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Abstract

This paper addresses the problem of controlling a Markov chain so as to minimize the long-run expected average cost per
unit time when the invariant distribution is unknown but we know it belongs to a given uncertain set. The mathematical
model used to describe this set is the total variation distance uncertainty. We show that the equilibrium control policy,
which yields higher probability to the states with low cost and lower probability to the states with the high cost, is
an optimal control policy that minimizes the average cost. Recognition of such a policy may be of value in practical
situations with constraints consistent to those studied here when the invariant distribution is uncertain and deriving

online an optimal control policy is required.
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1. Introduction

The average cost criterion is prominent as being complex
to analyze compared to other optimization criteria. While
many classical criteria lead to rational complete solutions,
the long-run cost may not. The average cost criterion for
Markov Chains (MC) with finite state and arbitrary ac-
tion spaces has been extensively reported in the literature
(see, e.g., [1, 2, 3, 4] and references therein). A significant
amount of research has been also reported for the problem
with finite state and action spaces [5, 6, 7, 8, 9, 10]. Bather
[11] reviewed various techniques for a controlled MC with a
finite state space when there is a finite set of possible tran-
sition matrices; an example illustrated the unpredictable
behavior of policy sequences derived by backward induc-
tion. He proposed a new approach based on the idea of
classifying the states according to their accessibility from
one another. Feinberg [12] considered four average reward
criteria on discrete time Markov decision model with a
finite state space, and prove the existence of persistently
nearly optimal strategies in various classes of strategies for
models with complete state information.

Research efforts have focused on infinite horizon,
discrete-time Markov Decision Processes (MDPs) with
more general state and action spaces. Hordijk [13] ex-
tended some earlier results to countable state and action
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spaces by introducing the Lyapunov function method for
controlled Markov processes. Based on this method, a so-
lution to the average cost problem can be achieved yielding
an optimal control policy. Borkar [14, 15, 16, 17, 18] pre-
sented a convex analytic approach to address this problem
in a general framework with unbounded cost by treating
the control problem as a constrained optimization problem
on a suitably defined closed convex set of ergodic occupa-
tion measures. In this work, necessary and sufficient con-
ditions for the existence of an optimal stable stationary
deterministic policy were established; moreover, Borkar
provided conditions for optimality in terms of dynamic
programming when an optimal stable stationary policy is
known to exist. Sennott [19] introduced conditions that
guarantee an optimal control policy in problems with pos-
sibly unbounded, non-negative costs. Cavazos-Cadena [20]
considered denumerable state spaces and stationary con-
trol policies that induce an ergodic chain; the value itera-
tion scheme was utilized to construct convergent approx-
imations of a solution to the optimality equation as well
as a sequence of stationary policies whose limit points are
optimal. Leizarowitz and Zaslavski [21] recently addressed
the problem of uniqueness and stability of optimal control
policies when a complete set of unicost MDPs is endowed.
The problem of minimizing the long-run expected average
cost of a complex system consisting of interactive subsys-
tems was addressed in [22]. The problem of minimizing
the average cost in a controlled MC by solving a dual con-
strained optimization problem was addressed in [23]. It
was shown that the control policy that yields higher prob-
ability to the states with low cost and lower probability to
the states with the high cost is an optimal solution and it
is defined as an Equilibrium Control Policy (ECP).

July 16, 2018



In this paper, we address the problem of controlling a
MC so as to minimize the long-run expected average cost
per unit time when the invariant distribution is unknown
but we know it belongs to the Total Variation (TV) dis-
tance uncertainty set. We treat the stochastic optimal
control problem as a dual constrained optimization prob-
lem and we show that the ECP is an optimal control pol-
icy that minimizes the average cost. Furthermore, we show
that this solution is optimal for the original stochastic con-
trol problem without considering uncertainty.

This problem has become increasingly important in au-
tomotive related applications [24, 25, 26, 27]. In particular,
in hybrid electric vehicles (HEVs) implementing online an
optimal control policy to distribute the power demanded
by the driver optimally to the subsystems, e.g., the in-
ternal combustion engine, motor, generator, and battery,
constitutes a challenging control problem and has been the
object of intense study for the last two decades [28]. In this
problem, we select the long-run, expected average cost per
unit time criterion as we wish to optimize HEV efficiency
(minimize losses) for any different driver and commute on
average. However, since the driver’s driving style is un-
known, the invariant distribution is not known a priori
but we know that it belongs to an uncertain set.

The remainder of the paper proceeds as follows: In Sec-
tion 2, we introduce our notation and formulate the prob-
lem. In Section 3, we introduce the uncertainty set based
on TV distance. In Section 4, we formulate the stochas-
tic control problem and provide a solution that yields the
ECP. Finally, we present an illustrative application in Sec-
tion 5, and we draw concluding remarks in Section 6.

2. Problem Formulation

We consider a system that evolves according to a con-
trolled Markov process with a finite alphabet state space
S of finite cardinality |S| = N, and a finite alphabet con-
trol space U of finite cardinality |U|, from which control
actions are chosen. The evolution of the state occurs at
each of a sequence of stages t = 0,1,..., and it is por-
trayed by the sequence of the random variables X; and
U; corresponding to the system’s state and control ac-
tion. In our formulation, a state-dependent constraint
is incorporated; that is, for each realization of the state
X; =i € S, we are given a nonempty subset C(i) C U of
the control space, and the feasible set of state-action pairs,
I': = {(i,u)|i €S and u € C(i)}. For each realization of
the state X; = i € S, we define the function ¢;: S — U
that map the state space to the control space defined as
the control law. Each sequence 7 of the functions ¢;,
T = {¢1,..., 95}, is defined as a stationary control pol-
icy of the system. Furthermore we consider a function
[: T — R, called the cost function (cost-per-stage).

At each stage, the controller observes the system’s state
Xy =1 € S, and an action, Uy = ¢; = u, is realized from
the feasible set of actions C(7) at this state. At the next
stage t, the system transits to the state X411 = j € S

imposed by the conditional probability P(X;+; = j|X; =
i, Uy = u), and a cost [(Xy,Uy) = l(i,u) is incurred. After
the transition to the next state has occurred, a new action
is selected, and the process is repeated. The completed
period of time over which the system is observed is called
the decision-making horizon and is denoted by T. The
horizon can be either finite or infinite; in this paper, we
consider infinite-horizon decision-making problems.

2.1. Long-Run Expected Average Cost Subject to a Dis-
tance Uncertainty

We consider the long-run expected average cost per unit
time. The average cost criterion is considered usually for
developing the power management control in HEVs or
plug-in HEVs (PHEVs), where we seek to derive an op-
timal control policy that will optimize the efficiency of the
HEV/PHEV in the long-term and not necessarily for a spe-
cific period of time [29, 30]. The assumption of an infinite
number of stages is never satisfied in practice. However,
it is a reasonable approximation for problems involving a
finite but very large number of stages.

Problem Statement P0O: The minimum average cost
corresponding to the optimal control policy 7* is

T
1
“(rt) = min lim B[ X, 0)]. (1
T () = min lim 7= ;l( 0, Ut) (1)
To guarantee that the limit in (1) exists, we impose the
following assumption.

Assumption 2.1. For each stationary control policy m =
{01, 02,..., 95}, the MC {X;|t = 1,2,...} has a single er-
godic class.

Namely, for each stationary policy w € II, there is a
unique invariant distribution (row vector)

p(m) = [pa(m), pa(m), ... >M\5|(7T)],

such that p(m) = p(mr) - P(r), with ), ¢ ps(m) = 1, where
P(r) is the transition probability matrix. A proof of this
assertion may be found in [[31], p. 227]. Under Assump-
tion 2.1, it is known [[32], p.175] that

1 T

i, 7 3 P =1 ), (2)

where 1 = [1,1,...,1]7 is the column vector whose elements
are all unity. Substituting (2) into (1) shows that long run
average expected average cost per unit time, J(w), does
not depend on the initial state and is given by

J(x) = () - ), 3)
where Z(TF) = [l(lv¢1)7l(2a¢2)val(la¢l)al(87¢\5|)]T is

the column vector of the cost function. Consequently, a
stationary control policy is optimal if

J* = J*(n*) = inf {J(r)|7 € 11}, (4)



where II is the set of the feasible control policies. To sim-
plify notation, if the context makes it clear we do not em-
phasize the dependence of the average cost J (), invariant
distribution p(7), and cost function I(7) on the control
policy 7, and we denote them simply by J, u, and [.

Problem Statement P1: Our objective is to derive
the optimal control policy that minimizes the long-run,
expected average cost per unit time in (3), when the in-
variant distribution, u(7), is unknown but it belongs to an
uncertain set, described by the TV distance ball.

The mathematical model used to describe the uncer-
tainty set is the TV distance developed in earlier work
[33, 34]. The problem of deriving an optimal control pol-
icy that minimizes the average cost can be reformulated
as a dual constrained optimization problem. More specifi-
cally, we can formulate a problem to derive a control policy
that minimizes the cost at each state with maximum prob-
ability, or alternatively, maximizes the probability of the
states incurring minimum cost. The average cost in (3)
is a linear functional on the Banach space of all bounded,
continuous, real-valued functions. The existence of a fam-
ily of probability measures which attain the supremum of
the average cost in the general case has been discussed in
[35]. The uncertainty set based on TV distance is weak*-
compact and the functional weak* continuous [35]. Hence,
there exist a probability measure in this set that maxi-
mizes the functional J. Since the set I' is compact there
exists a cost-per-stage that minimizes the functional J.
The following section provides the solution of the above
optimization problem.

3. Discrepancy Measure: Total Variation distance

3.1. Total variation distance

The Markov process has a single ergodic class (As-
sumption 2.1), and thus a unique invariant distribution
p = [u1, p2,...,ms)]- The objective is to approximate the
Markov process {X; : t =0, 1, ...} by another, non neces-
sarily Markov process, {Y; : t = 0,1,...} with state space
S C S, and invariant distribution 7 = [p1, 7a,...,7 5],
with respect to an appropriate measure of proximity be-
tween the original Markov process {X; : ¢ =0,1,...} and
the approximating process {Y; : ¢ = 0,1,...}, called the
discrepancy measure.

The distance metric we use to define the discrepancy
between two distributions is the TV distance, to allow dis-
tributions defined on different state spaces. To this end, we
introduce TV distance for general spaces, as follows. Let
M;(S) denote the set of probability measures on B(S).
The TV distance is a metric, || - [|7v : M1(S) x M1(S) —
[0, 00) defined by [36]

o= pllry £ sup |a(A) - u(A4)| (5)

AeB(S)
where a,p € My(S). With respect to this metric,
(M1(8),|]"||Tv) is a complete metric space. Given a prob-
ability measure p € M;(S) define the fidelity set via the

ball, with respect to the TV distance, centered at the mea-
sure pu € M;(S), having radius R € [0, 2], by

Br(u) 2 {v € My(S) : [lv — pllrv < R}. (6)

By the properties of the distance metric then ||y — p||ry <
[IY|lrv + ||lpll7v = 2, hence R is further restricted to the
interval [0, 2].

8.2. Approximation problem based on mazximum entropy
principle
Consider the finite alphabet case (S, M), with cardinal-
ity |S|, M = 2SI, Thus, v and p are point mass distri-
butions on S. Define the set of probability vectors on S
by
€S

Thus, p € P(S) is a probability vector in le‘. Also, let
12 {ly,..., l|s|} so that | € Rl_f‘ (e.g., set of non-negative
vectors of dimension |S]). Given the invariant distribution
p € P(S) and a parameter R € [0,2] define the long-run
expected average cost criterion with respect to the invari-
ant distribution {v; : i € S} € Br(p) C P(S) by

L(v) => lv;, 1eR. (7)
€S
The objective is to approximate p € P(S) by v € Br(u)

by solving the maximization problem defined by

L(v*) = max L(v),
vEBR (1)
u=pP

VR € [0,2]. 8)

Problem (8) is a non-decreasing concave function of R, and
for R < Rpax the inequality constraint holds with equality,
where Rpax is the smallest non-negative number belong-
ing to [0,2] such that L(v*) is constant in [Rmax, 2] (for
more details see [37]). Hence, Problem (8) is a convex op-
timization problem on the space of probability measures.

Consider Jayne’s maximum entropy principle! then, the
approximation problem can be formulated as follows: max-
imize the entropy of {v; : i € §} subject to TV fidelity set,
defined by

max H(v), H(v)= - E log(v;)v;. 9)
vEBR (1) :
u=pP i€S

Problem (9) is of interest when the concept of insufficient
reasoning (e.g., Jayne’s maximum entropy principle [38])
is applied to construct a model for v € P(S), subject to
information quantified via the fidelity set defined by the
variation distance between v and p.

1The maximum entropy principle states that, subject to precisely
stated prior data, the probability distribution which best represents
the current state of knowledge is the one with largest entropy.



It can be shown that the maximum entropy approxi-
mation problem (9) is precisely equivalent to the prob-
lem of finding the approximating distribution correspond-
ing to the minimum description code word length, also
called as universal coding problem [39], as follows. Let
{li : i € S} denote the positive codeword lengths cor-
responding to each symbol of the approximating distribu-
tion, which satisfy the Kraft inequality of lossless Shannon
codes ), g D~% < 1, where the code word alphabet is D-
ary (unless specified otherwise log(-) = logp(+)). Then, by
the Von-Neumann’s theorem? we have that

min max g liv;
|SI. —1; veEB
LERT:S es DL #:}Z(f;) i€S

= max min livi = max H(v). (10)
vEBR (1) ISl.5~ —li<1 4 veBR (1)
ERUIER T es DTS 5s it

Hence, for I; £ —logv;, Vi € S, the approximated Prob-
lem (8) is equivalent to (9). The interpretation is that
the maximum entropy approximation corresponds to the
minimum description length [39] of a class of distributions
described by the TV ball.

3.3. Solution of the approzximation problem

In this section, we draw upon the results of [37] to find
the solution of Problem (8), and consequently the solution
of Problem (9). First, we identify the support sets and
their corresponding values.

Let us define the maximum and minimum values o
the sequence {l1,...,lis|} by lmax £ maxics liy, lmin =
min;es l;, and its corresponding support sets by

=

SO é{ieS:li Zlmax}, Soé{iESIlizlmill}.
For all remaining sequence, {l; : i € S\ 8" U Sy}, denote
the set of indices for which [ achieves its (k+ 1) smallest
value by Sy, k € {1,2,...,|S\S°USy|} (till all the elements
of § are exhausted) and denote the corresponding values
of the sequence of Sy, sets by I(Sk),

For | € B*(S), and p € P(S) fixed, we show in [40],
that the optimal probabilities of Problem (8) are given by

v*(S%) = min (E, %), (11a)
* _ 1 ZiESO Hi — %
V*(Sp) = max (ET) (11b)
VIS =D i k=1,2,...,m, (11c)
1ESk

where r is the number of Sj sets which is at most
|S\ S°USy|. The optimal probabilities v*(+) are obtained

2Equation (10) follows from compactness and convexity of the
constraints and convexity of Y l;v; for a fixed v € Br(u) and con-

cavity for a fixed [ € lel (and continuity).

iteratively as a function of the TV parameter R € [0,2],
and we assume that Vi € S v = v*(8°), Vi € Sy,
v =v*(Sy) and Vi € S, v = v*(Sk). In particular, for
R = 0 (initialization step) we have that v} = p;, Vi € S,
and hence the identification of the support sets of S is ob-
tained based on the values of u;, Vi € S, that is, using the
fact that I; = —logv} = —logp,, Vi € S. As R increases
we evaluate v}, Vi € S, given by (11) based on the iden-
tified support sets of the initialization step until a merge
occurs (i.e., see Figure 4). In this case, a new identifica-
tion of the support sets is required, and the procedure is
repeated until the optimal probabilities become equal to
v*(-) = 1/|8S|, where thereafter the solution is constant.

Remark 3.1. By the relation I; = —logv}, Vi € S, el-
ements i,j € S belong to the same support set only if

7. X %
li =1 & v =v;.

The optimal probabilities (11a)-(11c) can be expressed
in matrix form by

v = uQ = uPQ (12)

where the dimensions of ) matrix depends on the value of
TV parameter R. In [40] an algorithm is provided for con-
structing the desired @) matrix. Intuitively, as R increases,
the maximizing distribution v* exhibits a water-filling so-
lution, with the property the states of ;1 € P(S) are aggre-
gated together to form a new partition of S. However, due
to the water-filling behavior of the solution, the maximiz-
ing distribution v* € P(S) is not the invariant distribution
of a Markov process. Indeed, the process associated with
distribution v* is a hidden Markov process. Consider a
process {Y; :t =0,1,...} taking values in S C S. Define

P(Y (t) = )2 Y PV () = j|1X(t) = )P(X(t) = i). (13)
jE€S

By }ilenoting u(t) £ P(X(¢) = i) and v(t) £ P(Y(t) = j)

v(t+1) = ult +1)Q = u()PQ = p(O)P'Q,  (14)

where the resulting stochastic matrix PQ gives the prob-
ability P(Y (¢t + 1) = j) of the process {Y;,t = 0,1,...},
given the state of the distribution of the Markov process
{X,t =0,1,...} at time ¢. The dimension of the map-
ping PQ, which relates the process {Y;,t = 0,1,...} to the
Markov process {X;,t = 0,1, ...}, depends on the value of
the parameter R. As a result, once the mapping PQ is
computed the state of the approximated process can be
computed by (14). This can be useful when we want to
observe the evolution of a reduced process instead of the
original Markov process.

8.4. Approximation of a hidden Markov process by a
Markov process

A futher approximation of the resulting finite state hid-

den Markov process {Y; : ¢ = 0,1,...} by a finite state
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Figure 1: Approximation procedure.

Markov process of reduced order is provided in [40], by
minimizing the Kullback-Leibler (KL) divergence. In sum-
mary, the approximation procedure consists of the follow-
ing steps (see Figure 1): Given a finite state Markov pro-
cess (1, P,S), a lower dimensional distribution v € P(S)
with corresponding process {Y; : t = 0,1,...} and state
space S C S, is obtained from the maximizing distribu-

tion v* € P(S) by defining a partition function as follows.

Definition 3.2. Let S and S be two finite dimensional
state-spaces with |S| < |S|. Define a surjective (partition)
function ¢ : S+ S as follows:
1. For all i,j € 8° (i) = p(j) =L € S and vy =
SO (89).
2. For all i,j € So, ¢(i) = p(j) = m € S and v, =
|Solv™ (So). _
3. For alli,j € Sk, (i) = p(j) = ni € S and vy, =
‘SkIV*(Sk), k=1,2,..., |S\SO US()|,

where the values assigned to indices £, m and ny, for all
kE=1,2,...,|S\ S U S|, are selected from S so that v.
form an ascending order, i.e., if Up < Upy < Upy < -+ <
Upg, then £ <m <np <--- <ng.

Then under the restriction that the lower dimensional
process is also a finite state Markov process (7, ®,S), and
by utilizing the partition function ¢, a transition probabil-
ity matrix ® is found which minimizes the KL divergence
rate between P and @

P;;

D#(P||®) = 3 piPylog (). (15)

~ D,
i,jES J

The lifted version of the lower dimensional MC @, denoted

by @, is defined by (i.e., see [41])

b=t @

= i,jES
2 kew(j) M

e()e(d)>
where 1(j) denotes the set of elements belonging to the
same set as the jth element. The solution of @ is given by

uBTIPy®’

Uk

kl = , kle S (16)

where II = diag(v*), u®" is the transpose of u®), and
u® is a 1 x |S| row vector defined by

ul® :{ (1) if (i) = k

otherwise.
Next, we provide an example in order to explain in detail
the approximation procedure.

(17)

Example 3.3. Let (u, P,S) denote a finite state Markov
process, with |S| = 5, and p £ [u1, po, p3, pa, ps] =
[0.05,0.1,0.15,0.3,0.4]. For simplicity of presentation let
us assume that the optimal probabilities v}, i € S, as a
function of R are as shown in Figure 4(a).

Initialization step. For R = 0, we have that, v = p,
Vi € S, and by the relation ¢; = —logv}, Vi € S, the sup-
port sets of S are given by S° = {1}, So = {5}, S1 = {4},
82 == {3} and 83 = {2}

For the sake of this example, we choose R = 0.2, and we
proceed with the identification of the new support sets. In
particular, by Figure 4(a) (at R =0.2), v = v = 0.125,
vi; = p3 = 0.15 and vj = v§ = 0.3. By the relation ¢; =
—logv), Vi € S, we have that I} =13 > I3 > Iy =I5, and
hence, the new support sets are given by S = {1,2}, Sy =
{4,5} and S; = {3}. By (11), the optimal probabilities are

0.15+0.1

v*(S8%) = min(0.2, ) =0.125

0.7-0.1
2

By Definition 3.2, (a) for elements {1,2} € 8%, (1) =
©(2) =2 € S and v, = |S°|v*(S°) = 0.25, (b) for elements
{4,5} € Sy, p(4) = p(5) =3 € S and 3 = 0.6, (c) for ele-
ment {3} € S1, ¢(3) =1 € S and 1 = |S;|v*(S1) = 0.15.
The transition probability matriz ® of the lower dimension
Markov process (v, ®,8) is given by
P33 P31 + P3a P34+ P35

D= | .5(P13+PF23) .5(P11+Pi2+ P21+ Pa2) .5(Pra+Pi5+Pay+Pos)

.5(Pa3~+Ps3) .5(Pa1+Pao+Ps1+Ps2) .5(Paa+Pas+Psa+Pss)

v*(Sp) = max(0.2, )=03, v*(S1)=0.15.

In the next section we apply the approximation results
to solve Problem P1.

4. Optimal Control Policy

4.1. Equilibrium Control Policy

In this section, we show that applying the solution of
(9) to the Problem P1 yields the optimal control policy.
Namely, the control policy endows a invariant distribution
that yields higher probability at the states with low cost,
and lower probability at the states with high cost.

Definition 4.1. A control policy © = {gbl, ceey G ...,¢|g‘}

is an equilibrium control policy (ECP) if it yields a pair of
vectors w* and U™ in the following form

(L) < . <U(di) <. S1(S0s) (18)

P22 > 2y, ViES. (19)

Thus if an ECP exists, it yields higher probability to

the states with low cost and lower probability to the states
with the high cost.

Proposition 4.2. [23] An ECP T for the average cost J
exists, if for all control policies, J is conver with respect
to the cost function | and its epigraph is closed for each p.

Theorem 4.3. [23] The ECP T is an optimal control pol-
icy, namely

J(7) = J*(7%) = p* (@) - (7). (20)



4.2. Optimality Equation Subject to a Distance Uncer-
tainty

We now present the main results of this paper.

Theorem 4.4. The ECP is an optimal control policy in
Problem P1.

Proof. Let the invariant distribution within the TV dis-
tance be® 7 = u + £ We set M(nr) = ®(wr) — I, where ®
is the transition probability matrix and I is the identity
matrix. Let

1-¢(m) =1U(r) +M(n) - q, Vr eI, (21)
where 1 = (1,1, ..., 1)T7 ¥(n) € R, and ¢ € RIS! such that
M(7)-q > 0. Multiplying the above equation by () from
the left we have

$(@) = o(m) - 1(m) + 0(x) - M(x) g (22)
= o(x) - Ux) + () (B(m) —T) g (23)
— o) - Um) + () - B(w) g —B(m) g (24)

(25)

25

since M(rw) = ®(w) — I and v(7) = v(w) - ®(7). Hence,
1 (m) is the long-run expected average cost corresponding
to the control policy .

From the Definition 4.1 of the ECP, T,

1*(7) (i, ¢5) < U(m) (i, 95), Vi € S,¥m €11, (26)
and since M(7) - g > 0, (26) can be written in matrix form
(7)< Um) + M(n) g =1-9(m),  (20)

where ¢ (7) is the long-run expected average cost corre-
sponding to any control policy = € II. Multiplying (27)
by 7*(7) from the left we have

P(m) = vi(7) - 1(7) < (m),

Thus the ECP is the optimal control policy that minimizes
the long-run expected average cost. 0

Ve 1L (28)

The ECP provides the optimal solution of the average
cost problem when there is an uncertainty regarding the
invariant distribution but we know that it belongs to a
given set. The ECP can be seen as a solution concept.
Recognition of such a policy may be of value in practical
situations with constraints consistent to those studied here
when the invariant distribution is uncertain and deriving
online an optimal control policy is required. For instance,
we can design a controller with the aim to achieve a higher
probability for the states with low cost and lower proba-
bility for the states with high cost.

The next result shows that the ECP yields the “true”
optimal control policy corresponding to the problem when
there is no uncertainty about the invariant distribution.

3¢ is a finite signed measure which integrates to zero.

Theorem 4.5. The ECP in Problem P1 corresponds to
the optimal control policy in Problem P0.

Proof. Let p be the “true” invariant distribution of the
MC. Let £ be the variation distance of uncertainty. Thus
we have v = p+ & = p+&T — €. From Theorem 4.3, the
ECP 7 in Problem PO is optimal

JH(7) = (7)) - (7). (29)

For the Problem P1, the average cost corresponding to the
ECP, denoted 7', is

J(7') = v (=) - 1" (7). (30)
Since?, sup v = sup p+sup{¢t — ¢} = v* = p* + €], and

since, I*(7) = {*(7") and p*(7) = p*(7’) we have
J(n') = (u* (=) + [€]) - 1" (') (31)
= pt(T) - U (7) + €] - I (7). (32)
Thus the ECP 7’ for the Problem P1 corresponds to the
optimal control policy 7 in Problem P0. O

In other words, even if we are not certain about the
invariant distribution of the MC but we know that it is
within a given set, then the ECP guarantees the optimal
solution.

5. Application: Variable Length Lossless Coding
for a Total Variation Distance Class

In this section we present an application to demon-
strate that the equilibrium policy is an optimal control
policy which minimizes the average cost. In particular, we
consider the problem of finding uniquely decodable codes,
which minimize the average code-word length, also known
as universal coding problem. The problem is investigated
under two possible scenarios. In particular, in Section
5.0.1 we study the variable length lossless coding prob-
lem without uncertainty, while in Section 5.0.2 we employ
the approximation results of Section 3.4 and we solve the
lossless coding problem under TV distance uncertainty on
a reduced dimensional state space.

A source generates five different  symbols
{a1, a2, a3, 04, a5} with invariant distributions endowed
by the policies m; and 73, given by

p(my) = [0.05,0.10,0.15, 0.30, 0.40]
p1(m2) = [0.075,0.15,0.175, 0.25, 0.35].

Given the TV distance parameter R € [0, 2], we define the
average codeword length pay-off with respect to the true
source invariant distributions endowed by the policies m
and 7o, denoted by v*(m1) and v*(m3), respectively. The
objective is to find a prefix code length vector [* € R‘fl,
satisfying Kraft inequality ;g D74 which minimizes
the maximum average codeword length pay-off (9).

46+ and € is the positive and negative variation of the finite
signed measure ¢ defined by ¢t = max{¢,0} and £~ = max{—¢,0},
respectively.



5.0.1. Lossless Coding Without Uncertainty

Clearly, for R =0, vf(n) = p;(n), Vi € S. The solution
of coding problem for R = 0 under control policies 7, and
o is as shown in Figures 2 and 3, respectively. The code
length vector I*(7) under each control policy is given by

() = [15,05,015, 05, 13] = [4,4,3,2,1]" (33)

l*(TFQ) = [qJ;J;JZJ;} = [3a3527272]T' (34)

The average cost is J(m) = v*(m)l*(m) = 2.05 and

J(me) = v*(ma)l*(ma) = 2.225, and the optimal control
policy can be derived by

J*:inf{J(Wl),J(W2)|7T1,7T2EH}:J(TFl). (35)

Hence, the control policy m; is the optimal control policy.

as 040 0 Symbol | Code
a;:0.30 0 = as 0
5101 0 ! a4 10

. 1 as 110
,.2,0.10} as 1110
1005 —L ai 1111

Figure 2: Solution of coding problem for R = 0 under policy 7.

e 0
s 10550 j 0 Symbol | Code
s 0250 — L as 00
0.175 0 B aa 01
Gl . as 10
as:0.150 —° a2 110
} a 111
ay : 0.075

Figure 3: Solution of coding problem for R = 0 under policy 2.

Equilibrium Control Policy: To demonstrate the ECP
in this problem we compute sup, . inf;» v*(7) - I*(7) among
policies m; and 7.

e ey e (VE(m) - ()
sltl*pllrifu () - 1*(m) —sll*pl{lf (V*(ﬂ_z)'l*(m)
o (1005,01,0.15,0.3,0.4\ | ([4,4,3,2,1]7
= SUPA [075,.15,.175,.25,.35] ) "B \[3,3,2,2,2]T

=[0.05,0.1,0.15,0.3,0.4] - [4,4,3,2,1]" = 2.05.

Thus the control policy 71 is the ECP since it yields the
maximum probability distribution to the states with low
cost and lower probability distribution to the states with
high cost as indicated by (18) and (19).

5.0.2. Lossless Coding with TV Distance Uncertainty on
a Reduced State Space

Next we consider the case where the invariant distribu-

tion is within a TV distance uncertainty, and we apply the

results of Section 3.4 to approximate the finite state hidden

Optimal Probabilities
Optimal Probabiliies

06 o8 1 12 1 08 1 12
0<R<2 0<R<2

(a) Control policy m1 (b) Control policy 2

Figure 4: Water-filling behavior of optimal probabilities.
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Figure 5: Solution of coding problem for R = 0.2 under policy 71
(left table) and policy w2 (right table).

Markov process associated with v* € P(S), by a Markov
process (7, ®,S), |S| = 3, of reduced dimension. The op-
timal probabilities v, Vi € S, under control policies m;
and 7o, are obtained by applying (11), as shown in Figure
4. We select the TV distance parameter, R = 0.2. By
the approximation results of Example 3.3, corresponding
to control policy 1, the invariant distribution 7 € P(S) of
the lower dimensional Markov process (7, ®,S), |S| = 3, is
given by 71 = 0.15, 7, = 0.25, and v3 = 0.6. Following the
same procedure (as in Example 3.3), using the optimal
probabilities obtain under control policy w3, as depicted
in Figure 4(b), we can calculate the invariant distribution
of the lower dimensional Markov process corresponding to
control policy ms. In particular, the invariant distribution
v € P(S) corresponding to control policy s is given by
vy = 0.175, iy = 0.325, and 3 = 0.5 with |S| = 3.

It is not difficult to show that the solution of coding
problem for R = 0.2 under control policies m; and 7 is
as shown in Figure 5. The code length vector I*(m) un-
der each control policy is given by I*(m1) = [I7,15,15] =
(2,2, 17 and I*(m2) = [I},15,15] = [2,2,1]7. The aver-
age cost is J(m) = v*(m)l*(m) = 1.40 and J(ms) =
v*(mo)l*(my) = 1.50, and hence control policy m is the
optimal control policy.

Equilibrium Control Policy: To demonstrate the ECP
in this problem we compute sup,. inf;- v*(7) - 1*(7) among
policies m; and 7.

v v

[0.15,0.25,0.6] \ .
0.175,0.325,0.5]

=[0.15,0.25,0.6] - [2,2,1]7 = 1.40.

= sup

v*

su*p lﬁf v* (71‘) . l*(ﬂ') = sup inf (Z: Eﬂ-l) ;:ETFI))
]
]

Hence, control policy 7 is the ECP.



6. CONCLUDING REMARKS

The results presented here address the problem of min-
imizing the average cost per unit time in a controlled MC
when the invariant distribution is within a TV distance
uncertainty. We showed that the ECP is an optimal con-
trol policy that minimizes the average cost and that this
solution is also optimal for the original stochastic control
problem without considering uncertainty. The solution en-
dows a invariant distribution yielding higher probability at
the states with low cost and lower probability at the states
with high cost.
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