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Abstract—In this paper, we investigate the impact of 
connected and automated vehicles (CAVs) on traffic flow at 
merging roadways and develop a microscopic simulation 
framework to explore the implications on fuel consumption and 
travel time. In this framework, we use optimal control to 
simulate the behavior of CAVs and the Gipps car following 
model to capture the behavior of human-driven vehicles. The 
simulation results show that CAVs can contribute to significant 
fuel consumption and travel time reduction for diverse traffic 
conditions under average and high congestion scenarios. 
Furthermore, we show that CAVs allow for more stable traffic 
patterns even for high density traffic.    

Keywords—Merging highways, connected and automated 
vehicles, energy implications, traffic analysis, cooperative merging 
control, car following, fundamental diagram. 

I. INTRODUCTION  
Merging roadways are among the primary sources of bottlenecks [1] due to the different maneuvers that drivers are required to coordinate in a limited period of time, to safely complete the merging process. The coordination of these maneuvers cause stop-and-go driving with significant implications in fuel consumption and traffic congestion [2], [3]. It has been shown that coordination of connected and automated vehicles (CAVs) can help addressing these issues by reducing human errors and providing shorter headway times, faster responses, and reduced travel time [4].  
Several research efforts have considered approaches to 
achieve safe and efficient coordination of merging maneuvers 
with the intention to avoid severe stop-and-go driving. One of 
the very early efforts in this direction was proposed in 1969 by 
Athans [5]. Assuming a given merging sequence, Athans 
formulated the merging problem as a linear optimal regulator 

to control a single string of vehicles, with the aim of 
minimizing the speed errors that will affect the desired 
headway between each consecutive pair of vehicles. Later, 
Schmidt and Posch [6] proposed a two-layer control scheme 
based on heuristic rules derived from observations of the non-
linear system dynamics behavior. Similar to the approach 
proposed in [5], Awal et al. [7] developed an algorithm that 
starts by computing the optimal merging sequence to achieve 
reduced merging times for a group of vehicles that are closer 
to the merging point.  
More recently, the problem of coordinating vehicles that are 
wirelessly connected to each other at merging roadways was 
addressed in [8]. An analytical, closed-form solution was 
developed aimed at optimizing the acceleration of each 
vehicle online, in terms of fuel consumption, while avoiding 
collision with other vehicles at the merging zone. The 
framework was later extended to account a mixed traffic 
(CAVs interacting with human-driven vehicles) and analyze 
the impact of different penetration rates of CAVs on energy 
consumption [9].  
There have also been some efforts towards enhancing our 
understanding of the effects of CAVs on traffic flow.  A 
microscopic simulation model was presented in [10] to study 
the effects of an automated highway system on the average 
traffic speed. Li and Ioannou [11] developed a mesoscopic and 
a macroscopic traffic flow models based on the dynamics of 
intelligent cruise control vehicles to describe the traffic flow 
characteristics. The effectiveness of the models was 
demonstrated through simulations that revealed traffic flow 
differences with respect with the models representing 
manually driven vehicles.   More recently, Talebpour and 
Mahmassani [12] presented a framework that uses different 
models and technology-related assumptions to simulate 
vehicles with district communication and level of automation 
capabilities.  
While several studies have shown some benefits of CAVs in 
specific transportation scenarios, there are still open issues 
that need to be addressed. In particular, the prediction of the 
impact of CAVs on traffic flow, safety and fuel efficiency is 
one among many challenges that the community is currently 
facing. 
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Figure 1. Approach to analyze the implications of connected 

and automated vehicles for different traffic conditions. 

In this paper, we make a preliminary effort to enhance our 
understanding of the impact that CAVs can pose on traffic 
flow by using a microscopic simulation framework. In 
particular, we study the impact of 100% penetration level of 
CAVs on traffic flow, considering a merging on-ramp as a 
transportation scenario. Furthermore, we investigate the 
related implications on fuel consumption and travel time under 
different traffic conditions. The remainder of the paper 
proceeds as follows. In section II, we present the modeling 
approach for the CAVs and the human-driven vehicles 
(HDVs). In Section III, we provide the simulation results and 
discussion. Finally, we draw concluding remarks in Section 
IV. 

II. MODELING APPROACH 
Our proposed approach is illustrated in Figure 1. To generate the data required for the analysis of the implications of CAVs in different traffic conditions, we create different traffic scenarios by assuming a set of average traffic flows and simulate each of them for two particular cases: 1) all the vehicles are CAVs using the optimal control framework proposed in [8] and 2) all the vehicles are human-driven. To model the behavior of human drivers, we adopt the Gipps car-following model [13]. Several studies have shown that this model can model driver behaviors with acceptable accuracy and it is used in traffic simulation software like AIMSUN [13], [14]. The details of these models are described in the following subsections. 

 
 
 
 
 
 
 
 
 
 

A. Vehicle Generation 
To generate the different traffic scenarios, we use the shifted negative exponential distribution as proposed by the federal highway administration (FHWA) [15] aimed at deciding the inter-arrival time of the vehicles to the road section. According to this distribution, the vehicles will arrive at the entry node 

following a given average vehicular flow as defined in equations (1) and (2). 
 min min( )[ ln(1 )] ,h H h R H h        (1) 
 3600 / avgH Q ,  (2) 

where h  is the headway time [sec], H  is a mean headway 
time [sec], minh  is a specified minimum headway [sec], R  is 
a random number between 0 and 1, and avgQ  is the average 
vehicular flow [veh/sec].  
 
We consider a merging on-ramp (Figure 2), where there is a 
control zone (pre-merging zone for human-driven vehicles) in 
which the CAVs will derive their optimal 
acceleration/deceleration in order to merge with an 
appropriate speed and headway with respect to the leading 
vehicle. There is also a merging zone in which the vehicles 
will complete the merging maneuver while keeping a safe 
distance from each other. The “control zone” has length L  
and the “merging zone” has length S . 

 
Figure 2. Merging roads scenario under investigation. 
B. Modeling Framework for Connected and Automated 

Vehicles 
We consider two single-lane merging roadways where the CAVs communicate with each other following the framework presented in [8]. According to this framework, once a vehicle enters the control zone, it shares information related to its speed and position. Then, based on a unique identity, each vehicle traveling inside the control zone uses this information available from all vehicles to compute its optimal acceleration/deceleration. The optimization problem and its solution is briefly discussed next, while more details can be found in [8]. 
We consider a number of automated vehicles ( )N t  , where 
t  is the time the vehicle enters the control zone. When a 
vehicle reaches the control zone at time t  the controller 
assigns a unique identity ( ) 1i N t   that is an integer 
corresponding to the location of the CAV in a first-in-first-out 
(FIFO) queue for the control zone. If two or more vehicles 
enter the control zone at the same time, then the controller 



selects randomly their position in the queue. We consider that 
each vehicle is governed by a second order dynamics 
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where ( )i ip t P , ( )i iv t V , and ( )i iu t U  denote the position, 
speed and acceleration/deceleration (control input) of each 
vehicle. The sets iP , iV  and iU , ( )ii tN , are complete 
and totally bounded subsets of the real numbers Â . 
1) Optimization Problem Formulation 
We seek to address the problem of coordinating online a 
number of CAVs on two merging roadways. The objective is 
to derive an analytical, closed form solution that yields the 
optimal control input at any time, in order to enter the merging 
zone with an appropriate speed and headway.  
To ensure that the control input and vehicle speed are within a 
given admissible range, the following constraints are imposed. 

min max
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where min max,  u u  are the minimum deceleration and 
maximum acceleration respectively, and min max,  v v  are the 
minimum and maximum speed limits respectively,  0it  is the 
time that vehicle i  enters the control zone, and fit  is the time 
that vehicle i  exits the merging zone. 
To ensure the absence of rear-end collision of two consecutive 
vehicles traveling on the same lane, the position of the 
preceding vehicle should be greater than, or equal to the 
position of the following vehicle plus a predefined safe 
distance  . The following definition refer to the case when 
the queue ( )tN  contains more than one vehicle. 
Definition 2.1: For each vehicle i , we define the control 
interval iR  as  

min max
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{ ( ) [ , ] | ( ) ( ) ,
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where vehicle k  is immediately ahead of i  on the same road. 
Definition 2.2: For each vehicle i , we define the set i  as the 
set of all positions along the lane where a lateral collision is 
possible, namely 

0
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To avoid lateral collision for any two vehicles i  and j  on 
different roads, the following constraint must hold 

0, [ , ].fi j i it t t      (7) 

The above constraint implies that only one vehicle, at a time, 
can be crossing the merging zone.   
To derive an analytical solution of the optimal 
acceleration/deceleration, each CAV   needs to know the time 
that it will be entering the merging zone. To accomplish this, 
we assign a coordinator to handle the information between the 
CAVs as follows. When a CAV reaches the control zone at 
some instant t, the coordinator assigns a unique identity i, 
which is an integer representing the location of the vehicle in 
the FIFO queue,  ( ) 1,..., ( )t N tN , inside the control zone. A 
vehicle index ( )i tN  also indicates which vehicle is closer to 
the merging zone, i.e., for any , ( )i k tN  with i k  then 

i kp p . Once a vehicle enters the control zone, it shares the 
time that will be exiting the merging zone, which is computed 
as explained below. 
Definition 3.1: Each vehicle ( )j tN  belongs to at least one of 
the following two subsets: 1) ( )i tL contains all vehicles 
traveling on the same road with i , and 2) ( )i tC  contains all 
vehicles traveling on different roads from i . 
The time fit  that the vehicle i  exits the merging zone is based 
on imposing constraints aimed at avoiding congestion in the 
sense of maintaining vehicle speeds above a certain value. 
There are two cases to consider:  
a) If vehicle 1i   belongs to ( )i tL , then both 1i   and i  
should have the minimal safe distance allowable, denoted by  , by the time vehicle 1i   enters the merging zone, i.e., 

1 ,( )
f fi i fi i

t t v t
    (8) 

where 0( ) ( )fi i iiv t v t  as we designate the vehicles to exit the 
merging zone with the same speed they had when they entered 
the control zone.  
b) If vehicle 1i   belongs to ( )i tC , we constrain the merging 
zone to contain only one vehicle so as to avoid a lateral 
collision. Therefore, vehicle i  is allowed to enter the merging 
zone only when vehicle 1i   exits the merging zone, where 

mit  is the time that the vehicle i   enters the merging zone, i.e., 

1 ,( )
f fi i fi i

St t v t    (9) 

where 0( ) ( )fi i iiv t v t . Note that this recursive relationship over 
vehicles in a control zone queue satisfies both the rear-end and 
lateral collision avoidance constraints. We can then solve an 
optimization problem for each vehicle in the queue separately 
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2) Hamiltonian Analysis 
For the analytical solution and online implementation of the 
problem (10), we apply Hamiltonian analysis [16]. To 
simplify the analysis, we consider the unconstrained problem. 
Therefore, the optimal solution would not provide limits for 
the state and control [8]. The optimal closed form solution 
includes the optimal control input, speed and position for each 
vehicle as a function of time, namely  

*( ) ,i i iu t a t b    (11) 
* 21( ) ,2i i i iv t a t b t c     (12) 

* 3 21 1( ) ,6 2i i i i ip t a t b t c t d      (13) 
where , ,i i ia b c   and id  are constants of integration. To derive 
online the optimal control for each vehicle i ,  we need to 
update the integration constants at each sample time. 
Equations (12) and (13), along with the initial and final 
conditions on speed and position, are used to form a system of 
four equations of the form i i iTb = q , that can be solved to 
update the integration constants in real time.  
C. Human-Driven Vehicles Model 
We consider the merging roadways of Figure 2 and assume 
that all the vehicles behave according to the Gipps car-
following model [17] which implies they do not receive 
information from nearby vehicles nor the infrastructure but 
use estimations of the behavior of their leading vehicle to 
decide a safe speed value at each sample time. As the vehicles 
get closer to the merging zone, we use a combination of Gipps 
car following model and heuristic control to represent the 
driver decisions for merging maneuvers. 
The Gipps car following model adjust the driver behavior to 
keep a safe following distance from the leader vehicle or to 
travel at a desired speed in free traffic [14], [18], [19]. The 
speed fv  of the follower vehicle is computed as 

, ,( ) min{ ( ), ( )}f f acc f decv t v t v t      ,  (14) 

, ,max ,max ,max
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v t v tv t v t u v v 
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  (15) 
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where the subscripts ,f l  identify the follower and the leader 
respectively,   represents the “apparent” driver reaction time 
and corresponds to the simulation sample time, ,f accv is the 
speed when the vehicle is not constrained by the traffic, ,f decv  
is the speed when the vehicle is constrained by a leader in 
front, p  is the vehicle position, v  is the vehicle speed, 

,maxfv is the maximum desired speed, ,maxfu is the maximum 

desired acceleration, ,minfu is the highest allowed braking 
value, ,minˆlu is the follower’s estimation of the leader highest 
braking value, vehL  is the vehicle length and, fd  is the 
desired headway distance when the vehicles are stopped. To 
ensure a collision-free trip, the follower’s highest desired 
braking has to be greater or equal than the leader’s highest 
braking value, namely 

 ,min ,minˆf lu u .  (17) 
Each vehicle traveling on the main road will consider its 
preceding vehicle as its leader and will follow the speed 
dictated by the Gipps model until it reaches the merging zone, 
i.e., while its position ( )fp t  is less or equal than L .  Once the 
vehicle is inside the merging zone, i.e., its position ( )fp t  is 
greater than L and less than L+S, it will evaluate whether 
another vehicle is merging from the secondary road. In such 
case, the follower traveling on the main road will start 
considering the merging vehicle as its new leader and the 
speed trajectory will be adjusted accordingly to avoid 
collision.  
Similarly, each vehicle traveling on the secondary road will 
consider its preceding vehicle on the same road as its leader 
until it reaches a distance D from the merging zone, i.e., 

( )fp t L D   (this section of the road of length D  before the 
merging zone will be identified as the “check zone” for 
human-driven vehicles). Once the vehicle enters this zone, it 
checks for the closest gap to merge, i.e., it will identify a new 
potential leader ( l ) and a new potential follower ( 1f  ) in the 
main road. If the estimated time gap with the new potential 
follower is less than 2 sec, the vehicle will start decelerating to 
be able to stop before reaching the main road and to avoid 
lateral collision in the merging zone. The vehicle will then 
start evaluating the merging conditions again for the next 
available gap.  Once a safe gap is identified, the vehicle will 
behave according to the Gipps car-following model, trying to 
avoid collisions with its new leader on the main road. The 2-
sec threshold above is defined to follow the 2-sec rule, 
according to which, the time gap between two consecutive 
vehicles should be at least two seconds to allow a safe stop in 
case the vehicle in front has to suddenly brake. 

III. SIMULATION RESULTS 
To assess the impact of optimal coordination of CAVs for 
different traffic conditions, we simulated a merging on-ramp 
for two scenarios:  1) 0% CAVs penetration (baseline) and 2) 
100% CAVs penetration. For each scenario, we generated a 
total of 19 different traffic conditions using (1) and (2) to 
compute the headway time for a total of 300 vehicles entering 
the control zone. We considered different avgQ  values 
between 300 veh/h and 1200 veh/h. We also considered that 
the control zone has a length 400 L m  and the merging zone 
a length 30 S m . Note that these values are not restrictive 
and they could be modified accordingly to represent specific 



traffic segments. For the first scenario, we assumed that each 
driver attempts to reach and maintain a desired speed 

13.41 desv  m/s while keeping a safe distance from the leader 
vehicle. However, when a vehicle travels on the secondary 
road, we define a “check zone” of length   to evaluate the 
merging conditions and decide whether to merge, or 
decelerate and wait for the next safe opportunity to merge. 
Similarly, in the scenario 2 we assumed that each CAV 
attempt to reach and maintain a desired speed 13.41 desv  m/s 
and a safe distance from the leading vehicle before entering 
the control zone and after they leave the merging zone. 
Notably, the proposed approach is not restricted to the desired 
speed value used in this study, it can be modified according to 
the driver preferences. When a CAV reaches the control zone 
the controller designates its acceleration/deceleration until the 
vehicle exits the merging zone. To estimate the fuel 
consumption, we used the polynomial metamodel proposed in 
[20] that yields vehicle fuel consumption as a function of the 
speed and control input (acceleration/deceleration). 
We simulated the baseline and the 100% CAVs penetration 
scenarios under each traffic flow condition and logged the 
time and speed for each vehicle entering the control zone. The 
logged data was aggregated every 30 sec to capture the 
macroscopic traffic flow and density for both scenarios. 
The plot in Figure 3 shows that fuel consumption is reduced 
for all the simulated traffic conditions. For low traffic (300 to 
600 veh/h) the fuel consumption reduction remains almost 
constant at almost 35%. The total fuel consumption varies 
significantly in the baseline case in medium and high traffic 
due to increased stop and go operation, reaching the maximum 
at a flow of 750 veh/h.  The highest variation in the average 
traffic scenario is attributed to the fact that the vehicles still 
have some “freedom” to accelerate/decelerate as opposed to 
the case of high traffic where they are more “constrained” by 
the smaller headways and idling condition predominates. 
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Figure 3. Fuel consumption for different traffic scenarios.  In contrast, for the 100% penetration scenario, the fuel 
consumption increases gradually for average traffic (from 600 

veh/h to 1000 veh/h) but it reaches an almost constant value 
again for heavy traffic conditions.  Note that for heavy traffic 
conditions, the percentage of fuel consumption reduction 
remains between 45% to 55%. The highest reduction 
percentage is reached at medium traffic conditions with almost 
70%.   
The total travel time (Figure 4) remains very close for both 
cases in low traffic conditions but can vary widely in the 
baseline case for medium and high traffic compared to the 
100% CAVs penetration case, reaching the highest percentage 
of reduction in average traffic at 750 veh/h. 

300 400 500 600 700 800 900 1000 1100 12000.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6 x 104

Average Traffic Flow (veh/h)

Tra
vel

 tim
e (s

)

Total Travel Time for Different Traffic Conditions

 

 
0% CAVs
100% CAVs

 
Figure 4. Travel time for different traffic scenarios.  To assess how the overall traffic is affected with full 
penetration of CAVs, we show the flow-density data in Figure 
5.  
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Figure 5. Flow-density data for all the simulated scenarios. As expected, in the baseline case (blue dots) the points that 
represent the free traffic condition follow a linear pattern, 
while the data points representing congested traffic are more 
scattered.  It is worthy to highlight that in the baseline case 
(0% penetration of CAVs) and for traffic densities between 26 
veh/km and 40 veh/km, we have free traffic (represented by 



the almost linear trend at the top of the plot) and congestion 
(represented by the scattered points in the plot) depending on 
the flow of vehicles that merge. Figure 5 shows that optimal 
coordination of CAVs can contribute with significant 
reduction of the wide variations in traffic flow and density that 
is generated by random traffic patterns. Small variations in 
traffic flow can still appear for higher traffic densities. 

IV. CONCLUDING REMARKS 
We are currently witnessing an increasing integration of 
energy and transportation, which, coupled with human 
interactions, is giving rise to a new level of complexity in the 
next generation transportation systems. The common thread 
that characterizes energy efficient mobility systems is their 
interconnectivity which enables the exchange of massive 
amounts of data; this, in turn, provides the opportunity for a 
novel computational framework to process this information 
and deliver real-time control actions that optimize energy 
consumption and associated benefits. CAVs provide the most 
intriguing and promising opportunity for enabling users 
(including individual vehicles and traffic control centers) to 
better monitor transportation network conditions and make 
better operating decisions to reduce energy consumption, 
greenhouse gas emissions, travel delays and improve safety. 
 
The current amount of operational CAVs is not enough to 
capture significant data that can be used to assess the 
implications of CAVs on fuel consumption and traffic flow. In 
this paper, we made a preliminary effort to study the 
implications of optimal coordination of CAVs on merging 
roadways under different traffic conditions. We developed a 
simulation framework where the CAVs are optimally 
coordinated and the human-driven vehicles follow the Gipps 
car following model. The simulation results showed that fuel 
consumption can be significantly reduced under all traffic 
conditions, although the highest benefits are achieved at 
medium traffic flows. A similar trend was found for the travel 
time except that for low traffic conditions the results remain 
almost equal for both scenarios, i.e., baseline and full CAVs 
penetration. One important finding in our study is that full 
penetration of CAVs can contribute with more stable traffic 
patterns even when the traffic density is high.  The analysis of 
the implications for different penetration levels of optimally 
coordinated CAVs is the subject of on-going research. Future 
work will also analyze the impacts of communication-related 
instabilities in the performance of the optimal coordination 
framework. 
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