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Abstract— In earlier work, a decentralized optimal control
framework was established for coordinating online connected
and automated vehicles (CAVs) in merging roadways, urban
intersections, speed reduction zones, and roundabouts. The
dynamics of each vehicle were represented by a double in-
tegrator and the Hamiltonian analysis was applied to derive an
analytical solution that minimizes the L2-norm of the control
input. However, the analytical solution did not consider the
rear-end collision avoidance constraint. In this paper, we derive
a complete, closed-form analytical solution that includes the
rear-end safety constraint in addition to the state and control
constraints. We augment the double integrator model that rep-
resents a vehicle with an additional state corresponding to the
distance from its preceding vehicle. Thus, the rear-end collision
avoidance constraint is included as a state constraint. The
effectiveness of the solution is illustrated through simulation.

I. INTRODUCTION

We are currently witnessing an increasing integration of
our energy, transportation, and cyber networks, which, cou-
pled with the human interactions, is giving rise to a new level
of complexity in the transportation network. As we move to
increasingly complex [1] emerging mobility systems, new
control approaches are needed to optimize the impact on
system behavior of the interplay between vehicles at different
transportation scenarios, e.g., intersections, merging road-
ways, roundabouts, speed reduction zones. These scenarios
along with the driver responses to various disturbances are
the primary sources of bottlenecks that contribute to traffic
congestion. More recently, a study [2] indicated that transi-
tioning from intersections with traffic lights to autonomous
intersections, where vehicles can coordinate and cross the
intersection without the use of traffic lights, has the potential
of doubling capacity and reducing delays.

Several research efforts have been reported in the literature
proposing either centralized or decentralized approaches on
coordinating CAVs at intersections. Dresner and Stone [3]
proposed the use of the reservation scheme to control a single
intersection of two roads with vehicles traveling with similar
speed on a single direction on each road. Some approaches
have focused on coordinating vehicles at intersections to
improve the travel time. Kim and Kumar [4] proposed an
approach based on model predictive control that allows each
vehicle to optimize its movement locally in a distributed
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manner with respect to any objective of interest. Colombo
and Del Vecchio [5] constructed the invariant set for the
control inputs that ensure lateral collision avoidance. Previ-
ous work has also focused on multi-objective optimization
problems for intersection coordination, mostly solved as a
receding horizon control problem, in either centralized or
decentralized approaches [4], [6]–[9]. For instance, Campos
et al. [10] applied a receding horizon framework for a de-
centralized solution for autonomous vehicles driving through
traffic intersections. Qian et al. [9] proposed to solve the
intersection coordination problem in two levels, where vehi-
cles coordination was handled based on predefined priority
scheme at the upper level, and each vehicle solved its own
multi-objective optimization problem at the lower level. A
detailed discussion of the research efforts in this area that
have been reported in the literature to date can be found in
[11].

Coordinating CAVs at an urban intersection generally
involves a two-level joint optimization problem: (1) an
upper level vehicle coordination problem which specifies
the sequence that each CAV crosses the intersection [12]
and (2) a lower level optimal control problem in which
each CAV derives its optimal acceleration/deceleration, in
terms of energy, to cross the intersection. In earlier work,
a decentralized optimal control framework was established
for coordinating online CAVs in different transportation
scenarios, e.g., merging roadways, urban intersections, speed
reduction zones, and roundabouts. The analytical solution
using a double integrator model, without considering state
and control constraints, was presented in [13], [14], and [15]
for coordinating online CAVs at highway on-ramps, in [16]
at two adjacent intersections, and in [17] at roundabouts.
The solution of the unconstrained problem was also validated
experimentally at the University of Delaware’s Scaled Smart
City using 10 robotic cars [18] in a merging roadway
scenario. The solution of the optimal control problem con-
sidering state and control constraints was presented in [19] at
an urban intersection, without considering rear-end collision
avoidance constraint though. The conditions under which the
rear-end collision avoidance constraint never becomes active
were discussed in [20].

In this paper, we consider that the sequence that each
CAV crosses the intersection is given and we focus only
on the lower level optimal control problem. We derive
a complete, closed-form analytical solution that includes
the rear-end safety constraint in addition to the state and
control constraints of the lower level problem. We augment
the double integrator model that represents a vehicle with



an additional state corresponding to the distance from its
preceding vehicle. Thus, the rear-end collision avoidance
constraint is included as a state constraint. Furthermore, we
allow the safe distance between two vehicles to be a function
of the vehicle’s speed.

The structure of the paper is organized as follows. In
Section II, we review the problem of vehicle coordination at
an urban intersection and provide the modeling framework.
In Section III, we derive the analytical, closed form solution.
In Section IV, we validate the effectiveness of the analytical
solution through simple driving scenarios. Finally, we offer
concluding remarks in Section V.

II. PROBLEM FORMULATION

A. Vehicle Model, Constraints, and Assumptions

We consider a single urban intersection (Fig. 1). The
region at the center of the intersection, called merging zone,
is the area of potential lateral collision of the vehicles. The
intersection has a control zone and a coordinator that can
communicate with the vehicles traveling inside the control
zone. Note that the coordinator is not involved in any
decision on the vehicle. The distance from the entry of the
control zone until the entry of the merging zone is L, and it
is assumed to be the same for all entry points of the control
zone. Note that the L could be in the order of hundreds
of m depending on the coordinator’s communication range
capability, while S is the length of a typical intersection.

Let N(t) ∈ N be the number of CAVs inside the control
zone at time t ∈ R+ and N (t) = {1, . . . , N(t)} be a
queue which designates the order in which these vehicles
will be entering the merging zone. Let tfi be the assigned
time for vehicle i to exits the control zone. There is a
number of ways to assign tfi for each CAV i. For example,
we may impose a strict first-in-first-out queueing structure,
where each vehicle must enter the merging zone in the
same order it entered the control zone. The policy through
which the “schedule” is specified is the result of a higher
level optimization problem. This policy, which determines
the time tfi that each CAV i exits the control zone, can
aim at maximizing the throughput at the intersection while
ensuring that the lateral collision avoidance constraint never
becomes active. Once the desired tfi for each CAV i is
determined, it is stored in the coordinator and is not changed.
On the other hand, for each CAV i, deriving the optimal
control input (minimum acceleration/deceleration) to achieve
the target tfi can aim at minimizing its fuel consumption
[21] while ensuring that the rear-end collision avoidance
constraint never becomes active.

In what follows, we assume that a scheme for determining
tfi (upon arrival of CAV i) is given, and we will focus on a
lower level control problem that will yield for each CAV the
optimal control input (acceleration/deceleration) to achieve
the assigned tmi subject to the state, control, and rear-end
collision avoidance constraints.

Fig. 1: An urban intersection with connected and automated
vehicles.

B. Vehicle Model and Constraints

We consider a number of CAVs N(t) ∈ N, where t ∈ R
is the time, that enter the control zone. We represent the
dynamics of each vehicle i ∈ N (t), with a state equation

ẋi = f(t, xi, ui), xi(t
0
i ) = x0i , (1)

where t ∈ R+ is the time, xi(t), ui(t) are the state of the
vehicle and control input, t0i is the time that vehicle i enters
the control zone, and x0i is the value of the initial state. We
assume that the dynamics of each vehicle are

ṗi = vi(t)

v̇i = ui(t)

ṡi = ξi · (vk(t)− vi(t))
(2)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the
position, speed and acceleration/deceleration (control input)
of each vehicle i inside the control zone; si(t) ∈ Si, si(t) =
pk(t) − pi(t) denotes the distance of vehicle i from the
vehicle k which is physically immediately ahead of i, and
ξi is a reaction constant of the vehicle. The sets Pi, Vi, Ui,
and Si, i ∈ N (t), are complete and totally bounded subsets
of R.

Let xi(t) = [pi(t) vi(t) si(t)]
T denote the state of each

vehicle i, with initial value x0i =
[
p0i v

0
i s

0
i

]T
, where p0i =

pi(t
0
i ) = 0 at the entry of the control zone, taking values in

Xi = Pi×Vi. The state space Xi for each vehicle i is closed
with respect to the induced topology on Pi × Vi and thus,
it is compact. We need to ensure that for any initial state
(t0i , x

0
i ) and every admissible control u(t), the system (1)

has a unique solution x(t) on some interval [t0i , t
f
i ], where

tfi is the time that vehicle i ∈ N (t) exits the control zone.
The following observations from (1) satisfy some regularity
conditions required both on f and admissible controls u(t)



to guarantee local existence and uniqueness of solutions for
(1): a) The function f is continuous in u and continuously
differentiable in the state x, b) The first derivative of f in x,
fx, is continuous in u, and c) The admissible control u(t) is
continuous with respect to t.

To ensure that the control input and vehicle speed are
within a given admissible range, the following constraints
are imposed.

ui,min ≤ ui(t) ≤ ui,max, and

0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ],

(3)

where ui,min, ui,max are the minimum deceleration and
maximum acceleration for each vehicle i ∈ N (t), and
vmin, vmax are the minimum and maximum speed limits
respectively.

To ensure the absence of rear-end collision of two con-
secutive vehicles traveling on the same lane, the position
of the preceding vehicle should be greater than or equal to
the position of the following vehicle plus a predefined safe
distance δi(t). Thus we impose the rear-end safety constraint

si(t) = ξi · (pk(t)− pi(t)) ≥ δi(t), ∀t ∈ [t0i , t
f
i ], (4)

where k is some vehicle which is physically immediately
ahead of i in the same lane. We relate the minimum safe
distance δi(t) as a function of speed vi(t),

δi(t) = γi + ρi · vi(t), ∀t ∈ [t0i , t
f
i ], (5)

where γi is the standstill distance, and ρi is minimum time
gap that vehicle i would maintain while following another
vehicle.

Once the time tfi that each vehicle i ∈ N (t) will be exiting
the control zone is assigned, the problem for each vehicle is
to minimize the cost functional Ji(u(t)), which is the L2-
norm of the control input in [t0i , t

f
i ]

min
u(t)∈Ui

Ji(u(t)) =
1

2

∫ tfi

t0i

u2i (t) dt, (6)

subject to : (2), (3), (4),

and given t0i , v0i , si(t0i ) = s0i , pi(t0i ) = 0, pi(t
f
i ) = L+ S, tfi .

III. ANALYTICAL SOLUTION OF THE OPTIMAL CONTROL
PROBLEM

Let Si(t, x(t)) be the vector of the constraints in (6) which
do not explicitly depend on u(t) [22],

Si

(
t, x(t)

)
=

vi(t)− vmax

vmin − vi(t)
δi(t)− si(t)

 .
Since Si(t) ≤ 0 is satisfied for all t ∈ [t0i , t

f
i ], it follows that

Ṡ(t) =≤ 0.

Thus, the Hamiltonian becomes

Hi

(
t, pi(t), vi(t), si(t), ui(t)

)
=

1

2
u(t)2i + λpi · vi(t) + λvi · ui(t) + λsi · ξi · (vk(t)− vi(t))

+µa
i · (ui(t)− umax) + µb

i · (umin − ui(t))
+µc

i · ui(t)− µd
i · ui(t)

+µs
i · (ρi · ui(t)− ξi

(
vk(t)− vi(t)

)
), (7)

where λpi , λvi , and λsi are the influence functions [22], and
µT is the vector of the Lagrange multipliers.

For each i ∈ N (t), the Euler-Lagrange equations are

λ̇pi (t) = −
∂Hi

∂pi
= 0, (8)

λ̇vi (t) = −
∂Hi

∂vi
= −(λpi − λ

s
i · ξi + µs

i · ξi), (9)

λ̇si (t) = −
∂Hi

∂si
= 0, (10)

∂Hi

∂ui
= ui(t) + λvi + µa

i − µb
i + µc

i − µd
i + µs

iρi = 0, (11)

with boundary conditions

pi(t
0
i ) = p0i , vi(t

0
i ) = v0i , si(t

0
i ) = s0i ,

pi(t
f
i ) = L+ S, λvi (t

f
i ) = 0, λsi (t

f
i ) = 0, (12)

where λvi (t
f
i ) = λsi (t

f
i ) = 0 since the states vi(t

f
i ) and si(t

f
i )

are not prescribed at tfi [22].
To address this problem, the constrained and unconstrained

arcs will be pieced together to satisfy the Euler-Lagrange
equations and necessary condition of optimality. Based on
our state and control constraints (3), (4) and boundary
conditions, the optimal solution is the result of different
combinations of the following possible arcs.

1) Inequality State and Control Constraints are not Ac-
tive: In this case, we have µa

i = µb
i = µc

i = µd
i = µe

i = 0.
Applying the necessary condition (11), the optimal control
can be given

ui(t) + λvi = 0, i ∈ N (t). (13)

From (8), (9), and (10) we have λpi (t) = ai, λsi (t) = bi,
and λvi (t) = −

(
(ai − bi · ξi) · t + ci

)
. The coefficients

ai, bi, and ci are constants of integration corresponding
to each vehicle i. From (13) the optimal control input
(acceleration/deceleration) as a function of time is given by

u∗i (t) = (ai − bi · ξi) · t+ ci, ∀t ≥ t0i . (14)

Substituting the last equation into (2) we find the optimal
speed and position for each vehicle, namely

v∗i (t) =
1

2
(ai − bi · ξi) · t2 + ci · t+ di, ∀t ≥ t0i , (15)

p∗i (t) =
1

6
(ai − bi · ξi) · t3 +

1

2
ci · t2 + di · t+ ei, ∀t ≥ t0i ,

(16)

where di and ei are constants of integration. The constants
of integration ai, ci, di, and ei are computed at each time



t, t0i ≤ t ≤ tfi , using the values of the control input, speed,
and position of each vehicle i at t, the position pi(t

f
i ), and

the values of the one of terminal transversality condition, i.e.,
λvi (t

f
i ). Since the terminal cost, i.e., the control input, at tfi

is zero, we can assign λvi (t
f
i ) = 0.

2) The State Constraint si(t) = δ(t) Becomes Active:
Suppose vehicle i ∈ N (t) starts from a feasible state and
control at t = t0i and at some time t = t1 ≤ tfi , si(t1) =
δ(t1) while vmin < vi(t1) < vmax and ui,min < ui(t1) <
ui,max. In this case, µs

i 6= 0.
Let Ni(t, x(t)) = γi+ρiv

∗
i (t1)−ξip∗k(t1)+ξip∗i (t1). Then,

we have

Ni(t, x(t)) = γi+ρiv
∗
i (t1)−ξi(p∗k(t1)+p∗i (t1)) = 0, (17)

which represents a terminal constraint for the state si(t) in
t ∈ [t0i , t1]. Since Ni(t1, x(t1)) = 0, its first derivative should
vanish

Ṅi(t1, x(t1)) = ρiu
∗
i (t1)− ξi(v∗k(t1)− v∗i (t1)) = 0, (18)

from which we derive the value of the optimal control at
t = t+1

u∗i (t
+
1 ) =

ξi(v
∗
k(t

+
1 )− v∗i (t

+
1 ))

ρi
. (19)

From (14) and (19), we note that the optimal control
input is not continuous at t1, hence the junction point at
t1 is a corner. The boundary conditions at the corner for the
influence fundtions are

λTi (t
−
1 ) = λTi (t

+
1 ) + πi

∂Ni(t, x(t))

∂x(t)
. (20)

The transversality condition is

λTi (t
−
1 )ẋ(t

−
1 ) = λTi (t

+
1 )ẋ(t

+
1 )− πi

∂Ni(t, x(t))

∂t1
, (21)

where πi is a Lagrange multiplier constant. The influence
functions, λTi (t

+
1 ), at t+1 , the entry time t1, and the Lagrange

multipllier πi constitute 3+1+1 quantities that are determined
so as to satisfy (17), (20), and (21). Note, the values of
the influence functions λTi (t

−
1 ) at t−1 are known from the

unconstrained arc in [t0i , t1], i.e., λpi (t
−
1 ) = αi, λvi (t

−
1 ) =

−u∗i (t
−
1 ), λ

s
i (t
−
1 ) = βi, and the state variables are continuous

at the junction point, t1, i.e., pi(t−1 ) = pi(t
+
1 ), vi(t

−
1 ) =

vi(t
+
1 ), si(t

−
1 ) = si(t

+
1 ). The unconstrained and constrained

arcs are pieced together to determine the 3+1+1 quantities
above along with the constants of integration in (14)-(16)
while the Hamiltonian at the corner is Hi(t

−
1 ) = Hi(t

+
1 ) −

πi
∂Ni(t,x(t))

∂t1
.

For the optimal control of the constrained arc, δi(t) −
si(t) ≤ 0, we have the following two cases to consider:
(a) when the speed, vk(t), of the preceding vehicle k is
decreasing, and (b) when the speed, vk(t), of the preceding
vehicle k is either increasing or it is constant.

a) The speed, vk(t), of the preceding vehicle k is
decreasing: Case 1: The exit point t2 leads to the arc
ui,min − ui(t) ≤ 0. Next, we consider the case that the exit
point t2 of the constrained arc, δi(t) − si(t) ≤ 0, leads to
the arc ui,min − ui(t) ≤ 0. It follows that

u∗i (t) = ui,min, t ∈ [t2, t3], (22)

where t3 is the exit point of the arc ui,min − ui(t) ≤ 0. By
integrating (22) we have

v∗i (t) = ui,min · t+ hi, t ∈ [t2, t3], (23)

p∗i (t) = ui,min ·
t2

2
+ hit+ qi, t ∈ [t2, t3], (24)

where hi and qi are constants of integration. For the exit
point t3 of this arc, we have the following result.

If vehicle i remains at the constrained arc, ui,min−ui ≤ 0,
until tfi , then we use the interior constraints and boundary
conditions from which we can compute t2, and the constants
of integrations hi and qi. If, however, at some time t = t3,
vehicle i exits the constrained arc, ui,min − ui(t) ≤ 0, and
enters the arc vmin−vi(t) ≤ 0, then it follows that u∗i (t) = 0,
for all t ∈ [t3, t

f
i ], and the optimal speed and position of i

are

v∗i (t) = vmin, t ∈ [t3, t
f
i ], (25)

p∗i (t) = vmin t+ ri, t ∈ [t3, t
f
i ], (26)

where ri is a constant of integration. In this case, we piece
together the unconstrained with the two constrained arcs,
ui,min − ui(t) ≤ 0 and vmin − vi(t) ≤ 0, to satisfy the
interior constraints and boundary conditions from which we
can compute t2, t3 and the constants of integration hi, qi,
and ri.

Case 2: The exit point t2 leads to the arc vmin − vi(t) ≤
0. Next, we consider the case that the exit point t2 of
the constrained arc, δi(t) − si(t) ≤ 0, leads to the arc
vmin − vi(t) ≤ 0. It follows that u∗i (t) = 0, for all t ∈
[t2, t

f
i ], and the optimal speed and position of the vehicle

are given by (25) and (26). From the interior constraints and
boundary conditions, we can compute t2, and the constant
of integration ri.

b) The speed, vk(t), of the preceding vehicle k is either
increasing or it is constant: The unconstrained arc for all
t ∈ [t2, t

f
i ], consists of a set of equations as in (14) - (16)

for the optimal control, speed, and position of vehicle i, i.e.,
u∗i (t) = a′i · t+ c′i, v

∗
i (t) =

1
2a
′
i · t2 + c′i · t+ d′i, and p∗i (t) =

1
6a
′
i · t3 + 1

2c
′
i · t2 + d′i · t+ e′i, where a′i, c

′
i, d
′
i, and e′i, are

constants of integration that can be computed along with t2
from the interior constraints and boundary conditions.

Similar results are obtained for the remaining cases. To
derive the analytical solution of (6), we first start with the
unconstrained arc and derive the solution using (14) - (16). If
the solution violates any of the state or control constraints,
then the unconstrained arc is pieced together with the arc
corresponding to the violated constraint, and we re-solve the
problem with the two arcs pieced together. The two arcs yield
a set of algebraic equations which are solved simultaneously



using the boundary conditions of (6) and interior conditions
between the arcs. If the resulting solution, which includes
the determination of the optimal switching time from one
arc to the next one, violates another constraint, then the last
two arcs are pieced together with the arc corresponding to the
new violated constraint, and we re-solve the problem with the
three arcs pieced together. The three arcs will yield a new set
of algebraic equations that need to be solved simultaneously
using the boundary conditions of (6) and interior conditions
between the arcs. The resulting solution includes the optimal
switching time from one arc to the next one. The process
is repeated until the solution does not violate any other
constraints.

IV. SIMULATION RESULTS

To validate the effectiveness of the analytical solution for
real-end collision avoidance, we created a simple driving
scenario in MATLAB. The length of the control zone is 300
m. The following vehicle i is located at the entry of the
control zone (Fig. 1) with the initial speed of 14 m/s. At
the time that vehicle i enters the control zone, the leading
vehicle k has a speed of 11.5 m/s and is located at 20 m
(inside the control zone). In this analysis, we set -1 m/s2

and 1 m/s2 as the minimum and maximum acceleration.
For simplification, we set the final time for vehicle i is 26
s. We analyzed three cases with different leading vehicle
acceleration profiles to test the effectiveness of our model.
For comparison, we also include the scenario when the safety
constraint is not considered in the optimization model.

A. Case 1: constant acceleration of leading vehicle

In this case, we consider constant speed of leading vehicle
k. We see that in Fig. 2a, if the safety constraint is not
incorporated in the optimization model, linear acceleration
profile is yielded, however, the following distance of vehicle
i violates the minimum safety distance. Two vehicles get too
close to each other, which creates an extremely unsafe driv-
ing situation. Considering the safety constraint, the optimal
acceleration profile is presented in Fig. 2b. We observe three
arcs in the optimal acceleration profile, before t1 = 3.1 s, the
safety constraint is not violated, vehicle i decelerates with a
much lower acceleration than the recommended acceleration
without safety constraint. At t1 = 3.1 s, safety constraint is
violated, vehicle i enters the constrained arc at t1 = 3.1 s
and leaves constrained arc at t2 = 6.5 s.

B. Case 2: linearly decreasing acceleration of leading vehi-
cle

In this case, we consider a decreasing acceleration profile
of vehicle k with a positive initial acceleration. Similar
to case 1, the safety constraint is activated. By piecing
together the unconstrained and constrained arcs, the results
corresponding to the closed form analytical solution are
shown in Fig. 3. Before the entry time at t1 = 2.9 s, vehicle i
travels with a linearly decreasing acceleration until the safety
constraint is activated (i.e., si(t)− δ(t) = 0). Since vehicle i
keeps decelerating and vehicle k keeps accelerating, vehicle

(a) Results without safety constraint

(b) Results with safety constraint

Fig. 2: Optimization results for case 1.

Fig. 3: Optimization results for case 2.

i exits the constraint arc at t2 = 5.3 s, when the second
unconstrained arc starts.

C. Case 3: linearly increasing acceleration of leading vehi-
cle

In this case, we consider an increasing acceleration profile
of the leading vehicle k with a negative initial acceleration.
With the same initial speed setup, vehicle i hits the con-
strained arc around similar time at t1 = 3.0 s. However,
since the speed of vehicle k keeps reducing until t = 10.0
s, vehicle i has to decelerate for a longer time to keep the
minimum safe distance with vehicle k. After t = 10.0 s,



Fig. 4: Optimization results for case 3.

vehicle i is not able to leave the constrained arc due to
the following reason: vehicle i needs higher acceleration to
meet the pre-defined final time, however, the acceleration of
vehicle i is limited by the acceleration of vehicle k due to
safety constraint. In case 3, we see that vehicle i keeps the
minimum safe following distance with vehicle k until the
time vehicle k exits the control zone. However, if everything
remains unchanged while vehicle k decelerates harder, it is
foreseeable that the final time of 26 s is not feasible under
current scenario settings.

V. CONCLUDING REMARKS AND DISCUSSION

In this paper, we derived a closed-form analytical solution
that includes the rear-end safety constraint in addition to the
state and control constraints. We augmented the double inte-
grator with an additional state corresponding to the distance
of a vehicle from its preceding vehicle. Thus, we included the
rear-end collision avoidance constraint as a state constraint
while allowing the safe distance between the vehicles to be
a function of the vehicle’s speed. The proposed framework
is limited to the lower-level individual vehicle operation
control, which did not consider the upper-level vehicle coor-
dination problem that designates the sequence that each CAV
crosses the merging zone. Ongoing work considers the upper-
level problem that results in maximizing the throughput of
the intersection and satisfies collision avoidance constraints
inside the merging zone. While the potential benefits of full
penetration of CAVs to alleviate traffic congestion and reduce
fuel consumption have become apparent, different penetra-
tions of CAVs can alter significantly the efficiency of the
entire system. Therefore, future research should investigate
the implications of different penetration of CAVs.
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