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ABSTRACT 

The growing demand for making autonomous intelligent 
systems that can learn how to improve their performance while 
interacting with their environment has induced significant 
research on computational cognitive models. Computational 
intelligence, or rationality, can be achieved by modeling a system 
and the interaction with its environment through actions, 
perceptions, and associated costs. A widely adopted paradigm for 
modeling this interaction is the controlled Markov chain. In this 
context, the problem is formulated as a sequential decision-
making process in which an intelligent system has  to select those 
control actions in several time steps to achieve long-term goals. 
This paper presents a rollout control algorithm that aims to build 
an online decision-making mechanism for a controlled Markov 
chain. The algorithm yields a lookahead suboptimal control 
policy. Under certain conditions, a theoretical bound on its 
performance can be established. 

1. INTRODUCTION 
Sequential decision models [1, 2] are mathematical 

abstractions of situations in which decisions must be made in 
several decision epochs while incurring a certain cost (or reward) 
at each epoch. Each decision may influence the circumstances 
under which future decisions will be made, and thus, the decision 
maker must balance his/her desire to minimize (maximize) the 
cost (reward) of the present decision against his/her desire to 
avoid future situations where high cost is inevitable.  

A large class of sequential decision-making problems under 
uncertainty can be solved using dynamic programming (DP) [3]. 
However, the computational cost of DP in some instances may be 
prohibitive and can grow intractably as the size of the problem 
increases. As an alternative approach to address this issue, 
Approximate Dynamic Programming (ADP) [4] is employed, 

providing suboptimal control methods for deterministic and 
stochastic problems. Rollout algorithms and model predictive 
control are two major methods within ADP with properties 
founded on policy iteration. The main idea of rollout algorithms 
[5-10] is to obtain an improved policy starting from some other 
suboptimal policy using a one-time policy improvement. It has 
been proposed by Abramson [11] and by Tesauro and Galperin 
[12] in the context of game-playing computer programs. In the 
latter, a backgammon position is evaluated by simulating many 
games starting from that position and the results are averaged. 
Model predictive control [13-17] is a popular approach in a 
variety of control system design contexts, and in particular, in 
chemical process control. It was motivated by the desire to 
introduce nonlinearities and constraints into the linear-quadratic 
control framework, while obtaining a suboptimal but stable 
closed-loop system. 

Other alternatives for approaching these problems have been 
primarily developed in the field of Reinforcement Learning (RL) 
[4, 18, 19]. RL has aimed to provide algorithms, founded on DP, 
for learning suboptimal control policies when analytical methods 
cannot be used effectively, or the system’s state transition 
probabilities are not known [20].  Although many of these 
algorithms are eventually guaranteed to find sub-optimal policies 
in sequential decision-making problems under uncertainty, their 
use of the accumulated data acquired over the learning process is 
inefficient, and they require a significant amount of experience to 
achieve acceptable performance [21]. This requirement arises due 
to the formation of these algorithms in deriving control policies 
without learning the system dynamics en route, that is, they do not 
solve the system identification problem simultaneously. In 
addition, RL algorithms are suited to problems in which the 
system needs to achieve particular “goal” states, which imposes 
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limitations in employing efficiently these algorithms to solve 
particular problems. 

The Predictive Optimal Decision-making (POD) learning 
model [22, 23] has aimed to address the system identification 
problem for a completely unknown system by learning in real 
time the system’s evolution over a varying and unknown finite 
time horizon. The POD model has been employed in various 
applications towards making autonomous intelligent systems that 
can learn to improve their performance over time in stochastic 
environments. In the cart-pole balancing problem [23], an 
inverted pendulum was made capable of realizing the balancing 
control policy and turning into a stable system. In a vehicle cruise 
control implementation [23], an autonomous cruise controller was 
developed to learn to maintain the desired vehicle’s speed at 
different road grades. POD has also taken steps toward 
development autonomous intelligent propulsion systems realizing 
their optimal operation with respect to the driver’s driving style 
[22, 24].  

In this paper, a rollout control algorithm that aims to build an 
online decision-making mechanism for controlled Markov chains 
is presented.  The algorithm can be combined with the POD 
model to yield a lookahead suboptimal control policy that 
assesses the system output with respect to alternative control 
actions, and selecting those that optimize specified performance 
criteria. A theoretical bound on its performance is proven in 
Theorem 4.1, thus establishing that, under certain conditions, the 
lookahead control policy exists. 

The remainder of the paper proceeds as follows: Section 2 
establishes the mathematical framework of the controlled Markov 
chain. Section 3 reviews briefly the Predictive Optimal Decision-
making (POD) computational model that aims to learn the 
transition probabilities and associated costs. Section 4 introduces 
the rollout control algorithm and formulates the theoretical bound 
on its performance. Concluding remarks are presented in Section 
5. 

2. PROBLEM FORMULATION 
The stochastic system model establishes the mathematical 

framework for the representation of dynamic systems that evolve 
stochastically over time [2, 25, 26], that is, when incurring a 
stochastic disturbance or noise at time k, kw , in their portrayal. 
The one-dimensional model is given by an equation of the form 

1 ( , , ),  0,1,...k k k k ks f s a w k+ = =                    (1) 
 

where ks  is the system’s state that belongs to some state space 
{1,2,..., },  N N= ∈S , kf  is a function that describes how the 

system’s state is updated, ka  is the control action, and kw  is the 
disturbance at time k. The sequence { ,kw k ≥ 0}  is treated as a 
stochastic process, and the joint probability distribution of the 

random variables 0 1, ,..., kw w w  is unknown for each k. The system 
output is represented by  

                ( , ),  0,1,...k k k ky h s v k= =              (2) 
 

where  ky  is the observation or system’s output, kh  is a function 
that describes how the system output is updated, and kv  is the 
measurement error or noise. The sequence { ,kv k ≥ 0}  is also 
considered a stochastic process with unknown probability 
distribution. We are interested in deriving a control policy so that 
a given performance criterion is optimized over all admissible 
policies Π. An admissible policy consists of a sequence of 
functions 0 1{ , ,...},π µ µ= where kµ  maps states ks  into actions 

( ).k k ka s= µ  

The system’s state ks  depends upon the input sequence 

0 1, ,...a a  as well as the random variables 0 1, ,...w w , Eq. (1). 
Consequently, ks  is a random variable; the system output 

( , )k k k ky h s v=  is a function of the random variables 

0 1 0 1, ,..., , ,...,s s v v  and thus, is also a random variable. Similarly, 
the sequence of control actions ( )k ka sµ= , { ,ka k ≥ 0} , 
constitutes a stochastic process. 

Suppose that the previous values of the random variables ms  
and ma , 1m k≤ −  are known. Then the conditional distribution of 

1ks +  given these values will be 

          1 | , 1 0 0

| , 1 0 1 0

( | ,..., , ,..., )

( | ,..., , ,..., ).
k k k

k k k

s s a k k k

w s a k k k

s s s a a

w s s a a
+ +

− −

=

=

π

π

P

P
           (3) 

 

The conditional probability distribution of 1ks +  given ks  and 

ka  can be independent of the previous values of states and 
control actions, if it is guaranteed that for every control policy π , 

kw  is independent of the random variables ms  and ma , 1m k≤ − . 
Kumar and Varaiya [26] proved that this property is imposed 
under the assumption that the following random variables 

0 0 1, , ,...,s w w  0 1, ,...,v v  are all independent. The latter imposes a 
condition directly to the basic random variables which eventually 
yields that the state 1ks +  depends only on ks  and ka . Moreover, 
the conditional probability distributions do not depend on the 
control policy π , and thus the superscript π  can be dropped 

                  1

1

| , 1 0 0

| , 1

( | ,..., , ,..., )

( | , ).
k k k

k k k

s s a k k k

s s a k k k

s s s a a

s s a
+

+

+

+

=

=

P
P

             (4) 
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A stochastic process { ,ks k ≥ 0}  satisfying Eq. (4) is called a 
Markov Process.  If the state space is discrete, then the process is 
defined as a controlled Markov chain. 

The discrete-time, stationary controlled Markov chain is a 
stochastic dynamic system specified by a five-tuple 
{ }, , , , ,RPAS A  where 

(a) {1,2,..., }N=S  is the finite state space; 

(b) A  is the compact action space; 

(c) A  is a family { }( ) |i i∈A S  of nonempty measurable 
subsets of A , where ( )iA  denotes the set of feasible actions 
when the system is at state i∈ S , with the property that the set 

                 { }: ( , ) | , ( )i a i a i= ∈ ∈K S A , 
 

of feasible pairs is measurable subset of ×AS  and contains the 
graph of a measurable function form S  to A ; 

(d) P  is the stochastic kernel on S  given K , that is, the 
transition probability of the system from state i∈ S  to j∈S ; and 

(e) R  is the measurable one-stage cost function, :R →K . 

The evolution of the system occurs at each of a sequence of 
stages 0,1,...k = , and  is portrayed by the sequence of the random 
variables ks  and ka  corresponding to the system’s state and 
control action. At each stage, the controller observes the system’s 
state ks i= ∈ S , and executes an action ka a= , from the feasible 
set of actions ( )i ⊆AA  at this state. At the next stage, the system 
transits to the state 1ks j+ = ∈ S  imposed by the conditional 
probability ( | , )P j i a , and a cost ( | , )R j i a  is incurred. After the 
transition to the next state has occurred, a new action is selected, 
and the process is repeated. The completed period of time over 
which the system is observed is called the decision-making 
horizon and is denoted by M . The horizon can be either finite or 
infinite; in this paper, we consider finite-horizon decision-making 
problems.  

A control policy π  determines the probability distribution of 
state process { ,ks k ≥ 0}  and the control process { ,ka k ≥ 0} . 
Different policies will lead to different probability distributions.  
In optimal control problems, the objective is to derive the optimal 
control policy that minimizes (maximizes) the accumulated cost 
(reward) incurred at each state transition per decision epoch.  If a 
policy π  is fixed, the cost incurred by π  when the process starts 
from an initial state 0s  and up to the time horizon M is 

1

0 1
0

( ) ( | , ),
M

k k k k
k

J s R s j s i aπ
−

+
=

= = =∑ , , ( ).ki j a A i∀ ∈ ∀ ∈S       (5) 

 

The accumulated cost 0( )J sπ  is a random variable since ks  and 

ka  are random variables. Hence the expected accumulated cost  
of a control policy is given by 

1

0 1   0( )

( ) ( | , ( ))
k

k k

M

k k k k ks ka A s

J s E R s j s i a s
−

+∈
=∈

⎧ ⎫= = =⎨ ⎬
⎩ ⎭
∑S

π  

1

1   0( )

( | , ( ))
k

k k

M

k k k k ks kA s

E R s j s i s
−

+∈
=∈

⎧ ⎫= = =⎨ ⎬
⎩ ⎭
∑S

µ

µ  

     
1

1 1
0

( | , ( )) ( | , ( )),
M

k k k k k k k k
k

p s j s i s R s j s i s
−

+ +
=

= = = ⋅ = =∑ µ µ  (6) 

 

where the expectation is taken with respect to the probability 
distribution of { ,ks k ≥ 0}  and { ,ka k ≥ 0}  determined by the 
control policy π . The optimal policy 0 1{ , ,..., }Mπ µ µ µ∗ ∗ ∗ ∗=  can be 
derived by 
 

0arg min ( ).J s∗

∈
=

Π

π

π
π                            (7) 

 

3. ONLINE SELF-LEARNING IDENTIFICATION 
The problem of making autonomous intelligent systems is 

formulated as sequential decision-making under uncertainly. In 
this context, an intelligent system (decision maker), e.g., 
advanced propulsion systems, robot, automated manufacturing 
system, etc, has to select those actions in several time steps 
(decision epochs) to achieve long-term goals efficiently. This 
problem involves two major sub-problems: (a) the system 
identification problem, and (b) the stochastic control problem. 
The first is exploitation of the information acquired from the 
system output to identify its behavior, that is, how a state 
representation can be built by observing the system’s state 
transitions. The second is assessment of the system output with 
respect to alternative control policies, and selecting those that 
optimize specified performance criteria. 

The Predictive Optimal Decision-making (POD) learning 
model [23] is intended to address the system identification 
problem for a completely unknown system by learning in real 
time the system dynamics over a varying and unknown finite time 
horizon. The model embedded in the self-learning controller is 
constituted by a state representation which attempts to provide an 
efficient process in realizing the state transitions that occurred in 
the Markov domain. The model considers systems that their 
evolution can be modeled as a controlled Markov chain under the 
assumptions that the Markov chain is homogeneous, ergodic, and 
irreducible.  

The learning process of the POD model transpires while the 
system interacts with its environment. Taken in conjunction with 
assigning values of the control actions from the feasible action 
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space, A , this interaction portrays the progressive enhancement 
of the controller’s “knowledge” of the system’s evolution with 
respect to the control actions. More precisely, at each of a 
sequence of decision epochs 0,1, 2,...k M= , a state ks ∈S  is 
introduced to the controller, and on that basis the controller 
selects an action, ( )k ka sµ= . This state arises as a result of the 
system’s evolution. One epoch later, as a consequence of this 
action, the system transits to a new state 1ks j+ = ∈S , and 
receives a numerical cost, 1( | , )k k k kR s j s i a+ = = ∈ .  

At each epoch, the controller implements a mapping from the 
Cartesian product of the state space and action space to the set of 
real numbers, × →S A , by means of the costs that it receives. 
Similarly, another mapping from the Cartesian product of the state 
space and action space to the closed set [0,1] is executed, 

[0,1]× →S A , i.e., the transition probability matrix, P(⋅,⋅). The 
latter essentially perceives the incidence in which particular states 
or particular sequences of states arise.  

The POD model possesses a structure that enables a convergent 
behavior of the conditional probabilities infused by the POD 
state-space representation to the stationary distribution. This 
behavior is desirable in the effort towards making autonomous 
intelligent systems that can learn to improve their performance 
over time in stochastic environments. The convergence of POD to 
the stationary distribution of the Markov state transitions has been 
proven in [27], hence establishing POD as a robust model. 

As the process is stochastic, however, it is still necessary for 
the controller to build a decision-making mechanism to derive the 
control policy. This policy is expressed by means of a mapping 
from states to probabilities of selecting the actions, resulting in 
the minimum expected accumulated cost. 

4. ROLLOUT CONTROL ALGORITHM 
The objective of the control algorithm is to evaluate in real 

time the optimal action at each epoch not only for the current 
state, but also for the next two subsequent states over the 
following epochs. The requirement of real-time implementation 
imposes a computational burden in allowing the algorithm to look 
further ahead in time, thus evaluating an action over additional 
succeeding states. 

Suppose that the current state is ks  and the following state 
given an action ( ),k ka s∈A  is 1ks + . The immediate cost incurred 
by this transition is 1( | , )k k kR s s a+ . The minimum expected cost 
for the next two subsequent states is perceived in terms of the 
magnitude, 1( )kV s + , and is equal to 

{ }
1 1 2

1 2 1 1( )
( ) min ( | , )

k k k
k k k ka A s s

V s E R s s a
+ + +

+ + + +∈ ∈
=

S
.  (8) 

For the problem of optimal control of uncertain systems, 
which is treated in a stochastic framework, all uncertain quantities 

are described by probability distributions and the expected value 
of the overall cost is minimized. In this context, the control policy 
π  realized by the algorithm is based on the minimax control 
approach, whereby the worst possible values of the uncertain 
quantities within the given set are assumed to occur. This 
essentially assures that the control policy will result in at most a 
maximum overall cost. Consequently, being at state ks  the control 
algorithm provides the policy 0 1 1{ , ,..., },Mπ µ µ µ −=  in terms of 
the values of the controllable variables as 

[ ]
1

1 1
( ) ( )

( ) arg min max ( | , ) ( ) .
kk k k

k k k k kss A s
s R s s a V s

µ
π

+
+ +∈∈

= +
S

 (9) 

To evaluate the efficiency of the algorithm, the establishment 
of a performance bound in terms of the accumulated cost over the 
decision epochs is necessary. The following Lemma (see, e.g. [1]) 
aims to provide a useful step toward presenting the main result 
(Theorem 3.1). 

Lemma 4. 1: Let : [ , ]f → −∞ ∞S  and : [ , ]g × → −∞ ∞S A  
be two functions. If 

( )min ( , ) ,
a

g i a i
∈

> −∞ ∀ ∈
A

S              (10) 

then we have 

( )
min max[ ( ) ( , ( ))] max[ ( ) min ( , )],

i ai i
f i g i i f i g i a

µ
µ

∈ ∈∈ ∈
+ = +

A AS S
       (11) 

 

where the function :µ →S A , maps the state into action, that  is, 
( )a iµ= , and ,S A  are the state and action space respectively. 

Assumption 4. 1: The minimum expected cost 1( )kV s + , Eq. 
(8),  incurred at the decision epoch 1k +  is bounded, that is, 

1 1( ) ,k kV s s+ +> −∞ ∀ ∈S . 

Theorem 4.1: The accumulated cost ( )k kJ s  incurred by the 
lookahead control policy 0 1 1{ , ,..., }Mπ µ µ µ −= , namely,  

{ }
1 1 21

1 1 2 1 1( )( ) ( )
( ) arg min max ( | , ) min ( | , ) ,

k k kkk k k

k k k k k k k k ka A s sss A s
s R s s a E R s s a

µ
π

+ + ++
+ + + + +∈ ∈∈∈

⎡ ⎤= +⎢ ⎥⎣ ⎦SS
 

(12) 
 

is bounded by the accumulated cost ( )k kJ s  incurred by the 
minimax control policy 0 1 1{ , ,..., }Mπ µ µ µ −= , namely, 

    [ ]
1

1 1 1
( ) ( )

arg min max ( | , ) ( )
kk k k

k k k k k kss A s
R s s a J s

µ
π

+
+ + +∈∈

= +
S

             (13) 

 

with probability 1. 
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Proof: Suppose that the chain starts at a state 0 ,s i i= ∈S  at 
time 0k =  and ends up at k M= . We consider the problem of 
finding a policy 0 1 1{ , ,..., }Mπ µ µ µ −=  with ( )k ksµ ∈A  for all 

ks ∈S  and k  that minimizes the cost function 

1

2

1 1 1 1
0

( ) max ( | , ) ( | , )
k

M

k M M M M k k k ks k
J s R s s a R s s aπ

+

−

− − − +∈ =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑S

.(14) 

 

The DP algorithm for this problem takes the following form 
starting from the tail sub-problem 

 

[ ]
1

1( ) ( )
( ) min max ( | , ) ( )

M M M M
M M M M M M M Ms A s s

J s R s s a R s
µ +

+∈ ∈
= =

S
, and 

(15) 

 

    [ ]
1

1 1 1( ) ( )
( ) min max ( | , ) ( ) ,

k k k k
k k k k k k k ks A s s

J s R s s a J s
µ +

+ + +∈ ∈
= +

S
          (16) 

 

where ( )M MR s  is the cost of the terminal decision epoch. 

Following the steps of the DP algorithm proposed by 
Bertsekas [1], the optimal accumulated cost 0( )J sπ ∗

 starting from 
the last decision epoch and moving backwards is  

0 0 0 1 1 1

0

0 ( ) ( ) ( ) ( )

2

1 1 1 1
0

( ) min ... min

                 max ...max ( | , ) ( | , ) .

M M M

M

s A s s A s

M

M M M M k k k ks s k

J s

R s s a R s s a

π

µ µ

∗

− − −∈ ∈

−

− − − +∈ ∈ =

=

⎡ ⎤+⎢ ⎥
⎣ ⎦

∑S S

 

(17) 
 

By applying Lemma 4. 1, we can interchange the min over 
1µΜ−  and the max over 0 2,..., Ms s − . The necessary condition in 

Lemma 4. 1 is implied by Assumption 4. 1.  

Equation (17) yields 

[ ]

0 0 0 2 2 2

0 2 1

0 ( ) ( ) ( ) ( )

3

1 2 1 2 2
0

( ) min ... min

max... max ( | , ) max ( | , ) ( )

M M M

M M

s A s s A s

M

k k k k M M M M M Ms s sk

J s

R s s a R s s a J s

π

µ µ

∗

− − −

− −

∈ ∈

−

+ − − − −∈ ∈ ∈=

=

⎡ ⎤⎡ ⎤+ +⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦
∑S S S

 

(18) 
 

0 0 0 2 2 2 0 2

3

1 1 1( ) ( ) ( ) ( ) 0

min ... min max... max ( | , ) ( ) .
M M M M

M

k k k k M Ms A s s A s s s k

R s s a J s
µ µ − − − −

−

+ − −∈ ∈ ∈ ∈
=

⎡ ⎤⎡ ⎤= +⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦
∑S S

 

(19) 

 

By continuing backwards in similar way we obtain 

                       0 0 0( ) ( )J s J sπ ∗

= .                                        (20) 
 

Consequently, an optimal policy for the minimax problem 
can be constructed by minimizing the right hand side of Eq. (14).  

Performing the same task as we did with the DP algorithm by 
starting from the last epoch of the decision-making process and 
moving backwards, the accumulated cost, ( )k kJ s , incurred by the 
control policy 0 1 1{ , ,..., }Mπ µ µ µ −=   is  

( )M MJ s =  

{ }
1 1 21

1 1 2 1 1( ) ( ) ( )

1

min max ( | , ) min ( | , )

( | , ) ( ) ( ),
M M M M M MM

M M M M M M M Ms A s a A s ss

M M M M M M M M

R s s a E R s s a

R s s a R s J s
µ + + ++

+ + + + +∈ ∈ ∈∈

+

⎡ ⎤= +⎢ ⎥⎣ ⎦
= = =

SS  

      (21) 
 

1 2 1 1( | , ) 0M M M MR s s a+ + + + =  since the terminal epoch is at .k M=  

 

1 1( )M MJ s− − =  

{ }
1 1 1

1

( ) ( )

1 1 1 1( )

min

max ( | , ) min ( | , ) ( )

M M M

M M MM

s A s

M M M M M M M M M Ma A s ss
R s s a E R s s a J s

µ − − −

+

∈

− − − +∈ ∈∈

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦SS

 

(22) 
 

[ ]
1 1 1

1 1 1( ) ( )
min max ( | , ) ( )

M M M M
M M M M M Ms A s s

R s s a J s
µ − − −

− − −∈ ∈
= +

S
,             (23) 

 

Similarly, 1( | , ) 0M M M MR s s a+ =  since the terminal epoch is 
at .k M=  Consequently, 

1
1 1 1 1 1( ) ( )
( ) min max ( | , ) ( ) ( ),

M M M M
M M M M M M M M M Ms A s s

J s R s s a J s J s
µ +

− − + − −∈ ∈
⎡ ⎤= + =⎣ ⎦S

 

(24) 

 

since ( )M MJ s  is a constant quantity. 

2 2( )M MJ s− − =  

{ }
2 2 2

1 11

( ) ( )

2 1 2 2 1 1 1( )

1 1

min

max ( | , ) min ( | , )

( ).

M M M

M M MM

s A s

M M M M M M M Ma A s ss

M M

R s s a E R s s a

J s

µ − − −

− −−

∈

− − − − − − −∈ ∈∈

− −

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦
+

SS
 

(25) 

 

However, 
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{ }

[ ]

2 2 2

1 11

2 2 2 1

( ) ( )

2 1 2 2 1 1 1( )

2 1 2 2( ) ( )

min

max ( | , ) min ( | , )

min max ( | , ) ,

M M M

M M MM

M M M M

s A s

M M M M M M M Ma A s ss

M M M Ms A s s

R s s a E R s s a

R s s a

µ

µ

− − −

− −−

− − − −

∈

− − − − − − −∈ ∈∈

− − − −∈ ∈

⎡ ⎤+ ≤⎢ ⎥⎣ ⎦SS

S

 

(26) 

since the LHS of the inequality will minimize a cost which is not 
only maximum over the cost incurred when the chain transits 
from 2Ms −  to 1Ms −  but also minimum over the cost incurred when 
the chain transits from 1Ms −  to Ms . So, the LHS can be at most 
equal to the cost which is maximum over the transition from 2Ms −  
to 1Ms − .  

Consequently, comparing the accumulated cost of the control 
policy ( )k kJ s  in Eq. (25) with the one resulted from the DP at the 
same decision epoch, namely, 

[ ]
2 2 2 1

2 2 2 1 2 2 1 1( ) ( )
( ) min max ( | , ) ( )

M M M M
M M M M M M M Ms A s s

J s R s s a J s
µ − − − −

− − − − − − − −∈ ∈
= +

S
 

(27) 

 

we conclude that 

2 2 2 2( ) ( ).M M M MJ s J s− − − −≤             (28) 

 

By continuing backward with similar arguments, we have 

0 0 0 0 0( ) ( ) ( ).J s J s J sπ∗

≤ =               (29) 

 

Consequently, the accumulated cost resulting from the control 
policy 0 1 1{ , ,..., }Mπ µ µ µ −=  is bounded by the accumulated cost 
of the optimal minimax control policy with probability 1.  

 

5. CONCLUDING REMARKS 
We presented the theoretical framework and a rollout control 

algorithm toward making autonomous intelligent systems that can 
learn their optimal operation in real time. The evolution of the 
system was modeled as a controlled Markov chain, and the task of 
deriving a control policy was formulated as a sequential decision-
making problem under uncertainty. The algorithm comprises the 
decision-making mechanism that solves the stochastic control 
problem by utilizing accumulated data acquired as the system 
interacts with its environment. The solution of the algorithm has a 
theoretical performance bound that is superior to that of the 
solution provided by the one-step minimax control algorithm 
(Theorem 4.1).  

The research presented here considered the approximate 
solution of a discrete optimization problem using procedures 

capable of magnifying the effectiveness of any given heuristic 
algorithm through sequential application. In particular, the 
problem was embedded within a dynamic programming 
framework, and a two-step rollout algorithm was introduced 
related to notions of policy iteration.  Future research should 
explore the impact of the number of time steps that the algorithm 
can look forward in time on its performance bound. 
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