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Abstract— In this paper, we analyze a network of agents
that communicate through the “word of mouth,” in which,
every agent communicates only with its neighbors. We introduce
the prescription approach, present some of its properties and
show that it leads to a new information state. We also state
preliminary structural results for optimal control strategies
in systems that evolve using word-of-mouth communication.
The proposed approach can be generalized to analyze several
decentralized systems.

I. INTRODUCTION

Centralized stochastic control has been the ubiquitous
approach to control complex systems so far [1], [2]. A
key assumption in centralized stochastic control problems is
that a singular decision maker perfectly recalls all previous
control actions and observations. The information available
to an agent when making a decision is called the infor-
mation structure of the system, and complete information
corresponds to the classical information structure.

However, the classical information structure does not
apply to many applications involving multiple agents [3]. In
these applications, all agents simultaneously make a decision
based only on their local observations and delayed, or costly
communication with others [4]. Information structures where
the information available to different agents is different, are
classified as decentralized stochastic control problems with
non-classical information structures.

The challenge of non-classical information structures lies
in the fact that they cannot easily be analysed using dynamic
programming (DP), due to a lack of separation between
estimation and control. Next we describe three general ap-
proaches in the literature on decentralized stochastic control
that generalize techniques from centralized stochastic con-
trol. For details on these approaches, the reader may refer to
the tutorial by Mahajan et al. [5] and the references therein.

In the person-by-person approach, the control strategies of
all agents except one are arbitrarily fixed. Then the control
strategy of the chosen agent is then optimized as a centralized
problem. Repeating this process for all agents allows for the
derivation of structural results and DP for a person-by-person
optimal strategy, that is not globally optimal in general. Some
applications of this approach can be found in [6]–[11].

The designer’s approach takes the point of view of a
designer with knowledge of the system model and statistics.
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The designer’s task is the selection of the globally optimal
control strategy for the system by transforming the problem
into a centralized planning problem. Some applications of
this approach can be found in [12]–[14].

A more recent development in this field is the common
information approach developed for problems with partial
history sharing [15], and then formalized for general decen-
tralized systems [16]. The solution is derived by reformulat-
ing the system from the viewpoint of a fictitious coordinator
whose task is to prescribe control laws to every agent in the
system. Further applications can be found for information
structures with mean-field sharing [17], unreliable channels
[18], and stochastic nestedness [19].

In this paper, we introduce and study a decentralized
system with multiple agents who communicate with word of
mouth. A word-of-mouth communication is characterized by
a network of agents, where each agent directly communicates
in a delayed manner, only with its neighbors in the network.
Information originating from any agent propagates in the
network through the subsequent sharing by their neighbors,
and so on. This problem has a non-classical information
structure because of the delays in communication.

The common information approach is considered to be the
standard approach in solving decentralized control problems
like the word-of-mouth information structure. However, be-
cause we let the links have asymmetric delays, the maximum
delay in communication across the network can be quite
large for our problem. We believe that in such problems,
we can improve the structural results by taking into account
the asymmetries in the system. Our primary contributions
are the formulation of the problem with the word-of-mouth
information structure and the introduction of the prescription
approach. In addition, we state without proof, one structural
result with time-invariant control policies for all agents that
arises from the prescription approach.

The rest of the paper is organized as follows: In Section
II, we present the information structure and problem formu-
lation. In Section III, we present the prescription approach
along with the corresponding properties. In Section IV, we
state the structural results. Finally, in Section V, we draw
concluding remarks, and present some ideas for future work.

II. PROBLEM FORMULATION
A. The Network of Agents

We consider a network of K ∈ N agents represented
by a strongly connected graph G = (K, E), where K :=
{1, . . . ,K} is the set of agents and E is the set of links. A
link from an agent k ∈ K to an agent j ∈ K is denoted



by (k, j) ∈ E and represents a communication link from
agent k to j which is characterized by a delay of δ[k,j] ∈ N
time steps. When agent k sends out information to agent j
through link (k, j), we call it transmission of information.
The information transmitted by agent k at time t is received
by agent j at time t+ δ[k,j].

Definition 1. Let N = {1, . . . ,m : m ∈ K} be a set of
indices. For any k, j ∈ K, a path q

[k,j]
a , a ∈ N, from k to

j is given by the sequence {kn}n∈N such that: (1) k1 = k
and km = j, (2) kn ∈ K for n ∈ N , and (3) there exists a
link (kn−1, kn) ∈ E for n ∈ N \ {1}.

The set Q[k,j] = {q[k,j]a : a = 1, . . . , b; b ∈ N} includes
all paths from agent k to agent j.

Definition 2. Let agents k, j ∈ K with a path q[k,j]a from k

to j. The communication delay d[k,j]a ∈ N for q[k,j]a is defined
as

d[k,j]a = δ[k,k2] + · · ·+ δ[km−1,j],

where δ[kn−1,kn] is the delay in information transfer through
the link (kn−1, kn) ∈ E .

The information path, defined formally next, from agent k
to agent j in the network is the path with the least possible
delay.

Definition 3. The information path from k to j denoted by
(k → j) is given by a path q[k,j]a ∈ Q[k,j] such that,

d[k,j]a = min
{
d
[k,j]
1 , . . . , d

[k,j]
b

}
, (1)

where b := |Q[k,j]|.

The strongly connected nature of the network ensures that
there is always an information path (k → j) from any agent
k ∈ K to any agent j ∈ K. We denote the associated delay
by d[k,j] and, by convention, set d[k,k] = 0. In general, we
allow d[k,j] 6= d[j,k] for directed paths with delay.

B. System Description

The network of agents is considered a discrete time system
that evolves up to a finite time horizon T ∈ N. At time t ∈ T ,
T = {0, 1, . . . , T}, the state of the system Xt takes values
in a finite set X and the control variable Uk

t associated with
agent k ∈ K, takes values in a finite set Uk. Let U1:K

t denote
the vector (U1

t , . . . , U
K
t ). Starting at the initial state X0, the

evolution of the system follows the state equation

Xt+1 = ft
(
Xt, U

1:K
t ,Wt

)
, (2)

where Wt is a random variable taking values in a finite set
W that denoted the uncontrolled disturbance to the system.
At time t the agent k makes an observation Y k

t , given by

Y k
t = hkt (Xt, V

k
t ), (3)

which takes values in a finite set Yk, where V k
t takes values

in the finite set Vk and denotes the noise in measurement.
Agent k selects a control action Uk

t from the set of
feasible control actions Uk

t as a function of its information

structure. The information available to each agent k ∈ K at
time t is different, as discussed in Section II-C. After each
agent k generates a control action Uk

t , the system incurs
a cost ct(Xt, U

1:K
t ) ∈ R. Then, we impose the following

assumptions on our model:

Assumption 1. The network topology is arbitrary, known a
priori, and does not change with time.

The known and invariable network topology is a part of
the system dynamics.

Assumption 2. The disturbance {Wt : t ∈ T } and noise
{V k

t : t ∈ T , k ∈ K} are sequences of independent random
variables that are also independent of each other and of the
initial state X0.

The disturbance, noise, and initial state denote the prim-
itive random variables, and they have known probability
distributions.

Assumption 3. The dynamics {ft, hkt , ct : t ∈ T , k ∈ K},
and the set of feasible policies G are known to all agents.

These functions and the set of feasible control policies
form the basis of the decision making problem.

Assumption 4. Each agent has perfect recall.

Perfect recall of the data from the memory of every agent
is an essential assumption for the structural results.

Fig. 1: Sequence of activities.

We summarize below the sequence of activities taken by
agent k ∈ K at time t (Fig. 1):

1) The state Xt is updated based on (2).
2) Agent k receives information from all agents in K,

collectively denoted by Ikt .
3) Agent k makes an observation about the state Y k

t based
on (3).

4) Agent k updates its memory, Mk
t , defined in Section

II-D, on a given protocol.
5) Agent k transmits information denoted by I

k

t to every
agent j ∈ K through the shortest path q[k,j]a .

6) Agent k generates a control action Uk
t .

C. Information Structure of the System

The information structure of the system is characterized by
the graph topology and delays along communication paths. In



the word-of-mouth information structure, every agent j ∈ K
at time t transmits the information I

j

t := {Y j
t , U

j
t−1} to every

other agent in the network through the relevant information
paths. Agent k ∈ K receives information I

j

t at time t+d[j,k],
where d[j,k] is the communication delay from j to k. Then,
the memory of agent k at time t includes all information he
received from every agent j ∈ K at time steps 0 through t.

Definition 4. The memory of agent k ∈ K is defined as the
random variable Mk

t that takes values in the finite set Mk
t

and is given by

Mk
t :=

{
Y j
0:t−d[j,k] , U

j
0:t−d[j,k]−1 : j ∈ K

}
, (4)

where d[j,k] is the delay in information transfer from every
agent j ∈ K to agent k.

At time t, agent k accesses his memory Mk
t to generate

a control action, namely,

Uk
t := gkt (Mk

t ), (5)

where gkt is the control policy of agent k at time t. We define
the control policy for each agent as gk := (gk0 , . . . , g

k
T ) and

the control policy of the system as g := (g1, . . . , gK). The
set of all feasible control policies is denoted by G.

The performance criterion for the system is given by the
total expected cost:

Problem 1: J (g) = Eg
[

T∑
t=0

ct(Xt, U
1:K
t )

]
, (6)

where the expectation is with respect to the joint probability
measure on the random variables {Xt, U

1
t , . . . , U

K
t }. Then,

the optimization problem is to select the optimal control
policy g∗ ∈ G that minimizes the performance criterion
in (6), given the probability distributions of the primitive
random variables {X0,W0:T , V

1
0:T , . . . , V

K
0:T }, and functions{

ct, ft, h
k
t : t ∈ T , k ∈ K

}
.

III. THE PRESCRIPTION APPROACH
A. Construction of Prescriptions

For an agent k ∈ K, we consider a scenario where the
control action Uk

t is generated in two stages:
(1) Agent k generates a function based on information that

is a subset of its memory Mk
t .

(2) This function takes as an input the compliment of the
subset used to generate it, and yields the control action Uk

t .
We call these functions prescriptions. We show in Section

III-B that they allow us to construct an optimization problem
of selecting the optimal prescription strategy instead of the
optimal control policy g∗k. In this section, we construct the
prescriptions for the agent k without changing the informa-
tion structure of the system. We begin by defining the set of
agents located beyond agent k to simplify the notation.

Definition 5. For an agent k ∈ K, the set of agents beyond
k is defined as Bk := {j ∈ K : j ≥ k}.

Now we can define the information used to generate
prescriptions.

Definition 6. Let k ∈ K and Mk
t be the agent’s memory at

time t. The accessible information of agent k is defined as
the set Ak

t that takes values in the finite collection of sets
Ak

t such that

Ak
t =

k⋂
i=1

(
M i

t

)
. (7)

For example, we can write (7) for agents 1 and 2 as

A1
t = M1

t , (8)

A2
t = M1

t ∩M2
t . (9)

Based on Definition 6, the accessible information Ak
t has

the following properties:

Ak
t−1 ⊂ Ak

t , (10)

Aj
t ⊂ Ak

t , ∀j ∈ Bk, (11)

where Bk is the set of agents beyond k. Property (10)
motivates the introduction of a new term to denote the new
information added to accessible information Ak

t at time t.

Definition 7. The new information for agent k at time t is
defined as the set Zk

t that takes values in a finite collection
of sets Zk

t such that

Zk
t := Ak

t \Ak
t−1. (12)

We observe in (11) that the accessible information Aj
t of

any agent j ∈ Bk is a subset of the memory Mk
t . Thus, we

can define the inaccessible information of the agent k with
respect to the accessible information Aj

t for every j ∈ Bk.

Definition 8. The inaccessible information of agent k with
respect to accessible information Aj

t , j ∈ Bk, is defined as
the set of random variables L[k,j]

t that takes values in the
finite collection of sets L[k,j]

t such that

L
[k,j]
t := Mk

t \A
j
t . (13)

The pair of sets Aj
t and L[k,j]

t forms a partition of the set
Mk

t , such that

Mk
t = {L[k,j]

t , Aj
t}, ∀j ∈ Bk. (14)

As an example, consider a system with three agents Fig.
2. Here, we have the following relationships for agent 1:

A1
t = M1

t ,

A3
t ⊂ A2

t ⊂M1
t ,

M1
t = {A2

t , L
[1,2]
t } = {A3

t , L
[1,3]
t }. (15)

Now we use these partitions of the memory to define the
prescription function.

Definition 9. The prescription function Γ
[k,j]
t of an agent

k ∈ K for the agent j ∈ K is defined as follows

Γ
[k,j]
t :

{
L[j,k]
t −→ U j

t , if j 6∈ Bk,
L[j,j]
t −→ U j

t , if j ∈ Bk,
(16)



Fig. 2: Memory partitions of three agents.

and takes values in the set of feasible prescription functions
G

[k,j]
t .

Remark 1. In Definition 9, the inaccessible information of
agent k is defined with respect to the accessible information
Aj

t for j ∈ Bk. Note that in the first part of (16), we have
k ∈ Bj , and thus (16) holds.

Every prescription function Γ[k,j] is generated as follows

Γ
[k,j]
t :=

{
ψ
[k,j]
t (Ak

t ), if j 6∈ Bk,
ψ
[k,j]
t (Aj

t ), if j ∈ Bk,
(17)

where we call ψ[k,j]
t the prescription strategy of the agent k

for the agent j given by the mapping

ψ
[k,j]
t :

{
Ak

t −→ G
[k,j]
t , if j 6∈ Bk,

Aj
t −→ G

[k,j]
t , if j ∈ Bk.

(18)

We call ψk := (ψ[k,1], . . . ,ψ[k,K]) the prescription strat-
egy of the agent k. The set of feasible prescription strategies
for the agent k is denoted by Ψk. The complete prescription
of an agent k is defined next.

Definition 10. The complete prescription for agent k is given
by the function

Θk
t : L[1,k]

t × · · · × L[k,k]
t × L[k+1,k+1]

t × · · · × L[K,K]
t

−→ U1
t × · · · × Uk

t , (19)

which takes values in the set of functions G k
t .

The complete prescription for agent k is constructed as
Θk

t = (Γ
[k,1]
t , . . . ,Γ

[k,K]
t ).

Remark 2. The prescription Γ
[k,j]
t of agent k for agent

j is only available to agent k. The equivalent prescription
available to agent j is Γ

[j,j]
t . The relationship between the

two is given in Lemmas 3 and 4 in Section III-B.

Remark 3. Every agent needs to generate prescriptions
corresponding to every other agent in the system so that we
can define the information state in Section IV-B.

B. Properties of the Prescription Approach

In this section, we present the relationships between the
different prescriptions and control policies. The first result
states that for an agent k ∈ K we can use the complete
prescription Θk

t to generate control action Uk
t .

Lemma 1. Let agent k ∈ K and let Θk
t be its complete

prescription. For any given control policy g ∈ G, there exists
a prescription strategy ψk ∈ Ψk such that

Uk
t = Γ

[k,k]
t

(
L
[k,k]
t

)
. (20)

Proof. Due to space limitation, the proof has been omitted
but can be found in the extended version of the paper [20].

Similarly, for any prescription strategy ψk, we can con-
struct an appropriate control policy g that generates the same
control actions Uk

t for all agents in K.

Lemma 2. Let agent k ∈ K and let Θk
t be its complete

prescription. For any given prescription strategy ψk ∈ Ψk,
there exists a control policy g ∈ G such that

Uk
t = Γ

[k,k]
t (L

[k,k]
t ) = gkt (Mk

t ). (21)

Proof. Due to space limitation, the proof has been omitted
but can be found in the extended version of the paper [20].

Lemmas 1 and 2 imply that the control action Uk
t of every

agent k ∈ K generated through a prescription strategy ψk,
can also be generated through an appropriate policy g and
vice versa.

Definition 11. Given two agents k, j ∈ K, a positional
relationship from agent k to agent j is given by the function

e[j,k] : Ψk −→ Ψj . (22)

Next we show the existence of a positional relationship
e[j,k] from any agent k ∈ K to every agent j ∈ K with
desirable properties that allow us to construct optimal control
policies of all agents from the optimal prescription strategy
of just one agent. The following result establishes that using
a positional relationship e[j,k] = (e

[j,k]
1 , . . . , e

[j,k]
T ), the agent

j can derive the prescription strategy for agent i ∈ K, when
given the prescription strategy of agent k for agent i, namely

ψ
[j,i]
t := e

[j,k]
t

(
ψ
[k,i]
t

)
, ∀i ∈ K. (23)

Lemma 3. Let agent k ∈ K and agent j ∈ Bk. For any given
prescription strategy ψk of agent k, there exists a positional
relationship e[j,k] such that a prescription strategy ψj of
agent j generated using (23) yields:

1. Γ
[k,i]
t (L

[i,i]
t ) = Γ

[j,i]
t (L

[i,i]
t ), if i ∈ Bj ,

2. Γ
[k,i]
t (L

[i,i]
t ) = Γ

[j,i]
t (L

[i,j]
t ), if i ∈ Bk, i 6∈ Bj ,

3. Γ
[k,i]
t (L

[i,k]
t ) = Γ

[j,i]
t (L

[i,j]
t ), if i 6∈ Bk. (24)



Proof. Due to space limitation, the proof has been omitted
but can be found in the extended version of the paper [20].

Lemma 4. Let agents k, j ∈ K with j 6∈ Bk. For any given
prescription strategy ψk of agent k, there exists a positional
relationship e[j,k] such that a prescription strategy ψj of
agent j generated from (23) yields:

1. Γ
[k,i]
t (L

[i,i]
t ) = Γ

[j,i]
t (L

[i,i]
t ), if i ∈ Bk,

2. Γ
[k,i]
t (L

[i,k]
t ) = Γ

[j,i]
t (L

[i,i]
t ), if i ∈ Bj , i 6∈ Bk,

3. Γ
[k,i]
t (L

[i,k]
t ) = Γ

[j,i]
t (L

[i,j]
t ), if i 6∈ Bj . (25)

Proof. The proof is very similar to the proof of Lemma 3.
It is omitted due to space limitations.

To this end, we consider a positional relationship function
e[j,k] from every k ∈ K to every position j ∈ K which
satisfies the properties in Lemmas 3 and 4. This implies that
for any two agents k and j, we have the relation,

U j
t = Γ

[j,j]
t (L

[j,j]
t ) =

{
Γ
[k,j]
t (L

[j,k]
t ), if j 6∈ Bk,

Γ
[k,j]
t (L

[j,j]
t ), if j ∈ Bk.

(26)

IV. RESULTS

A. Equivalent Prescription Problems

Lemmas 1 through 4 lead to (26). This implies that the
control action U j

t for an agent j ∈ K can be equivalently
obtained through the prescription function Γ

[k,j]
t of another

agent k ∈ K, if the inaccessible information is available.
Using (26), the cost to the system at time t is given by

ct(Xt,U
1
t , . . . , U

K
t )

=: ct
(
Xt,Γ

[k,1]
t (L

[1,k]
t ), . . . ,Γ

[k,k]
t (L

[k,k]
t ),

Γ
[k,k+1]
t (L

[k+1,k+1]
t ), . . . ,Γ

[k,K]
t (L

[K,K]
t )

)
. (27)

We then reformulate Problem 1 in terms of the prescription
strategy of the agent k. The optimization problem is to select
the optimal prescription strategy ψ∗k ∈ Ψk that minimizes
the performance criterion, given by

Problem 2: J k(ψk) =

Eψ
k
[ T∑

t=0

ct
(
Xt,Γ

[k,1]
t (L

[1,k]
t ), . . . ,Γ

[k,k]
t (L

[k,k]
t ),

Γ
[k,k+1]
t (L

[k+1,k+1]
t ), . . . ,Γ

[k,K]
t (L

[K,K]
t )

)]
. (28)

The task of deriving optimal prescription strategy ψ∗k,
and subsequently, the complete prescription Θk

t for agent k
is to be achieved with access only to the memory Mk

t . This
maintains the decentralized nature of the problem as the real-
time implementation of the strategies is still decentralized.
Now, we show the equivalence between the two problems.

Lemma 5. For any agent k ∈ K, Problem 2 is equivalent
to Problem 1.

Proof. The proof follows from Lemmas 1 and 2. Due to
space limitation, the proof has been omitted but can be found
in the extended version of the paper [20].

Next, we present a state sufficient for input-output map-
ping in Problem 2 for agent k following the exposition
presented in [21].

Lemma 6. A state sufficient for input-output mapping for
agent k ∈ K is

Sk
t :=

{
Xt, L

[1,k]
t , . . . , L

[k−1,k]
t , L

[k,k]
t , . . . , L

[K,K]
t

}
. (29)

Proof. The state Sk
t satisfies the three sufficient properties:

1) There exist functions {f̂kt : t ∈ T } such that

Sk
t+1 = f̂kt (Sk

t ,Wt, V
1:K
t+1 ,Θ

k
t ). (30)

2) There exist functions {ĥkt : t ∈ T } such that

Zk
t+1 = ĥkt (Sk

t ,Θ
k
t , V

1:K
t+1 ). (31)

3) There exist functions {ĉkt : t ∈ T } such that

ct(Xt, U
1:K
t ) = ĉkt (Sk

t ,Θ
k
t ). (32)

The three equations above can each be verified by substi-
tution of variables on the LHS. The complete proof can be
found in [22].

B. The Information States

For an agent k ∈ K, in Problem 2 the system is charac-
terized by the state Sk

t , control input Θk
t , output Zk

t (with
Zk
0:t = Ak

t ) and cost ĉkt (Sk
t ,Θ

k
t ) at time t. The prescription

functions Γ
[k,j]
t , j ∈ Bk, are generated as functions of the

accessible information Aj
t . Then, we define the information

state for agent k below.

Definition 12. Let Sk
t be the state, Ak

t the accessible
information, and Θk

0:t−1 the control inputs at time t an agent
k ∈ K. The information state is defined as a probability
distribution Πk

t that takes values in the possible realizations
Pk

t := ∆(Skt ) such that,

Πk
t (skt ) := Pψ

k

(Sk
t = skt

∣∣Ak
t ,Θ

k
0:t−1). (33)

The information state Πk
t is independent from the pre-

scription strategy ψk, its evolution is Markovian, and it
is sufficient along with the prescription Θk

t to express the
expected cost to the system at time t. Thus, the information
state Πk

t evolves as a controlled Markov chain with control
inputs Θk

t . Due to space limitation, the proofs of these three
properties are omitted, but can be found in [22].

C. Structural Results

We start by presenting a structural result for agent K. The
set of agents beyond agent K is BK = {K}. Using (17), this
implies that for all agents k ∈ K, the prescription component
Γ
[K,k]
t is a function of the accessible information A[K]

t . This
leads to the structural result of the common information
approach in [16].



Lemma 7. Consider agent K. There exists an optimal
prescription strategy ψ∗K of the form

Γ
∗[K,k]
t = ψ

∗[K,k]
t (ΠK

t ), (34)

that optimizes the performance criterion (28) in Problem 2.

We know that for any two agents k ∈ K and j ∈ Bk, we
have Aj

t ⊂ Ak
t . Then, the prescription approach leads to the

following structural result, proved in [22].

Theorem 1. Consider agent k ∈ K. There exists an optimal
prescription strategy ψ∗k of the form

Γ
∗[k,j]
t (·) =

{
ψ
∗[k,j]
t (Πk

t , . . . ,Π
K
t ), if j 6∈ Bk,

ψ
∗[k,j]
t (Πj

t , . . . ,Π
K
t ), if j ∈ Bk,

(35)

that optimizes the performance criterion (28) in Problem 2.

D. A Comparison with Existing Approaches

In the existing literature, the graphical approach presented
in [23] has similarities with the prescription approach. How-
ever, it applies only to problems where agents have perfect
observations. Meanwhile, the common information approach
in [16] can be applied to the our system, but it leads to the
result in Lemma 7. Then the control action for an agent
k ∈ K is given by

U∗kt = Γ
∗[K,k]
t (L

[k,K]
t ). (36)

In contrast, we see that when we consider Problem 2 for
agent k, the control action of agent k is given by

U∗kt = Γ
∗[k,k]
t (L

[k,k]
t ). (37)

Now, from (14), we note that,

Ak
t ∪ L

[k,k]
t = AK

t ∪ L
[k,K]
t , (38)

and from (11) we have the relation,

AK
t ⊂ Ak

t , (39)

because K ∈ Bk for all k ∈ K. Then, (38) and (39) imply,

L
[k,k]
t ⊂ L[k,K]

t . (40)

Thus, the prescription functions generated through Theo-
rem 1 have an an equal or smaller domain when compared
with those generated through Lemma 10.

V. CONCLUSIONS

In this paper, we introduce a network of agents with
a word-of-mouth communication structure, and analyze it
using the prescription approach, which yielded some desired
properties. We showed that the structural result derived
through the common information approach can be considered
as the outcome of one reformulations using the prescription
approach. Finally, we provided, without proof, a preliminary
structural result arising from the prescription approach. A
direction for future research should seek to extend these
results for a broader class of decentralized systems.
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