4)

where gkt is the control policy of agent k at time t. We
define the control policy for each agent as gk := (gk0 , ..., g

k
T )

and the strategy of the system as g := (g1, ..., gK). The
set of all feasible control strategies is denoted by G.
The performance criterion for the system is given by the
total expected cost,

Problem 1: J (g) = Eg

[
T∑

t=0

ct(Xt, U
1
t , ..., U

K
t )

]
, (5)

where the expectation is with respect to the joint prob-
ability measure on the random variables Xt, U

1
t , ..., U

K
t .

The problem is to select an optimal strategy g∗ ∈ G that
minimizes performance criterion (5).

3. THE PRESCRIPTION APPROACH

3.1 Permutations of the Agents

The first step in our analysis is to construct (K − 1)!
permutations of agents in the system by fixing agent 1
as the first agent in all permutations.
Definition 5. A permutation of the agents in K is defined
as a K-tuple ordered list om = (om,1, ..., om,K), with
m ∈ {1, ..., (K − 1)!} and om,1 = 1.

Let P = {1, ...,K} be the set of possible positions in
a permutation. The component om,p in permutation om
refers to an agent with position p ∈ P in om. As an
example, consider a system with three agents that has a
permutation given by om = (1, 3, 2). In this permutation,
we say the agent 2 is located at position 3 and om,3 = 2.
Remark 1. The lower-case letters i, j, and k refer to
agents in the set K, while the letters p, q, and r refer to the
positions of agents in a permutation om = (om,1, ..., om,K).
Remark 2. When agent k ∈ K occupies position p in per-
mutation om, we denote any random variables of the form

Uk
t , M

k
t , etc, equivalently by U

[p]
t , M

[p]
t , etc. Similarly, we

denote any function of the form gkt equivalently by g
[p]
t .

3.2 Construction of Prescriptions

For an agent k ∈ K located at position p ∈ P in

prescription om, the control action U
[p]
t = Uk

t is generated
in two stages:

(1) The agent located at position p in permutation om
generates a function based on information which is a subset

of its memory M
[p]
t .

(2) This function takes as an input the compliment of the
subset used to generate it and yields the control action

U
[p]
t .

We call these functions prescriptions. Next, we show that
the prescriptions allow us to formulate an equivalent
optimization problem with respect to the optimal strategy
for prescriptions instead of the optimal strategy g∗ in
Problem 1. In this section, we construct the subset of

memoryM
[p]
t and prescriptions for agents at every position

p in permutation om without changing the information
structure.
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Definition 6. Let agent k be at position p in permutation

om with memoryM
[p]
t at time t. The accessible information

of the agent located at p is defined as the set A
[p]
t that takes

values in the finite collection of sets A[p]
t such that,

A
[p]
t =

p⋂
q=1

(
M

[q]
t

)
. (6)

As an example for a permutation om, we can write (6) for
the agent at position p = 1 as

A
[1]
t = M

[1]
t , (7)

where om,1 = 1. Similarly, for agent at position p = 2, we
can write (6) as,

A
[2]
t = M

[1]
t ∩M

[2]
t . (8)

The form of the accessible information motivates us to
define a set of agents with positions beyond p.
Definition 7. For a position p ∈ P in permutation om,
the set of positions beyond p is given by B[p] := {q ∈ P :
q ≥ p}.

Then, from the definition of the accessible information A
[p]
t

we have the properties,

A
[q]
t ⊂ A

[p]
t , ∀q ∈ B[p], (9)

A
[p]
t−1 ⊂ A

[p]
t . (10)

Property (10) motivates a new term to denote the infor-

mation added to A
[p]
t at time t.

Definition 8. The new information for the agent located

at p ∈ P at time t is defined as the set Z
[p]
t that takes

values in a finite collection of sets Z [p]
t such that,

Z
[p]
t := A

[p]
t \A[p]

t−1. (11)

We observe in (9) that for all p ∈ P and q ∈ B[p], we

have A
[q]
t ⊂ M

[p]
t . Thus, we can define the inaccessible

information of the agent at p with respect to the accessible

information A
[q]
t of any q ∈ B[p].

Definition 9. The inaccessible information of an agent
at position p in permutation om with respect to accessible

information A
[q]
t , q ∈ B[p], is defined as the set L

[p,q]
t that

takes values in the finite collection of sets L[p,q]
t such that,

L
[p,q]
t := M

[p]
t \A[q]

t . (12)

The pair of sets A
[q]
t and L

[p,q]
t forms a partition of the

set M
[p]
t . We use this partition to define a prescription

function below.
Definition 10. The prescription for an agent at position
p is given by the function,

Θ
[p]
t := (Γ

[p,q]
t : q ∈ P), (13)

where,

Γ
[p,q]
t :

{
L[q,p]
t �−→ U [q]

t if q �∈ B[p],

L[q,q]
t �−→ U [q]

t if q ∈ B[p].
(14)

Each component Γ
[p,q]
t of Θ

[p]
t is generated as,

Γ
[p,q]
t :=

{
ψ
[p,q]
t (A

[p]
t ) if q �∈ B[p],

ψ
[p,q]
t (A

[q]
t ) if q ∈ B[p],

(15)

where ψ[p,q] := (ψ
[p,q]
0 , ..., ψ

[p,q]
T ) is called the prescription

policy of the agent at p for the agent at q and ψ[p] :=
(ψ[p,q] : q ∈ P) is called the prescription strategy of the
agent at p. The set of feasible prescription strategies for
the agent at p is denoted by Ψ[p].

Remark 3. We write the vector Θ
[p]
t as (Γ

[p,q]
t : q ∈ P) to

highlight that it is defined with respect to the positions of
the agents in permutation om.

3.3 Prescriptions and Control Strategies

The first two results state that for an agent k at position

p in permutation om, we can use the prescription Θ
[p]
t to

generate control action Uk
t instead of the strategy gkt .

Lemma 1. Let agent k ∈ K be located at position p in

permutation om and Θ
[p]
t be its prescription. For every

strategy g, there exists a prescription strategy ψ[p] such

that control action U
[p]
t is given by

U
[p]
t = Γ

[p,p]
t

(
L
[p,p]
t

)
. (16)

Proof. Let A
[p]
t and L

[p,p]
t be the accessible and inaccessible

information respectively of agent k located at position p in
permutation om. We select a strategy g that can generate

control action U
[p]
t through (4). Then, we define

Γ
[p,p]
t (·) := g

[p,p]
t (A

[p]
t , ·). (17)

Hence

U
[p]
t =Γ

[p,p]
t (L

[p,p]
t )

=g
[p]
t (A

[p]
t , L

[p,p]
t ) = g

[p]
t (M

[p]
t ) = gkt (M

k
t ). (18)

Thus, any strategy g can be implemented through an
appropriate prescription strategyψ[p] to generate the same

control actions U
[p]
t for agents at any position p ∈ P. Next,

we show that the reverse is also true.
Lemma 2. Let agent k ∈ K be located at position p in

permutation om and let Θ
[p]
t be its prescription. For every

prescription strategy ψ[p] ∈ Ψ[p], there exists a strategy
g ∈ G such that

Γ
[p,p]
t

(
L
[p,p]
t

)
= g

[p]
t (M

[p]
t ). (19)

Proof. We select a prescription strategy ψ[p] and construct
the corresponding control policy g[p]. Hence

U
[p]
t = g

[p]
t (M

[p]
t )

= g
[p]
t (A

[p]
t , L

[p,p]
t ) := ψ

[p,p]
t (A

[p]
t )(L

[p,p]
t ). (20)

Our next result establishes the equivalence between pre-

scriptions Θ
[p]
t and Θ

[q]
t generated by agents at positions p

and q respectively in permutation om.
Lemma 3. Let k and j be two agents at positions p ∈ P
and q ∈ B[p] and let ψ[p] be a given prescription strategy
for the agent located at p. Then, there exists a positional

2019 IFAC NecSys
Chicago, IL, USA, September 16-17, 2019

99



 Aditya Dave  et al. / IFAC PapersOnLine 52-20 (2019) 97–102 99

Definition 6. Let agent k be at position p in permutation

om with memoryM
[p]
t at time t. The accessible information

of the agent located at p is defined as the set A
[p]
t that takes
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have A
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L
[p,q]
t := M

[p]
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The pair of sets A
[q]
t and L

[p,q]
t forms a partition of the

set M
[p]
t . We use this partition to define a prescription

function below.
Definition 10. The prescription for an agent at position
p is given by the function,

Θ
[p]
t := (Γ

[p,q]
t : q ∈ P), (13)

where,

Γ
[p,q]
t :

{
L[q,p]
t �−→ U [q]

t if q �∈ B[p],

L[q,q]
t �−→ U [q]

t if q ∈ B[p].
(14)

Each component Γ
[p,q]
t of Θ
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t is generated as,
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t :=
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ψ
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t (A
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t ) if q �∈ B[p],
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t (A
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t ) if q ∈ B[p],

(15)

where ψ[p,q] := (ψ
[p,q]
0 , ..., ψ

[p,q]
T ) is called the prescription

policy of the agent at p for the agent at q and ψ[p] :=
(ψ[p,q] : q ∈ P) is called the prescription strategy of the
agent at p. The set of feasible prescription strategies for
the agent at p is denoted by Ψ[p].

Remark 3. We write the vector Θ
[p]
t as (Γ

[p,q]
t : q ∈ P) to

highlight that it is defined with respect to the positions of
the agents in permutation om.

3.3 Prescriptions and Control Strategies

The first two results state that for an agent k at position

p in permutation om, we can use the prescription Θ
[p]
t to

generate control action Uk
t instead of the strategy gkt .

Lemma 1. Let agent k ∈ K be located at position p in

permutation om and Θ
[p]
t be its prescription. For every

strategy g, there exists a prescription strategy ψ[p] such

that control action U
[p]
t is given by

U
[p]
t = Γ

[p,p]
t

(
L
[p,p]
t

)
. (16)

Proof. Let A
[p]
t and L

[p,p]
t be the accessible and inaccessible

information respectively of agent k located at position p in
permutation om. We select a strategy g that can generate

control action U
[p]
t through (4). Then, we define

Γ
[p,p]
t (·) := g

[p,p]
t (A

[p]
t , ·). (17)

Hence

U
[p]
t =Γ

[p,p]
t (L

[p,p]
t )

=g
[p]
t (A

[p]
t , L

[p,p]
t ) = g

[p]
t (M

[p]
t ) = gkt (M

k
t ). (18)

Thus, any strategy g can be implemented through an
appropriate prescription strategyψ[p] to generate the same

control actions U
[p]
t for agents at any position p ∈ P. Next,

we show that the reverse is also true.
Lemma 2. Let agent k ∈ K be located at position p in

permutation om and let Θ
[p]
t be its prescription. For every

prescription strategy ψ[p] ∈ Ψ[p], there exists a strategy
g ∈ G such that

Γ
[p,p]
t

(
L
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t

)
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t (M
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t ). (19)
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the corresponding control policy g[p]. Hence
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t (M
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t )
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t (A
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t , L

[p,p]
t ) := ψ

[p,p]
t (A

[p]
t )(L

[p,p]
t ). (20)

Our next result establishes the equivalence between pre-

scriptions Θ
[p]
t and Θ

[q]
t generated by agents at positions p

and q respectively in permutation om.
Lemma 3. Let k and j be two agents at positions p ∈ P
and q ∈ B[p] and let ψ[p] be a given prescription strategy
for the agent located at p. Then, there exists a positional
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relationship function e[q,p] = (e
[q,p]
1 , ..., e

[q,p]
T ) such that the

prescription strategy of the agent at q constructed as

ψ
[q,r]
t = e

[q,p]
t

(
ψ
[p,r]
t

)
, ∀r ∈ P, (21)

yields

Γ
[p,r]
t (L

[r,r]
t ) = Γ

[q,r]
t (L

[r,r]
t ) if r ∈ B[q],

Γ
[p,r]
t (L

[r,r]
t ) = Γ

[q,r]
t (L

[r,q]
t ) if r ∈ B[p], r �∈ B[q],

Γ
[p,r]
t (L

[r,p]
t ) = Γ

[q,r]
t (L

[r,q]
t ) if r �∈ B[p]. (22)

Proof. Let g
[r]
t be the control policy for a third agent i ∈ K

at position r at time t. We prove the result by constructing

the control policy g
[r]
t and the prescription policy ψ

[q]
t in

three cases, given a prescription strategy ψ[p].

(1) For r ∈ B[q], let g
[r]
t : M[r]

t �→ U [r]
t and ψ

[q,r]
t (A

[r]
t ) :

L[r,r]
t �→ U [r]

t be given by,

ψ
[p,r]
t (A

[r]
t )(L

[r,r]
t ) =: g

[r]
t (A

[r]
t , L

[r,r]
t ), (23)

ψ
[p,r]
t =: ψ

[q,r]
t . (24)

(2) For r ∈ B[p] ∩ (K \ B[q]), let g
[r]
t : M[r]

t �→ U [r]
t and

ψ
[q,r]
t (A

[q]
t ) : L[r,q]

t �→ U [r]
t be given by,

ψ
[p,r]
t (A

[r]
t )(L

[r,r]
t ) =: g

[r]
t (A

[r]
t , L

[r,r]
t )

= g
[r]
t (A

[q]
t , L

[r,q]
t ) =: ψ

[q,r]
t (A

[q]
t )(L

[r,q]
t ). (25)

(3) For r �∈ B[p], let g
[r]
t : M[r]

t �→ U [r]
t and ψ

[q,r]
t (A

[q]
t ) :

L[r,q]
t �→ U [r]

t be given by,

ψ
[p,r]
t (A

[p]
t )(L

[r,p]
t ) =: g

[r]
t (A

[p]
t , L

[r,p]
t )

= g
[r]
t (A

[q]
t , L

[r,q]
t ) =: ψ

[q,r]
t (Ai

t)(L
[r,q]
t ). (26)

Then, through (24), (25) and (26), we can define a function
e[q,p] : Ψ[p] �→ Ψ[q] such that (21) satisfies (22).

Lemma 4. Let k and j be two agents at positions p ∈ P
and q �∈ B[p] in permutation om and let ψ[p] be a given
prescription strategy for the agent at p. Then, there exists

a positional relationship function e[q,p] = (e
[q,p]
1 , ..., e

[q,p]
T )

such that the prescription strategy of the agent at q con-
structed through (21) leads to

Γ
[p,r]
t (L

[r,r]
t ) = Γ

[q,r]
t (L

[r,r]
t ) if r ∈ B[p],

Γ
[p,r]
t (L

[r,p]
t ) = Γ

[q,r]
t (L

[r,r]
t ) if r ∈ B[q], r �∈ B[p],

Γ
[p,r]
t (L

[r,p]
t ) = Γ

[q,r]
t (L

[r,q]
t ) if r �∈ B[q]. (27)

Proof. The proof is similar to the proof of Lemma 3, and
thus it is omitted due to space constraints.

Corollary 1. Let ψ[p] be the prescription strategy of the

agent at p ∈ P, and a
[p]
t the realization of A

[p]
t . For any

q ∈ B[p], the realization θ
[q]
t of the prescription Θ

[q]
t is given

by

γ
[q,r]
t =

{
e
[q,p]
t (ψ

[p,r]
t )(a

[q]
t ) if r �∈ B[q],

ψ
[p,r]
t (a

[r]
t ) if r ∈ B[q].

(28)

For every pair of agents at positions p and q in permutation
om, we define the function e[q,p] satisfying Lemmas 3 and

4. Then, for any two agents at arbitrary positions p, q ∈ P
in permutation om, we have

U
[q]
t = Γ

[q,q]
t (L

[q,q]
t ) =

{
Γ
[p,q]
t (L

[q,p]
t ) if q �∈ B[p],

Γ
[p,q]
t (L

[q,q]
t ) if q ∈ B[p].

(29)

The next result relates prescription strategies for the
common ancestor derived with respect to two different
permutations.
Lemma 5. Let om, on ∈ O be two permutations on the
set K such that an agent k ∈ K occupies position p in

om and position p′ in on. Let ψ
[1,p]
t be the prescription

policy of agent 1 for prescription Γ
[1,p]
t in permutation om.

There exists a permutation relationship function d
[om,on]
t

such that the prescription policy ψ
[1′,p′]
t in on given by

ψ
[1′,p′]
t = d

[on,om]
t

(
ψ
[1,p]
t

)
, (30)

leads to the same control action Uk
t as ψ

[1,p]
t .

Proof. We construct the control policy gkt and a prescrip-

tion policy ψ
[1′,p′]
t of agent 1 for agent k located at position

p′ in permutation on as

ψ
[1,p′]
t (Ap′

t )(L
[p′,p′]
t ) =: gkt (M

k
t )

=: ψ
[1,p]
t (A

[p]
t )(L

[p,p]
t ). (31)

From Corollary 1, we know that for any p in a permutation
om there exists an invertible function e[p,1] such that,

ψ[p,p] = e[p,1]
(
ψ[1,p]

)
. (32)

The result follows by substitution and similar arguments
to ones made in Lemma 2. A detailed proof can be found
in Dave and Malikopoulos (2019).

Lemma 5 establishes that all permutations are equivalent
for the purpose of deriving prescription strategies. To this
end, we use the trivial permutation o1 = (1, 2, ...,K) for
subsequent sections. In o1, agent k ∈ K is located at
position k ∈ P.

3.4 The Designer’s Problem

In the previous section, Lemmas 1 through 4 imply that

the control action U j
t = U

[q]
t of an agent j located at

position q ∈ P in permutation om can be generated

equivalently through the prescription Γ
[p,q]
t of an agent k

located at p ∈ P in permutation om. This relationship is
given in (29).

This allows us to write the cost to the system at time t for
all k ∈ P in the trivial permutation o1 as

ct(Xt,U
1
t , ..., U

K
t )

=: co1t
(
Xt,Γ

[k,1]
t (L

[1,k]
t ), ...,Γ

[k,k]
t (L

[k,k]
t ),

Γ
[k,k+1]
t (L

[k+1,k+1]
t ), ...,Γ

[k,K]
t (L

[K,K]
t )

)
, (33)

where the function co1t (.) is same as function ct(.) with its
inputs after Xt taken in the order of permutation o1. This
can be verified through substitution.

Then, we can reformulate Problem 1 from the point of view

of a designer with access to memory M
[k]
t that must select
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an optimal prescription strategy ψ∗[k] that minimizes the
performance criterion.

Problem 2: J [k](ψ[k]) =

Eψ[k]
[ T∑

t=0

co1t
(
Xt,Γ

[k,1]
t (L

[1,k]
t ), ...,Γ

[k,k]
t (L

[k,k]
t ),

Γ
[k,k+1]
t (L

[k+1,k+1]
t ), ...,Γ

[k,K]
t (L

[K,K]
t )

)]
, (34)

and select strategies ψ∗[j] for all j ∈ P through (21) and
(30). We call this Problem 2 for position k ∈ P. A detailed
proof for the equivalence between Problem 1 and Problem
2 can be found in Dave and Malikopoulos (2019). Next we
give a state sufficient for input-output mapping.
Lemma 6. A state sufficient for input-output mapping for
Problem 2 for position k ∈ P is

S
[k]
t := {Xt, L

[1,k]
t , ..., L

[k,k]
t , L

[k+1,k]
t , ..., L

[K,K]
t }. (35)

Proof. The state S
[k]
t satisfies the three properties given

in Mahajan (2008):

(1) There exist functions f̂
[k]
t , t = 0, ..., T such that

S
[k]
t+1 = f̂

[k]
t (S

[k]
t ,Wt, V

1:K
t+1 ,Θ

[k]
t ). (36)

(2) There exist functions ĥ
[k]
t , t = 0, ..., T such that

Z
[k]
t+1 = ĥ

[k]
t (S

[p]
t ,Θ

[k]
t , V 1:K

t+1 ). (37)

(3) There exist functions ĉ
[k]
t , t = 0, ..., T such that

ct(Xt, U
1
t , ..., U

K
t ) = ĉ

[k]
t (S

[k]
t ,Θ

[k]
t ). (38)

The proof can be found in Dave and Malikopoulos (2019).

Then, from the point of view of the designer the system
behaves like a Partially Observed Markov Decision Process

(POMDP) with state S
[k]
t , control input Θ

[k]
t , output Z

[k]
t

and cost ĉ
[k]
t (S

[k]
t ,Θ

[k]
t ) at time t. The deviation from

standard theory is that different prescriptions Γ
[k,j]
t for j ∈

B[k] are generated as functions of accessible information

A
[j]
t as opposed to A

[k]
t . We address this concern in Section

4.2. We first define the information state k.
Definition 11. Let S

[k]
t , A

[k]
t and Θ

[k]
0:t−1 be the state,

history of observations and control inputs respectively at
time t for prescription problem k. The information state is

defined as a probability distribution Π
[k]
t that takes values

in the feasible realizations P
[k]
t := ∆(S [k]

t ) such that

Π
[k]
t (s

[k]
t ) := Pψ[k]

(S
[k]
t = s

[k]
t |A[k]

t ,Θ
[k]
0:t−1). (39)

4. RESULTS

4.1 Properties of the Information States

In this section, we present results that establish that the

information state Π
[k]
t for all k ∈ K is independent from

the prescription strategy ψ[k].
Lemma 7. (Dave and Malikopoulos (2019)) At time t,

there exists a function F
[k]
t independent of the prescription

strategy ψ[k] such that

Π
[k]
t+1 = F

[k]
t+1(Π

[k]
t ,Θ

[k]
t , Z

[k]
t+1). (40)

Lemma 8. (Dave and Malikopoulos (2019)) The evolu-
tion of the information state Πt at time t is as a controlled
Markov Chain,

P(Π[k]
t+1|D

[k]
t ,Θ

[k]
0:t,Π

[k]
0:t) = P(Π[k]

t+1|Π
[k]
t ,Θ

[k]
t ). (41)

Lemma 9. (Dave and Malikopoulos (2019)) At time t,

there exists a function C
[k]
t , independent of the prescription

strategy ψ[k], such that,

Eψ[k][
ĉ
[k]
t (S

[k]
t ,Θ

[k]
t )|A[k]

t ,Θ
[k]
0:t

]
= C

[k]
t (Π

[k]
t ,Θ

[k]
t ). (42)

Together these results establish that the information state

Π
[k]
t evolves as a controlled Markov chain with control

inputs Θ
[k]
t .

4.2 Structural Result

We start with a structural result for Problem 2 for position
K. Position K is the last position in the trivial permuta-
tion and thus B[K] = ∅. Then, the prescription component

Γ
[K,k]
t is a function of A

[K]
t for every k ∈ P and we have

the following structural result from Nayyar et al. (2011).
Lemma 10. Consider Problem 2 for position K. There
exists an optimal prescription strategy ψ∗[K] of the form

Γ
∗[K,k]
t = ψ

∗[K,k]
t (Π

[K]
t ). (43)

For every other position k for Problem 2, we observe that
in the trivial permutation o1 = (1, ...,K) for agent j ∈ Bk,

property (9) gives us A
[j]
t ⊂ A

[k]
t . Thus, given A

[k]
t and

the optimal prescription strategy ψ∗[k], agent k can derive

optimal prescriptions Θ
∗[j]
t for j ∈ B[k] through (28). This

leads us to the following structural result for the optimal
prescription strategy ψ∗[k].
Theorem 1. For Problem 2 for position k in permutation
o1, there exists an optimal prescription strategy ψ∗[k] of the
form

Γ
∗[k,j]
t :=

{
ψ
∗[k,j]
t (Π

[k]
t , ...,Π

[K]
t ) if j �∈ B[k],

ψ
∗[k,j]
t (Π

[j]
t , ...,Π

[K]
t ) if j ∈ B[k].

(44)

Proof. Due to space constraints, we provide just a sketch of
the proof. The proof by mathematical induction is written
in three steps:

(1) We assume that the structural result holds for the

prescription Θ
[k+1]
t for position k + 1 in permutation om.

(2) Starting with time T , we can show for time steps
T−1, T−2, ..., 0 that the structural result holds for position
k, given that it holds for position k + 1.

(3) We note that for the last position K, structural result
(43) in Lemma 10 is equivalent to (44).

A detailed proof can be found in Dave and Malikopoulos
(2019).

The structural result in Theorem 1 is valid for every
permutation om. For agents with positions p and q in om,
the structural result can be stated as,

Γ
∗[p,q]
t :=

{
ψ
∗[p,q]
t (Π

[r]
t : r ∈ B[p]) if q �∈ B[p],

ψ
∗[p,q]
t (Π

[r]
t : r ∈ B[q]) if q ∈ B[p].

(45)
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an optimal prescription strategy ψ∗[k] that minimizes the
performance criterion.

Problem 2: J [k](ψ[k]) =

Eψ[k]
[ T∑

t=0

co1t
(
Xt,Γ

[k,1]
t (L

[1,k]
t ), ...,Γ

[k,k]
t (L

[k,k]
t ),

Γ
[k,k+1]
t (L

[k+1,k+1]
t ), ...,Γ

[k,K]
t (L

[K,K]
t )

)]
, (34)

and select strategies ψ∗[j] for all j ∈ P through (21) and
(30). We call this Problem 2 for position k ∈ P. A detailed
proof for the equivalence between Problem 1 and Problem
2 can be found in Dave and Malikopoulos (2019). Next we
give a state sufficient for input-output mapping.
Lemma 6. A state sufficient for input-output mapping for
Problem 2 for position k ∈ P is

S
[k]
t := {Xt, L

[1,k]
t , ..., L

[k,k]
t , L

[k+1,k]
t , ..., L

[K,K]
t }. (35)

Proof. The state S
[k]
t satisfies the three properties given

in Mahajan (2008):

(1) There exist functions f̂
[k]
t , t = 0, ..., T such that

S
[k]
t+1 = f̂

[k]
t (S

[k]
t ,Wt, V

1:K
t+1 ,Θ

[k]
t ). (36)

(2) There exist functions ĥ
[k]
t , t = 0, ..., T such that

Z
[k]
t+1 = ĥ

[k]
t (S

[p]
t ,Θ

[k]
t , V 1:K

t+1 ). (37)

(3) There exist functions ĉ
[k]
t , t = 0, ..., T such that

ct(Xt, U
1
t , ..., U

K
t ) = ĉ

[k]
t (S

[k]
t ,Θ

[k]
t ). (38)

The proof can be found in Dave and Malikopoulos (2019).

Then, from the point of view of the designer the system
behaves like a Partially Observed Markov Decision Process

(POMDP) with state S
[k]
t , control input Θ

[k]
t , output Z

[k]
t

and cost ĉ
[k]
t (S

[k]
t ,Θ

[k]
t ) at time t. The deviation from

standard theory is that different prescriptions Γ
[k,j]
t for j ∈

B[k] are generated as functions of accessible information

A
[j]
t as opposed to A

[k]
t . We address this concern in Section

4.2. We first define the information state k.
Definition 11. Let S

[k]
t , A

[k]
t and Θ

[k]
0:t−1 be the state,

history of observations and control inputs respectively at
time t for prescription problem k. The information state is

defined as a probability distribution Π
[k]
t that takes values

in the feasible realizations P
[k]
t := ∆(S [k]

t ) such that

Π
[k]
t (s

[k]
t ) := Pψ[k]

(S
[k]
t = s

[k]
t |A[k]

t ,Θ
[k]
0:t−1). (39)

4. RESULTS

4.1 Properties of the Information States

In this section, we present results that establish that the

information state Π
[k]
t for all k ∈ K is independent from

the prescription strategy ψ[k].
Lemma 7. (Dave and Malikopoulos (2019)) At time t,

there exists a function F
[k]
t independent of the prescription

strategy ψ[k] such that

Π
[k]
t+1 = F

[k]
t+1(Π

[k]
t ,Θ

[k]
t , Z

[k]
t+1). (40)

Lemma 8. (Dave and Malikopoulos (2019)) The evolu-
tion of the information state Πt at time t is as a controlled
Markov Chain,

P(Π[k]
t+1|D

[k]
t ,Θ

[k]
0:t,Π

[k]
0:t) = P(Π[k]

t+1|Π
[k]
t ,Θ

[k]
t ). (41)

Lemma 9. (Dave and Malikopoulos (2019)) At time t,

there exists a function C
[k]
t , independent of the prescription

strategy ψ[k], such that,

Eψ[k][
ĉ
[k]
t (S

[k]
t ,Θ

[k]
t )|A[k]

t ,Θ
[k]
0:t

]
= C

[k]
t (Π

[k]
t ,Θ

[k]
t ). (42)

Together these results establish that the information state

Π
[k]
t evolves as a controlled Markov chain with control

inputs Θ
[k]
t .

4.2 Structural Result

We start with a structural result for Problem 2 for position
K. Position K is the last position in the trivial permuta-
tion and thus B[K] = ∅. Then, the prescription component

Γ
[K,k]
t is a function of A

[K]
t for every k ∈ P and we have

the following structural result from Nayyar et al. (2011).
Lemma 10. Consider Problem 2 for position K. There
exists an optimal prescription strategy ψ∗[K] of the form

Γ
∗[K,k]
t = ψ

∗[K,k]
t (Π

[K]
t ). (43)

For every other position k for Problem 2, we observe that
in the trivial permutation o1 = (1, ...,K) for agent j ∈ Bk,

property (9) gives us A
[j]
t ⊂ A

[k]
t . Thus, given A

[k]
t and

the optimal prescription strategy ψ∗[k], agent k can derive

optimal prescriptions Θ
∗[j]
t for j ∈ B[k] through (28). This

leads us to the following structural result for the optimal
prescription strategy ψ∗[k].
Theorem 1. For Problem 2 for position k in permutation
o1, there exists an optimal prescription strategy ψ∗[k] of the
form

Γ
∗[k,j]
t :=

{
ψ
∗[k,j]
t (Π

[k]
t , ...,Π

[K]
t ) if j �∈ B[k],

ψ
∗[k,j]
t (Π

[j]
t , ...,Π

[K]
t ) if j ∈ B[k].

(44)

Proof. Due to space constraints, we provide just a sketch of
the proof. The proof by mathematical induction is written
in three steps:

(1) We assume that the structural result holds for the

prescription Θ
[k+1]
t for position k + 1 in permutation om.

(2) Starting with time T , we can show for time steps
T−1, T−2, ..., 0 that the structural result holds for position
k, given that it holds for position k + 1.

(3) We note that for the last position K, structural result
(43) in Lemma 10 is equivalent to (44).

A detailed proof can be found in Dave and Malikopoulos
(2019).

The structural result in Theorem 1 is valid for every
permutation om. For agents with positions p and q in om,
the structural result can be stated as,

Γ
∗[p,q]
t :=

{
ψ
∗[p,q]
t (Π

[r]
t : r ∈ B[p]) if q �∈ B[p],

ψ
∗[p,q]
t (Π

[r]
t : r ∈ B[q]) if q ∈ B[p].

(45)
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In practice, we wish to use dynamic programming to derive
the optimal strategy ψ∗[1] for agent 1 at position 1 since

the prescriptions Γ
∗[1,k]
t have the smallest domain size

among equivalent prescriptions generated by other agents
in the same permutation, namely

L
[k,k]
t ⊂ L

[k,j]
t , ∀j ∈ B[k]. (46)

However, if we compare permutations, every agent k ∈ K
minimizes the domain size of the optimal prescription

Γ
∗[1,k]
t of agent 1 for agent k in a permutation om where

om,2 = k. An example of how this can be achieved is
presented below and the arguments made there can also
be made for other systems.

4.3 An Example with 3 Agents

Consider a system with 3 agents: the common ancestor
denoted by agent 1 and leaf agents 2 and 3. There are no
delays in communication. Memories of the agents at time
t are given by

M3
t = {Y 3

0:t, U
3
0:t−1}, (47)

M2
t = {Y 2

0:t, U
2
0:t−1}, (48)

M1
t = {Y 1

0:t, U
1
0:t−1,M

2
t ,M

3
t }. (49)

The two permutations for this system are o = (1, 2, 3) and
o′ = (1, 3, 2). When referring to positions in permutation
o, we will write them as p ∈ P and when referring to
positions in permutation o′, we will write them as p′ ∈ P.

The accessible information of every agent with respect to
permutations o and o′ is given by

A
[1]
t = M1

t , A
[1′]
t = M1

t , (50)

A
[2]
t = M2

t , A
[2′]
t = M3

t , (51)

A
[3]
t = ∅, A

[3′]
t = ∅. (52)

The corresponding information states are given by Π
[p]
t =

P(S[p]
t |A[p]

t ) and Π
[p′]
t = P(S[p′]

t |A[p′]
t ) in permutations o

and o′ respectively. The optimal prescription strategy ψ∗[1]

of agent 1 for permutation o through Theorem 1 is

Γ
∗[1,p]
t = ψ

∗[1,p]
t (Π

[p]
t , ...,Π

[3]
t ). (53)

The size of the domain of prescription Γ
∗[1,p]
t is given

by |L[p,p]
t |. Since A

[3]
t = ∅, the domain of prescription

Γ
∗[1,3]
t of agent 1 for agent 3 in permutation o is given

by L
[3,3]
t = M3

t . This domain grows larger with time.

In contrast, the optimal prescription Γ
∗[1′,2′]
t of agent 1 for

agent 3 in permutation o′ is given by

Γ
∗[1′,2′]
t = ψ

∗[1′,2′]
t (Π

[2′]
t ,Π

[3′]
t ), (54)

where the domain of Γ
∗[1′,2′]
t is ∅ and does not grow

with time. In order to exploit the advantage of certain
permutations for certain agents, we can define a new mixed
cost function by invoking Lemma 5 as

C̄1
t (Xt, L

[1,1]
t , L

[2,2]
t , L

[2′,2′]
t ,Γ

[1,1]
t ,Γ

[1,2]
t ,Γ

[1′,2′]
t )

:= ct(Xt, U
1
t , U

2
t , U

3
t ). (55)

Then the optimal mixed prescription of agent 1 is given
by a combination of prescriptions generated through per-

mutations o and o′ as Θ∗1
t = (Γ

∗[1,1]
t ,Γ

∗[1,2]
t ,Γ

∗[1′,2′]
t ) and

the corresponding mixed prescription strategy is given by
(ψ∗[1,1],ψ∗[1,2],ψ∗[1′,2′]).

5. DISCUSSION AND CONCLUSIONS

In this paper, we presented a structural result for de-
centralized control in partially nested information struc-
tures with a common ancestor through the prescription
approach. We showed that prescriptions can equivalently
be made with respect to various different permutations of
agents. This allows us to combine the structural results ob-
tained from different permutations to reap the maximum
benefit as illustrated through an example. We believe that
a similar approach can be implemented in other systems
as well.

We note that the prescription approach and structural
results do not depend on the information structure of the
system beyond defining the memory of the agents and
the permutations. Thus, ongoing work includes simplifying
these results and applying the prescription approach to
other decentralized control problems.
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S. (2012). Information structures in optimal decentral-
ized control. In 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), 1291–1306. IEEE.

Mahajan, A. and Nayyar, A. (2015). Sufficient statistics
for linear control strategies in decentralized systems
with partial history sharing. IEEE Transactions on
Automatic Control, 60(8), 2046–2056.

Nayyar, A. and Lessard, L. (2015). Structural results for
partially nested lqg systems over graphs. In 2015 Amer-
ican Control Conference (ACC), 5457–5464. IEEE.

Nayyar, A., Mahajan, A., and Teneketzis, D. (2011). Op-
timal control strategies in delayed sharing information
structures. IEEE Transactions on Automatic Control,
56(7), 1606–1620.

Witsenhausen, H.S. (1968). A counterexample in stochas-
tic optimum control. SIAM Journal on Control, 6(1),
131–147.

Wu, J. and Lall, S. (2010). A dynamic programming
algorithm for decentralized markov decision processes
with a broadcast structure. In 49th IEEE Conference
on Decision and Control (CDC), 6143–6148. IEEE.

Wu, J. and Lall, S. (2014). A theory of sufficient statistics
for teams. In 53rd IEEE Conference on Decision and
Control, 2628–2635. IEEE.

Yuksel, S. (2009). Stochastic nestedness and the belief
sharing information pattern. IEEE Transactions on
Automatic Control, 54(12), 2773–2786.

2019 IFAC NecSys
Chicago, IL, USA, September 16-17, 2019

102


