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Abstract— In this paper, we consider the problem of opti-
mizing the worst-case behavior of a partially observed system.
All uncontrolled disturbances are modeled as finite-valued
uncertain variables. Using the theory of cost distributions, we
present a dynamic programming (DP) approach to compute
a control strategy that minimizes the maximum possible total
cost over a given time horizon. To improve the computational
efficiency of the optimal DP, we introduce a general definition
for information states and show that many information states
constructed in previous research efforts are special cases of
ours. Additionally, we define approximate information states
and an approximate DP that can further improve computational
tractability by conceding a bounded performance loss. We
illustrate the utility of these results using a numerical example.

I. INTRODUCTION

In engineering applications, it is common for an agent
to operate with limited knowledge of the system state and
uncertain system dynamics [1]. This decision-making chal-
lenge is typically modeled as a stochastic control problem,
where the agent computes a control strategy to minimizes
an expected total cost across a time horizon given a prior
probability distribution for all uncertainties. This approach
has also been utilized in reinforcement learning [2] and
decentralized systems [3]. However, the expected total cost
may not be an adequate measure of performance in all
situations. In fact, many applications require guarantees on a
system’s worst-case performance, for example: (1) control of
systems under attack from an adversary, like cyber-security
systems [4], and (2) control of systems where a single
event of failure can be damaging, like water reservoirs [5].
Furthermore, the performance of a stochastic control strategy
degrades rapidly with a mismatch between the assumed
prior distribution and the actual underlying distribution [6].
Consequently, stochastic models are unsuitable for strategy
computation when prior distributions are ambigious.

For such applications, we can instead utilize a non-
stochastic formulation, where the agent only has access to
the feasible sets for all uncertainties, without knowledge of
probability distributions. This non-stochastic approach has
been utilized in robust control [7]–[9], information theory
[10], [11], reinforcement learning [12], [13], and decen-
tralized systems [14], [15]. In this paper, we focus on a
centralized non-stochastic control problem where an agent
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seeks a control strategy to minimize a maximum possible
cost over a finite-time horizon. It is known that the optimal
strategy in such problems can be computed with an offline
dynamic program (DP) [8]. However, the growth in the
agent’s memory with time makes this challenging because
the agent’s action is a function of the memory and thus,
the DP requires solving one optimization problem at each
time for each possible realization of the memory. Using
an information state can address this challenge. Two well
known non-stochastic information states are the conditional
range for terminal cost problems [16], [17] and the maximum
cost-to-come for additive cost problems [7], [8]. In robust
stochastic problems [18] concerns of partial observation
have also been addressed using a conditional range [19].
Generalized approximate information states for terminal cost
problems were developed in [20]. However, to the best of our
knowledge, there is no notion of approximate information
states for non-stochastic additive cost problems.

The main contributions of this paper are: (1) for additive
cost problems, we introduce general information states to
compute an optimal strategy (Theorem 2), and (2) we define
approximate information states to compute an approximate
strategy with a bounded performance loss (Theorems 3 - 4).

The remainder of the paper proceeds as follows. In Section
II, we present our model. In Section III, we define infor-
mation states and the corresponding DP. In Section IV, we
define approximate information states, the approximate DP,
and derive performance bounds. In Section V, we present a
numerical example to illustrate our results. Finally, in Section
VI, we draw concluding remarks and discuss ongoing work.

II. MODEL

A. Notation and Preliminaries

We use the non-stochastic framework of uncertain vari-
ables from [10]. For a sample space Ω and a set X , an
uncertain variable is a mapping X : Ω → X written
concisely as X ∈ X . For any ω ∈ Ω, its realization is
X(ω) = x ∈ X . The marginal range of an uncertain
variable X is the set [[X]] := {X(ω) | ω ∈ Ω}. The joint
range of two uncertain variables X ∈ X and Y ∈ Y is
[[X,Y]] := {(X(ω),Y(ω)) | ω ∈ Ω}. The conditional range
of X given a realization y of Y is [[X|y]] := {X(ω) | Y(ω) =
y, ω ∈ Ω}, and [[X|Y]] := {[[X|y]] | y ∈ [[Y]]}. Next,
consider two compact, nonempty subsets X ,Y of a metric
space (S , d), where d(·, ·) is the metric. Then, the Hausdorff
distance [21, Chapter 1.12] between the sets is H(X ,Y ):=
max{maxx∈X miny∈Y d(x, y),maxy∈Y minx∈X d(x, y)}.
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B. Problem Formulation

We consider an agent who controls the evolution of a
system over T ∈ N discrete time steps. At any time t =
0, . . . , T , the system is denoted by an uncertain variable
Xt ∈ X and the agent’s action is denoted by an uncertain
variable Ut ∈ U . At each t, the system also receives an
uncontrolled disturbance Wt ∈ W . Starting with an initial
state X0 ∈ X , the state evolves as Xt+1 = ft (Xt, Ut,Wt)
for all t = 0, . . . , T − 1. Before selecting the control action
at each t, the agent partially observes the system state as
Yt = ht(Xt, Nt) ∈ Y , where Nt ∈ N is a noise.

Remark 1. We denote generic uncertain variables by sans-
serif upper case alphabets X ∈ X and Y ∈ Y , whereas,
we denote the state and observation at any t by italicized
upper-case alphabets Xt ∈ X and Yt ∈ Y , respectively.

At each t = 0, . . . , T , the agent stores the history of
observations and control actions in their memory, denoted
by Mt := (Y0:t, U0:t−1) ∈ Mt, where Y0:t := (Y0, . . . , Yt).
Then, the agent selects an action Ut = gt(Mt) using a control
law gt : Mt → U and incurs a cost ct(Xt, Ut) ∈ R≥0. We
denote the control strategy by g := (g0, . . . , gT ) ∈ G and
measure its performance using the worst-case criterion:

J (g) := max
x0∈X ,n0:T∈NT ,

w0:T−1∈WT−1

T∑
t=0

ct(Xt, Ut). (1)

In (1), we maximize the total cost over all feasible real-
izations of the uncontrolled inputs, i.e., initial state X0,
noises {Nt | t = 0, . . . , T}, and disturbances {Wt | t =
0, . . . , T − 1} because they determine all other variables in
the system. Next, we state the agent’s optimization problem.

Problem 1. We seek to efficiently compute an optimal strat-
egy g∗ = argming∈G J (g), given the sets {X ,U ,Y,W,N}
and the functions {ft, ht, ct | t = 0, . . . , T}.

We impose the following assumptions on our model:

Assumption 1. Each uncontrolled input is independent (see
[10, Definintion 2.1]) of all other uncontrolled inputs.

Assumption 1 ensures that the system evolution is Marko-
vian in a non-stochastic sense (see [10, Definintion 2.2]).
This assumption will help develop our results.

Assumption 2. Each feasible set {X ,U ,Y,W,N} is a finite
subset of a metric space (S, d).

Assumption 2 ensures that all extrema are well defined
and that an optimal solution to Problem 1 exists. We will
use the metric d(·, ·) in Section IV to quantify the distance
between two elements in any set.

Assumption 3. All uncertain variables and the cost
ct(Xt, Ut) have a finite maximum value at each t.

Assumption 3, in addition to the finiteness of all feasible
sets, ensures that the functions {ft, ht, ct | t = 0, . . . , T} are
globally Lipschitz . To this end, we will denote the Lipschitz
constant of a function ft by Lft ∈ R≥0.

III. DYNAMIC PROGRAMS AND INFORMATION STATES

In this section, we first present a standard terminal cost DP
which can obtain the optimal strategy in Problem 1. Then,
in Subsection III-B, we construct a DP which is specialized
to the additive cost criterion in (1), and in Subsection III-
C, we define information states to simplify it. To begin,
we transform Problem 1 into a terminal cost problem by
augmenting the state Xt at each t with the accrued cost

At :=

t−1∑
ℓ=0

cℓ(Xℓ, Uℓ), (2)

which takes values in a finite set At ⊂ R≥0. Starting with
A0 := 0, the accrued cost evolves as At+1 = At+ct(Xt, Ut)
for all t = 0, . . . , T − 1. Thus, the augmented state (Xt, At)
evolves as a controlled Markov chain. Furthermore, note that
the performance criterion (1) can be written as a function
of the terminal augmented state (XT , AT ), i.e., J (g) =
maxx0,n0:T ,w0:T−1

(
cT (XT , UT ) + AT

)
. This construction

yields a terminal cost optimization problem in g ∈ G, where
the optimal strategy can be computed using a memory based
terminal cost DP [20], as follows. For all mt ∈ Mt and
ut ∈ U , for all t = 0, . . . , T−1, we define the value functions

Qtm
t (mt, ut) := max

mt+1∈[[Mt+1|mt,ut]]
V tm
t+1(mt+1), (3)

V tm
t (mt) := min

ut∈U
Qtm

t (mt, ut), (4)

where, at time T , Qtm
T (mT , uT):=maxaT ,xT∈[[AT ,XT |mT ,uT ]](

cT (xT , uT )+aT
)

and V tm
T (mT ) := minuT∈U QT (mT , uT ).

The control law at each t is gtm
t (mt) := argminut∈U

Qt(mt, ut). Using standard arguments, we can conclude that
the resulting control strategy gtm = (gtm

0 , . . . , g
tm
T ) is an

optimal solution to the terminal cost problem as well as
Problem 1 [16]. However, note that the right hand side
(RHS) of (4) involves solving a minimization problem for
each possible realization mt ∈ Mt, at each t. The number
of possible realizations |Mt| increases with time as the
agent receives more observations, and consequently, the DP
requires a large number of computations for a longer horizon
T . To address this, we formulate a DP specialized for
additive cost problems in Subsection III-B and simplify it
using information states in Subsection III-C. We will show
(Remark 2) that the specialized DP allows us to define more
computationally efficient information states than (3) - (4). To
this end, we present a theory of cost distributions in the next
subsection which is required to construct the specialized DP.

A. Cost distributions

In this subsection, we develop the mathematical frame-
work of cost distributions for finite uncertain variables. Cost
distributions were originally defined for (max,+) algebra
[22], and applied to robust control problems [8], [9] in-
dependently from the framework of uncertain variables. A
cost distribution is a non-stochastic analogue of a probability
distribution. Specifically, for a finite sample space Ω with
a sigma algebra B(Ω), a cost distribution is a function
q : B(Ω) → {−∞} ∪ (−∞, 0] satisfying the properties: (1)
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q(Ω) = 0, (2) q(∅) = −∞, and (3) q(B) = maxω∈B q(ω)
for all B ∈ B(Ω), where, by convention, the maximum over
an empty set is −∞. Furthermore, for two sets B1, B2 ∈
B(Ω) with q(B2) > −∞, the conditional cost distribution
of B1 given B2 is q(B1|B2) := q(B1, B2) − q(B2),
where q(B1, B2) = maxω∈B1∩B2 q(ω). Next, we extend this
definition to include finite uncertain variables.

Definition 1. Let X : Ω → X and Y : Ω → Y be
two finite uncertain variables. The cost distribution for any
realization x ∈ X is q(x) := maxω∈{Ω|X(ω)=x} q(ω), and
that for any x ∈ X given a realization y ∈ Y with
q(y) > −∞ is q(x|y) = q(x, y) − q(y), where q(x, y) =
maxω∈{Ω|X(ω)=x,Y (ω)=y} q(ω).

Any cost distribution given by Definition 1 satisfies the
following useful properties.

Lemma 1. Let (Ω,B(Ω)) have a cost distribution q :
B(Ω) → {−∞}∪(−∞, 0]. Let X : Ω → X and Y : Ω → Y
be two finite uncertain variables and let f : X → Y such
that Y = f(X) and f−1(y) ̸= ∅ for all y ∈ Y . Then,

q(y) = max
x∈{X |f(x)=y}

q(x), ∀y ∈ Y , (5)

and furthermore, for any function g : Y → R≥0,

max
x∈X

(
g(f(x)) + q(x)

)
= max

y∈Y

(
g(y) + q(y)

)
. (6)

Proof. Using Definition 1, q(y) = maxω∈{Ω|Y(ω)=y} q(ω),
where {Ω | Y(ω) = y} = ∪x∈{X |f(x)=y}{Ω | X(ω) = x}.
This implies that q(y) = maxx∈{X |f(x)=y} maxω∈{Ω|X(ω)=x}
q(ω) = maxx∈{X |f(x)=y} q(x), where, in the second
equality, we used Definition 1. This proves (5). Next,
we use (5) in the RHS of (6) as maxy∈Y (g(y) +
q(y)) = maxy∈Y (g(y) + maxx∈{X |f(x)=y} q(x)) =
maxy∈Y maxx∈{X |f(x)=y}(g(f(x)) + q(x)) = maxx∈X

(g(f(x)) + q(x)), which completes the proof for (6).

B. Specialized Dynamic Program

In this subsection, we construct a specialized DP decom-
position for Problem 1 using two specific cost distributions,
the first of which is an indicator function.

Definition 2. Let X ∈ X and Y ∈ Y be two finite uncertain
variables. The indicator function for any x ∈ X is given by

I(x) :=

{
0, if x ∈ [[X]],

−∞, if x ̸∈ [[X]],
(7)

and the conditional indicator function for any x ∈ X given
a realization y ∈ Y with I(y) > −∞ is

I(x|y) :=

{
0, if x ∈ [[X|y]],
−∞, if x ̸∈ [[X|y]].

(8)

The indicator function I can be shown to satisfy the
conditions in Definition 1 and thus, it constitutes a valid
cost distribution. In addition to Lemma 1, for two uncertain
variables X ∈ X and Y ∈ Y and any function f : X → R,

max
x∈[[X|y]]

f(x) = max
x∈X

(
f(x) + I(x|y)

)
, ∀y ∈ Y . (9)

We also require the accrued distribution for an uncertain
variable at each t, defined using the accrued cost At ∈ At.

Definition 3. Let X ∈ X and Y ∈ Y be two finite uncertain
variables and let At ∈ At be the accrued cost at any t =
0, . . . , T . An accrued distribution at any t for any x ∈ X is
a function rt : X → {−∞} ∪ [−amax

t , 0], given by

rt(x) := max
at∈At

(
at + I(x, at)

)
− max

at∈At

(
at + I(at)

)
, (10)

and for x ∈ X given a realization y ∈ Y , I(y) > −∞, it is
a function rt : X × Y → {−∞} ∪ [−amax

t , 0], given by

rt(x|y):= max
at∈At

(
at + I(x, at|y)

)
−max

at∈At

(
at + I(at|y)

)
, (11)

where amax
t := maxAt.

At each t = 0, . . . , T , note that the accrued distribution
rt(x|y) = −∞ if x ̸∈ [[X|y]] whereas rt(x|y) ∈ [−amax

t , 0]
if x ∈ [[X|y]]. It satisfies the properties to be a valid cost
distribution. Furthermore, we can compute the conditional
range [[Xt,Mt+1|mt, ut]] at any t given the realizations
mt ∈ Mt and ut ∈ U . Subsequently, we can use Definitions
2 - 3 to derive the accrued distribution rt(xt,mt+1|mt, ut),
for all xt ∈ X and mt+1 ∈ Mt+1. Then, we use it in the
specialized DP decomposition for Problem 1 as follows. For
all mt ∈ Mt and ut ∈ U , for all t = 0, . . . , T −1, we define

Qt(mt, ut):= max
xt∈X ,mt+1∈Mt+1

(
ct(xt, ut) + Vt+1(mt+1)

+ rt(xt,mt+1|mt, ut)
)
, (12)

Vt(mt):= min
ut∈U

Qt(mt, ut), (13)

where, at time T , QT (mT , uT ) := maxxT∈X
(
cT (xT , uT )+

rT (xT |mT )
)

and VT (mT ) := minuT∈U QT (mT , uT ). We
define the corresponding control law at time t as g∗t (mt) :=
argminut∈U Qt(mt, ut) and the control strategy as g∗ =
(g∗0 , . . . , g

∗
T ). Next, we show that solving the DP (12) - (13)

computes the optimal performance and control strategy.
Due to a lack of space, the proofs for all subsequent results

have been archived in our online preprint [23].

Theorem 1. For all mt ∈ Mt and ut ∈ U , for all t =
0, . . . , T ,

Qtm
t (mt, ut) = Qt(mt, ut) + max

at∈[[At|mt]]
at, (14)

V tm
t (mt) = Vt(mt) + max

at∈[[At|mt]]
at, (15)

and furthermore, g∗ is an optimal solution to Problem 1.

Proof. See Appendix A of our online preprint [23].

Thoerem 1 establishes that the specialized DP (12) - (13)
computes an optimal solution to Problem 1. Note that at each
t, the optimization in the RHS of (13) must still be solved
for each possible mt ∈ Mt, in a manner similar to (3) -
(4) Thus, we still require a large number of computations
for longer time horizons. In the next subsection, we define
information states to address this concern.
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C. Information States

In this subsection, we introduce information states to
construct an optimal DP decomposition for Problem 1.

Definition 4. An information state at any t = 0, . . . , T is
an uncertain variable Πt = σt(Mt) taking values in a finite
set Pt, where σt : Mt → Pt. Furthermore, for all t, for all
mt ∈ Mt, ut ∈ U , xt ∈ X and πt+1 ∈ Pt+1, it satisfies:

rt(xt, πt+1|mt, ut) = rt(xt, πt+1|σt(mt), ut),

t = 0, . . . , T − 1, (16)
rT (xT |mT ) = rT (xT |σt(mT )). (17)

In the corresponding DP, for all πt ∈ Pt and ut ∈ U , for
all t = 0, . . . , T − 1, we define the value functions

Q̄t(πt, ut) := max
xt∈X ,πt+1∈Pt+1

(
V̄t+1(πt+1) + ct(xt, ut)

+ rt(xt, πt+1|πt, ut)
)
, (18)

V̄t(πt) := min
ut∈U

Q̄t(πt, ut), (19)

where, at time T , Q̄T (πT , uT ) := maxxT∈X
(
cT (xT , uT ) +

rT (xT |πT )
)

and V̄T (πT ) := minuT∈U Q̄T (πT , uT ). The
control law at each t is ḡ∗t (πt) := argminut∈U Q̄t(πt, ut).
Next, we prove that the information state based DP (18) -
(19) yields the same value as the specialized DP (12) - (13).

Theorem 2. Let Πt = σt(Mt) be an information state at
each t = 0, . . . , T . Then, for all mt ∈ Mt and ut ∈ U ,
Qt(mt, ut) = Q̄t(σt(mt), ut) and Vt(mt) = V̄t(σt(mt)).

Proof. See Appendix B of our online preprint [23].

From Theorem 2, the strategy ḡ∗ = (ḡ∗0 , . . . , ḡ
∗
T ) using

information states is an optimal solution to Problem 1. In
practice, using information states to compute ḡ∗ is more
tractable than using the memory to compute g∗ only when
the set Pt has fewer elements than Mt for most instances of
t. This is usually true for systems with long time horizons.

D. Examples of Information States

In this subsection, we present examples of information
states which satisfy the conditions in Definition 4.

1) Partially observed systems: Generally, at each t =
0, . . . , T a valid information state which satisfies Definition
4 is the function valued uncertain variable Πt : X →
{−∞} ∪ [−amax

t , 0]. At time t, for a given mt ∈ Mt, the
realization of Πt is pt(xt) := rt(xt|mt) = maxat∈At

(
at +

I(xt, at|mt)
)
− maxat∈At

(
at + I(at|mt)

)
for all xt ∈ X .

Note that this can be interpreted as a normalization [9] of
the standard information state from [7], [8].

2) Perfectly observed systems: Consider a system where
Yt = Xt for all t. An information state for such a system
is Πt = Xt at each t, i.e, the state itself. This information
state is simpler than the one in Case 1.

3) Systems with action dependent costs: Consider a par-
tially observed system where at each t the cost has the form
ct(Ut) ∈ R≥0, and the terminal cost is cT (XT , UT ). Then,
an information state is the conditional range Πt = [[Xt|Mt]]
at each t (see Appendix C of our online preprint [23]).

Remark 2. From [20], we know that the terminal DP (3)
- (4) can be used to derive another information state Ξt =
[[Xt, At|Mt]] for each t for Case 1. The conditional range
Ξt can take 2|At|×|X| feasible values whereas Πt from Case
1 can take |At||X | values. As |At| grows in size with time t,
the number of feasible values of Πt increases at a slower rate
than the number of feasible values of Ξt. Thus, Πt yields a
more computationally tractable DP than Ξt. This illustrates
that constructing information states using the specialized DP
(12) - (13) is better than using the terminal DP (3) - (4).

Remark 3. Using Definition 4 we can identify simpler
information states for systems with special properties, as
shown in Cases 2 - 3. However, in many applications, merely
using an information state may not sufficiently improve the
tractbility optimal strategies. Thus, we extend Definition 4
to include approximate information states in Section IV.

IV. APPROXIMATE INFORMATION STATES

In this section, we define approximate information states
and utilize them to develop an approximate DP. We begin
by defining a distance between two cost distributions.

Definition 5. Let X be a finite subset of a metric space
(S , d), with an uncertain variable X ∈ X and two
distributions r : X → {−∞} ∪[−a1, 0] and q : X →
{−∞} ∪ [−a2, 0], a1, a2 ∈ R≥0. Then:

1) The finite domains of r and q are the sets X r :={x∈X
|r(x) ̸=−∞} and X q :={x∈X |q(x) ̸=−∞}, respectively.

2) For any x ∈ X r ∪ X q , the nearest finite inputs for
r and q are given by ψr(x) := argminx̂∈X r d(x̂, x), and
ψq(x) := argminx̂∈X q d(x̂, x), respectively.

3) The distance between the distributions r and q is

R
(
r, q

)
:= max

(
H(X r,X q),

max
x∈X r∪X q

|r(ψr(x))− q(ψq(x))|
)
, (20)

where H is the Hausdorff metric.

Remark 4. Because any cost distribution cannot identically
return −∞ for all x ∈ X , the sets X r and X q are
non-empty for all distributions r, q on X. Consequently, the
distance R(r, q) always returns a finite value.

Note that R is the maximum of a metric on a set-space
and a metric on a function-space. Thus, it can quantify the
distance between two different accrued distributions on an
uncertain variable X ∈ X . Specifically, let Y ∈ Y and
Z ∈ Z take realizations y ∈ Y and z ∈ Z , respectively,
such that [[X, At|y]] ̸= ∅ and [[X, At|z]] ̸= ∅ for some time
t. Then, we denote the functional forms of the conditional
distributions on X given y and given z as rt(X|y) and rt(X|z),
respectively, and quantify the distance between them as

R
(
rt(X|y), rt(X|z)

)
:= max

(
H
(
[[X|y]], [[X|z]]

)
,

max
x∈[[X|y]]∪[[X|z]]

∣∣rt(ψy(x)|y
)
− rt

(
ψz(x)|z

)∣∣), (21)

where, the finite domains are {x ∈ X | rt(x|y) ̸= −∞} =
[[X|y]] and {x ∈ X | rt(x|z) ̸= −∞} = [[X|z]]; and for any
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x ∈ [[X|y]] ∪ [[X|z]], the nearest finite inputs are ψy(x) :=
argminx̂∈[[X|y]] d(x̂, x) and ψz(x) := argminx̂∈[[X|z]] d(x̂, x).
Next, using R to quantify the approximation gap, we define
approximate information states for Problem 1.

Definition 6. An approximate information state at any t =
0, . . . , T is an uncertain variable Π̂t = σ̂t(Mt) taking values
in a finite subset P̂t of some metric space, where σ̂t : Mt →
P̂t. Furthermore, for all t, there exists a parameter ϵt ∈ R≥0

such that for all mt ∈ Mt and ut ∈ U , it satisfies:

R
(
rt(Xt, Π̂t+1 | mt, ut), rt(Xt, Π̂t+1 | σ̂t(mt), ut)

)
≤ ϵt, t = 0, . . . , T − 1, (22)

R
(
rT (XT | mT ), rT (XT | σ̂T (mT ))

)
≤ ϵT . (23)

In the approximate DP, for all t = 0, . . . , T−1, for all π̂t ∈
P̂t and ut ∈ U , we recursively define the value functions

Q̂t(π̂t, ut) := max
xt∈X ,π̂t+1∈P̂t+1

(
V̂t+1(π̂t+1) + ct(xt, ut)

+ rt(xt, π̂t+1|π̂t, ut)
)
, (24)

V̂t(π̂t) := min
ut∈U

Q̂t(π̂t, ut), (25)

where, at time T , Q̂T (π̂T , uT ) := maxxT∈X
(
cT (xT , uT ) +

rT (xT |π̂T , uT )
)

and V̂T (π̂T ) := minuT∈U Q̂T (π̂T , uT ). The
control law at each t is ĝ∗t (π̂t) := argminut∈U Q̂t(π̂t, ut)
and the approximate control strategy is ĝ∗ := (ĝ∗0 , . . . , ĝ

∗
T ).

Next, we bound the performance loss from implementing the
approximate control strategy ĝ∗ in Problem 1. We begin with
a preliminary result which will be required subsequently.

Lemma 2. Let X be a finite subset of a metric space
(S , d) and consider two cost distributions r : X →
{−∞} ∪ [−a1, 0] and q : X → {−∞} ∪ [−a2, 0], where
a1, a2 ∈ R≥0. Then, for a Lipschitz function f : X → R:∣∣max

x∈X

(
f(x) + r(x)

)
−max

x∈X

(
f(x) + q(x)

)∣∣
≤ (Lf + 1) · R

(
r, q

)
. (26)

Proof. See Appendix D of our online preprint [23].

Next, we bound the maximum error when approximating
the value functions in the optimal DP (3) - (4) with the value
functions in the approximate DP (24) - (25).

Theorem 3. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for

all t = 0, . . . , T − 1. Then, for all mt ∈ Mt and ut ∈ U ,

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ αt, (27)

|Vt(mt)− V̂t(σ̂t(mt))| ≤ αt, (28)

where αt = αt+1 + (2Lt +1) · ϵt, where Lt := max{LV̂t+1
,

Lct}, for all t = 0, . . . , T − 1 and αT = (LcT + 1) · ϵT .

Proof. See Appendix E of our online preprint [23].

Next, we bound the maximum difference in the per-
formance of an approximate control strategy ĝ∗ :=
(ĝ∗0 , . . . , ĝ

∗
T ) and optimal strategy g∗. Recall that ĝ∗t (π̂t) =

argminut∈U Q̂t(π̂t, ut) for all t = 0, . . . , T . Then, the
equivalent strategy g = (g0, . . . , gT ), which utilizes the

memory but yield the same actions and performance as ĝ∗,
is constructed as gt(mt) := ĝ∗t (σ̂t(mt)) for all t. To compute
the performance of g (and consequently, of ĝ∗), we define
for all t = 0, . . . , T − 1, for all mt ∈ Mt and ut ∈ U ,

Θt(mt, ut) := max
xt∈X ,mt+1∈Mt+1

(
Λt+1(mt+1) + ct(xt, ut)

+ rt(xt,mt+1|mt, ut)
)
, (29)

Λt(mt) :=Θt(mt, gt(mt)), (30)

where, at time T , ΘT (mT , uT ) := maxxT∈X (cT (xT , uT )+
rT (xT |mT , uT )) and VT (mT ) = ΘT (mT , gT (mT )). Recur-
sively evaluating the value functions (29) - (30) computes
the performance of g as Λ0(m0), where m0 = y0. Note that
the performance of g∗ is simply the optimal value. Next, we
bound the difference in the performances of g and g∗.

Theorem 4. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for

all t = 0, . . . , T − 1. Then, for all mt ∈ Mt and ut ∈ U ,

|Qt(mt, ut)−Θt(mt, ut)| ≤ 2αt, (31)
|Vt(mt)− Λt(mt)| ≤ 2αt. (32)

where αt = αt+1 + (2Lt + 1) · ϵt with Lt := max{LV̂t+1
,

Lct} for all t = 0, . . . , T − 1 and αT = (LcT + 1) · ϵT .

Proof. See Appendix F of our online preprint [23].

V. NUMERICAL EXAMPLE

For our numerical example, we consider an agent pur-
suing a target across a 9 × 9 grid with obstacles. At each
t = 0, . . . , T , the agent’s position is Xag

t and the target’s
position is X ta

t , each of which takes values in the set of
grid cells X =

{
(−4,−4), (−4,−3), . . . , (3, 4), (4, 4)

}
\ O,

where O ⊂ X is a known set of obstacle cells. Let
W = N = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)} and D :=
{(−1, 1), (1, 1), (1,−1), (−1,−1)}. Starting at X ta

0 ∈ X ,
the target’s position evolves as X ta

t+1 = δ(X ta
t + Wt ∈

X )·(X ta
t +Wt)+(1−δ(X ta

t +Wt ∈ X ))·X ta
t , where Wt ∈ W

and δ(·) returns 1 if the condition in the argument holds and 0
otherwise. At each t, the agent observes their own position
perfectly and the target’s position as Yt = δ(X ta

t + Nt ∈
X ) · (X ta

t + Nt) + (1 − δ(X ta
t + Nt ∈ X )) · X ta

t , where
Nt ∈ N . Then, the agent selects an action Ut ∈ U = W∪D
and moves as Xag

t+1 = δ(Xag
t +Ut ∈ X ) · (Xag

t +Ut)+ (1−
δ(Xag

t + Ut ∈ X )) · Xag
t . The agent incurs an interim cost

ct(Ut) := 0.5 · δ(Ut ∈ D) only if it moves diagonally, and a
terimal cost d(X ta

T , X
ag
T ) corresponding to the final distance

from the target. We illustrate this in Fig. 1(a), where: (1)
the black cells are obstacles, (2) the black triangle is the
initial position of the agent and the hatched region around
it indicates the available actions, and (3) the black circle is
the initial observation of the agent and the hatched region
around it indicates the possible initial positions of the target.

This formulation is a system with action dependent costs
as described in Subsection III-D. For such a system, an
information state at time t is Πt = (Xag

t ,Λt), where Λt =
[[X ta

t |Mt]]. We approximate Λt at each t using state quantiza-
tion. First, we define a static set of quantized states X̂ such
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(a) The original grid (b) The quantized grid

Fig. 1. The gridworld pursuit problem with the initial conditions x
ag
0 =

(1, 1) and y0 = (−1,−3).

that maxxt∈X minx̂t∈X̂ d(xt, x̂t) ≤ 1 and a quantization
function µ(xt) := argminx̂t∈X̂ d(xt, x̂t) using the initial
observation of the agent, as illustrated using dots in Fig. 1(b).
Note that we use a finer quantization around the point of ini-
tial observation and sparser quantization elsewhere. Then, the
approximate range at time t is Λ̂t = {µ(xt) ∈ X̂ | xt ∈ Λt}
and the approximate information state is Π̂t =

(
Xag

t , Λ̂t, Y0
)
.

We include Y0 in Π̂t because it facilitates the update of Λ̂t

to Λ̂t+1. For six initial conditions, we computed the best
control strategy using both the optimal DP and approximate
DP for T = 6. In Fig. 2, we have tabulated the worst-
case values (V0 and V̂0) and run-times in seconds (Run.)
for both DPs. We also evaluated the difference between
actual costs incurred by the approximate strategy and the
optimal strategy, respectively, by implementing both of them
in 5000 simulations with randomly generated disturbances.
We have marked these differences in Fig. 2 and indicated
the frequency of each cost difference by the size of the
disc marking it. While the approximate strategy is faster to
compute than the optimal strategy for all cases, we note that
it admits bounded deviations in actual costs.

Fig. 2. Results of numerical simulations for T = 6.

VI. CONCLUSION

In this paper, we developed a general theory of informa-
tion states and approximate information states to tractably
compute control strategies in non-stochastic additive cost
problems. We used the theoretical framework of cost distri-
butions to present a general definition for information states
that compute an optimal control strategy. We showed that
specific information states proposed in previous research
efforts emerge as special cases of our definition. Then, we
extended this definition to approximate information states
which can be used to compute approximate control strategies
which admit a bounded worst-case performance loss. Finally,
using a numerical simulation, we illustrated the trade-off

between computational tractability and performance loss
inherent in the application of approximate information states.
Future work should consider the use of this theory in non-
stochastic reinforcement learning problems.
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