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Abstract— In this paper, we propose a re-routing strategy
for connected and automated vehicles (CAVs), considering
coordination and control of all the CAVs in the network. The
objective for each CAV is to find the route that minimizes
the total travel time of all CAVs. We coordinate CAVs at
signal-free intersections to accurately predict the travel time
for the routing problem. While it is possible to find a system-
optimal solution by comparing all the possible combinations
of the routes, this may impose a computational burden. Thus,
we instead find a person-by-person optimal solution to reduce
computational time while still deriving a better solution than
selfish routing. We validate our framework through simulations
in a grid network.

I. INTRODUCTION

OVER the last two decades, connected and automated
vehicles (CAVs) have attracted considerable attention

since they can improve safety, fuel economy, and other
traffic conditions. To reduce fuel consumption and travel
time, several research efforts have focused on efficient
coordination and control of CAVs at different traffic
scenarios such as merging roadways [1]–[3], signal-free
intersections [4]–[7], and corridors [8]–[10]. These efforts
have developed different coordination methods to reduce
stop-and-go driving, which has resulted in shorter travel time
with less energy use.

As another way to alleviate traffic issues, a significant
number of research efforts have considered the routing
problem of CAVs, which derived a solution for a single CAV
and applied it to multiple vehicles. Chen and Cassandras
[11] considered the dynamic vehicle assignment problem
in a shared mobility system to optimizes the travel times
of CAVs and the waiting times of passengers. Tsao et al.
[12] presented a similar approach for ride-sharing using
model predictive control with fixed traffic conditions. While
these methods find the efficient route for a single CAV,
they are not verified for multiple CAVs applications. Some
other approaches proposed in the literature include graph
search algorithms [13], reinforcement learning techniques
[14]–[16], and mixed-integer linear programs [17]–[19].
Furthermore, other research efforts considered variation of
basic formulations by including different types of vehicles
[19], [20], adding battery constraints [21], and considering
interaction with infrastructures [22], [23].
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In addition to a single CAV, many studies have also
focused on larger-scale interactions between multiple CAVs.
In the majority of these studies, a travel latency function
was used to estimate travel delay caused by other CAVs
[24]–[26]. Recent research efforts have developed a method
for routing and relocating CAVs in more complex networks
[27] and considered situations where charging scheduling of
electric CAVs is required [28]. However, none of these efforts
considered the impact of microscopic phenomena such as
coordination and control of CAVs on traffic conditions.

To the best of our knowledge, there have been only a few
studies focusing on the routing problem with consideration
of interactions between CAVs and their actual movements.
Chu et al. [29] solved the routing problem for each CAV
considering traffic by employing a dynamic lane reversal
approach. However, they simply approximated the travel
time of CAVs proportional to the number of CAVs on each
road segment. Likewise, Mostafizi et al. [30] developed a
decentralized routing framework with a heuristic algorithm,
but they estimated travel speeds inversely proportional to
the number of CAVs on the roads. In our previous work
[31], we introduced a new routing framework combined
with the coordination of CAVs. the framework predicts
traffic conditions from coordination information and finds
the optimal route for each new travel request. However, we
have imposed an assumption that a new CAV does not affect
previously planned trajectories. This assumption sometimes
causes the situation where a CAV entering the network has
no solution because it yields all the roads that it can travel
through. In addition, all CAVs only find their route at the
beginning of the trip because, once the trajectory is fixed, it
does not get affected by any other CAVs’ decisions, which
is quite a strong assumption to apply in reality.

In this paper, we propose a re-routing framework for CAVs
with consideration of traffic conditions resulting from each
CAV’s decision. The framework is built upon our previous
work [31], which consists of two parts: (i) at an intersection
level, we formulate a coordination problem to predict travel
time and acquire an exact trajectory, and (ii) we formulate a
routing problem using the predicted travel time at a network
level. To avoid computational challenge, we generate some
candidate routes for each CAV and find the best combination
of the routes to reduce the complexity of the problem and
make it possible to apply this framework to more extensive
networks. The main contribution of this work is to advance
the state-of-the-art congestion-aware routing problem in a
way that makes the problem more realistic by relaxing
those assumptions. Another contribution is that we provide
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Fig. 1: The concept diagram of the routing process.

a method that always yields a person-by-person optimal
solution, which is a series of the best choice for each CAV.

The remainder of this paper is structured as follows.
In Section II, we formulate the routing problem and
coordination problem. In Section III, we present algorithms
to solve the problems and discuss the optimality of the
solution. We validate our method through the simulations
results in Section IV. Finally, in Section V, we conclude
and discuss some directions for future work.

II. PROBLEM STATEMENT

In this paper, we develop a framework that consists
of multiple optimization problems at two different levels.
The upper level contains a routing framework for a road
network. We consider having a finite number of candidate
routes and formulate optimization problems to find the best
combination of those routes. At the low level, we coordinate
CAVs to cross intersections fast without violating any safety
constraints, and a travel time computed from coordination
is directly involved in the upper-level optimization as a cost
function. The detailed problem formulation will be explained
next.

A. Trips and Routing on Road Network

We consider a road network given by a directed graph
G = (V, E), where V is a set of nodes and E is a set of
edges (roads). Each node is a junction point of two different
intersections (exiting from one intersection and entering
another one), and each node can simultaneously function
as the origin for one trip and the destination for another
trip. In the network, there exists a router that communicates
with CAVs and selects the best combination of routes and a
coordinator for each intersection which shares the geometry
of intersections and trajectories of other CAVs (Fig. 1).

Our framework considers a 100% penetration rate of CAVs
in the road network. Let N (t) = {1, . . . , N(t)} be a set
of CAVs traveling in the network at time t ∈ R≥0, where
N(t) ∈ N is the total number of CAVs at moment. For each
CAV i ∈ N (t), we have trip information Ii = (oi, di, t

s
i)

which consists of origin oi ∈ V , destination di ∈ V , and the
starting time of travel tsi ≤ t. This implies that we receive
trip information only when a new CAV starts a trip and do
not have any information about trips departing in the near
future. We assume that each CAV joins the network and
departs from oi at time tsi and that there are enough CAVs at
the origin nodes. To relax this assumption, one can consider

a whole trip of CAVs departing from and returning to stations
[31] or relocation of empty CAVs [28].

In our previous work [31], we assumed that a newly
introduced CAV does not affect previous CAVs’ trajectories.
This assumption made it possible to solve a substantial
centralized problem in a computationally distributed manner.
However, this is a strong assumption in reality and also
yields cases where no solution exists when a new CAV is
introduced. To relax this assumption, we let the router to
re-route all the CAVs in the network within new candidate
routes whenever a new CAV joins the network and finds a
system-optimal solution.

At every time t, when a new CAV joins the network, we
generate M ∈ N different candidate routes for each CAV
i ∈ N (t), which connect the current location of CAV i to the
destination di. We denote M = {1, . . . ,M} to be an index
set of those routes and let Pi = {Pi,1, . . . ,Pi,M} denote a
set of all candidate routes for the CAV i, where Pi,m ⊂ E
is a m-th candidate route of the CAV i. This paper assumes
that a finite number of candidate routes are determined by a
high-level decision maker and given to the router. Next, we
define an assignment matrix to match the CAVs to one of
their candidate routes.

Definition 1. Let assignment matrix A(t) be a binary matrix
that maps all CAVs i ∈ N (t) to a unique route Pi,m for
m ∈M.

Note that A(t) = [A1, . . . ,AN(t)], where Ai =
[ai,1, . . . , ai,M ]T is an assignment vector for CAV i ∈ N (t).
The assignment matrix can be determined by solving an
optimization problem, which we define next.

Problem 1 (Optimal Routing). We find a system-optimal
combination of the routes by solving the following problem

min
A

{ ∑
i∈N (t)

∑
m∈M

ai,mTi(A(t),m)
}

(1)

subject to:
∑

m∈M
ai,m = 1, ∀i ∈ N (t),

ai,m ∈ {0, 1}, ∀i ∈ N (t),m ∈M,

where Ti(A(t),m) is the travel time of CAV i following the
m-th candidate route. The constraints ensure each CAV to
be assigned to a unique route.

The travel time Ti(A(t),m) can be computed using the
coordination framework, which will be presented later in this
section.

B. Coordination at Intersections

Given the routes of all the trips, we now model
intersections and coordinate CAVs to travel without any
collision. Let L = {1, . . . , L} denote a set of signal-
free intersections, where L ∈ N is the total number of
intersections. We let Nl(t) ⊂ N (t) denote a set, which
includes all the CAVs in the intersection l ∈ L. Each
intersection consists of four entry nodes, four exit nodes,
and twelve edges connecting each entry node to the exit
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Fig. 2: Coordination of CAV i at an intersection. CAV i
enters at t0i , passes the conflict point at tci , and exits at tfi .

nodes of the other three directions (Fig. 2). The geographical
junction points of the edges are called conflict points, where
lateral collisions may occur, and we define an index set of
conflict points denoted by C ⊂ N. For each intersection,
there exists a coordinator that communicates with CAVs to
share all the geographical information and trajectories of
other CAVs in the intersection. We assume that a coordinator
can communicate with CAVs without any delays or errors,
and each CAV plans its trajectory in the order of entrance to
the intersection.

Next, we determine a model and constraints of CAVs.
Each CAV i ∈ N (t) follows doubled integrator dynamics

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(2)

where pi(t) ∈ R, vi(t) ∈ R, and ui(t) ∈ R are position,
speed, and control input at time t, respectively. The state
and input constraints are given as

ui,min ≤ ui(t) ≤ ui,max, (3)
0 < vmin ≤ vi(t) ≤ vmax, (4)

where ui,min, ui,max are the lower bound and the upper
bound of control inputs, which are the hardware limits on
acceleration, and vmin, vmax are the minimum and maximum
speed limits, respectively.

To find CAVs’ trajectories at an intersection, we consider
a coordination framework similar to the one introduced in
[6]. The main idea of the framework is to derive energy-
optimal trajectories for CAVs and find proper parameters that
do not violate any constraint. Given dynamics (2), we adopt
an energy-optimal unconstrained trajectory for CAVs, which
minimizes acceleration/deceleration. The trajectory for each
CAV i ∈ Nl(t) is derived as

ui(t) = 6ait+ 2bi,

vi(t) = 3ait
2 + 2bit+ ci, (5)

pi(t) = ait
3 + bit

2 + cit+ di,

where ai, bi, ci, and di are constants of integration. We
determine these constants using the boundary conditions

pi(t
0
i ) = 0, vi(t

0
i ) = v0i , (6)

pi(t
f
i ) = pfi , ui(t

f
i ) = 0, (7)

where t0i and tfi are the entry and exit time of CAV i on
the intersection l. Note that the final speed vi(t

f
i ) varies

with respect to tfi , hence, by convention we consider that
ui(t

f
i ) = 0 [32]. For the detailed derivation of the energy-

optimal trajectory, see [6].
Since the trajectories in (5) are derived from an

unconstrained optimization problem, there is no safety
guarantee for using the trajectories. Thus, we find exit time
tfi that satisfies all the safety and constraints so that even
unconstrained trajectories can avoid any collision. In terms
of safety constraints, we only consider the collision between
the CAVs in the same intersection l ∈ L. We impose the
following constraints to avoid a rear-end collision between a
CAV i ∈ Nl(t) and a preceding CAV k ∈ Nl(t) in the same
road,

pk(t)− pi(t) ≥ δi(t) = ρ+ φ · vi(t). (8)

Here, δi(t) is the safety distance for CAV i, which depends
on the standstill distance ρ ∈ R, reaction time φ ∈ R, and the
speed of CAV i. Next, we consider two different scenarios
for lateral safety at a conflict point. Suppose there exists
a CAV k ∈ Nl(t) with the already planned trajectory that
shares a conflict point with a CAV i. Then, CAV i can pass
the conflict point either earlier or later than CAV k. In the
case of CAV i passing the conflict point later than CAV k,
the trajectory of CAV i must satisfy

pci − pi(t) ≥ δi(t), ∀t ∈ [t0i , t
c
k], (9)

where pci ∈ R is the location of the conflict point c ∈ C on
CAV i’s path, and tck is the known time that CAV k reaches at
the conflict point c ∈ C. On the other hand, if CAV i passes
the conflict point before CAV k, the constraint becomes

pck − pk(t) ≥ δk(t) = ρ+ φ · vk(t), ∀t ∈ [t0k, t
c
i ], (10)

where pck ∈ R is the location of the conflict point on CAV
k’s path, and tci is the time when CAV i reaches the conflict
point c ∈ C, which is determined by the trajectory of CAV
i. Since we use (5) with a constraint (4), the inverse of
position always exists, i.e., ti(·) = p−1

i (·). We call this a
time trajectory of CAV i [6], which yields an arrival time at
a certain point. For example, we obtain the time tci = p−1

i (pci )
at which CAV i arrives at the conflict point c ∈ C along the
energy optimal trajectory (5).

To guarantee lateral safety, either (9) or (10) must be
satisfied. Thus, we impose the lateral safety constraint by
taking the minimum of (9) and (10), i.e.,

min

{
max

t∈[t0i ,t
c
k]
{δi(t) + pi(t)− pci},

max
t∈[t0k,t

c
i ]
{δk(t) + pk(t)− pck}

}
≤ 0. (11)

4421



To reduce travel time of CAV i, we find the minimum exit
time tfi . We define the feasible set Ti =

[
tfi , t

f
i

]
, where tfi

and t
f
i are the earliest and latest exit time that CAV i can

possibly have, considering all the limits (3), (4) and boundary
conditions (6), (7) [33].

Problem 2. To find minimum exit time, each CAV i ∈ Nl(t)
solves the following optimization problem

min
tfi ∈Ti

tfi (12)

subject to: (5)− (8), (11).

The solution to Problem 2 becomes the entry time of the
next intersection or the final travel time if CAV i reached
the final destination di.

III. PERSON-BY-PERSON OPTIMAL RE-ROUTING

In this section, we present a solution approach and analyze
an optimality of the solution. In general, if a new CAV joins
the system for a new trip, the previous routes may not be
optimal anymore. Thus, the router solves Problem 1 to obtain
the system-optimal solution whenever there is a change in
the trips. However, computational cost for solving Problem
1 gets tremendously larger as the number of CAVs N(t)
increases, because it requires to compare all Ti(A(t),m)
values for all possible A(t). As the assignment matrix
A(t) can have MN(t) different cases, the increase in the
number of CAVs will exponentially scale the computational
cost. Therefore, rather than solving the global optimization
problem for all CAVs, we modify it to a single CAV routing
problem.

Problem 3 (Single CAV Routing). For a single CAV i ∈
N (t), we find its optimal route by solving the following
problem

min
am∈Ai

{ ∑
m∈M

amTi(A(t),m) +
∑

j∈N (t)\{i}

Tj(A(t), m̄j)
}

(13)

subject to:
∑

m∈M
am = 1,

am ∈ {0, 1}, ∀m ∈M.

Here, Ai is an assignment vector for CAV i, and m̄j is a
pre-selected route for CAV j ∈ N (t) \ {i}.

In this problem, all the other CAVs’ routes are fixed, and
only CAV i selects its route, which minimizes the total travel
time of all the CAVs.

As Problem 3 deals with a single CAV, we solve the
problem whenever a new CAV joins the network. Algorithm
1 explains the process of solving Problem 3 for new CAV
N(t). When CAV N(t) joins the network, the router receives
candidate routes for all CAVs in the network. Then, the
router communicates with CAV N(t) and selects a route that
minimizes total travel time. Although it tries to minimize the
increase in total travel time, CAV N(t)’s new route would

Algorithm 1 Event-Triggered Routing Process

Input: t, IN(t), A = [A1, . . . ,AN(t)−1]
Output: A∗(t)

1: Update location of each CAV i ∈ N (t)
2: Generate new route P(t) := {Pi,m

∣∣∀i ∈ N (t),m ∈M}
3: for m ∈M do
4: τ tmp

m ← TN(t)(A(t),m)
5: end for
6: m∗ ← argminm τ tmp

m

7: τ∗ ← τ tmp
m∗

8: A∗(t)← [A,AN(t)] ▷ Add new assignment vector
9: A∗(t)←Re-Routing(A∗(t), τ∗,P(t))

Algorithm 2 Re-Routing Process

Input: A∗(t), τ∗,P(t)
Output: A∗(t)

1: q ← N(t) ▷ Check the last modified CAV
2: while true do
3: for i ∈ N (t) do
4: τ tmp

m ← Ti(A
∗(t),m), ∀m ∈M

5: m∗ ← argminm τ tmp
m

6: τ̃ ← τ tmp
m∗

7: if τ̃ < τ∗ then
8: τ∗ ← τ̃
9: if ai,m∗ ̸= 1 then ▷ i changed the route

10: q ← i
11: Update A∗

i with route Pi,m

12: end if
13: end if
14: if q = i then ▷ No one changed the route
15: Return A∗;
16: end if
17: end for
18: end while

naturally affect other CAVs’ trajectories and delay their trips.
Therefore, we also need to check whether the change of other
CAVs’ trajectories would reduce the travel time or not and
re-select their routes if it is beneficial. The re-routing process
is presented in Algorithm 2. The router fixes all the CAVs’
route except one CAV and finds the route with minimum
total travel time. It repeats the process for all CAVs until
none of them has the benefit of changing the route.

The assignment A∗(t) resulted from Algorithm 2 is
person-by-person optimal as none of CAVs can improve the
travel time by changing its own decision [34].

Remark 1. Note that CAVs have a finite number of candidate
routes and the total travel time has a lower bound, which
is the summation of each CAV’s travel time on empty roads.
Since the router modifies the combination of routes only if
there is a better combination, the routes will be fixed in a
finite number of comparison.
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Algorithm 3 Prediction of Total Travel Time for All CAVs

Input: A(t), i,m
Output: τ tot

1: Assign CAV i to m-th route
2: Define initial speed of all CAVs
3: τn ← CAV n’s arrival time at a nearest node ∀n ∈ N (t)
4: τ tot ← 0
5: while CAVs traveling do
6: n∗ ← argminn τn
7: t0n∗ ← τn∗

8: Find intersection l satisfying n∗ ∈ Nl(t)
9: tfn∗ ← Solution to Problem 2

10: Update CAV n∗’s corresponding intersection
11: τn∗ ← tfn∗

12: if CAV n∗ reached dn∗ then
13: τ tot ← τ tot + τn∗

14: Mark n∗ as done
15: end if
16: end while

Given N(t) CAVs with M routes, we need to compare
MN(t) different cases to get system-optimal solution
(solution to Problem 1). Meanwhile, the re-routing process
in Algorithm 1 stops comparing if it reaches the person-
by-person optimal solution. In the worst-case scenario,
Algorithm 1 will compare all MN(t) cases and yield a
system-optimal solution.

Remark 2. Algorithm 1 would yield either a person-by-
person optimal solution with lower computational cost or
a system-optimal solution with the same computational cost
with solving Problem 1. Comparing more different cases
during the re-routing process means that it is getting closer
to the system-optimal solution.

Next, we present Algorithm 3, which explains the method
of computing the total travel time of all the CAVs.
Considering CAV i selected m-th route, we update the
assignment matrix. At a certain time t, all the CAVs are
located either on the edges or the nodes. The CAVs on
the edges already have the trajectories of their current
intersection, which allow us to know when they will arrive
at the next nodes. Considering CAVs on the nodes, we
coordinate those CAVs at their located intersections in the
order of arrival time on the nodes. By solving Problem 2,
we get the arrival time to the next node, and we repeat this
process until all the CAVs reach their destinations.

IV. SIMULATIONS

This section provides the simulation results of CAVs
traveling in a road network. Through the simulations, we
investigate the benefit of our method: (i) computational
benefit of acquiring person-by-person optimal solution and
(ii) combining the routing process with coordination of
CAVs.
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A. Simulation Setup

We considered a grid network (25 intersections, 71 nodes,
and 170 edges) and generated 100 random trips. Whenever a
new CAV starts the trip, the router generates three different
routes (M = 3) that are shortest-time paths based on
(1) empty roads, (2) statistical traffic data, and (3) traffic
conditions at the moment. For the baseline scenario, we
assume that each CAV selects the shortest-time path at
the moment of departure. To evaluate the effectiveness of
combining the routing process with coordination of CAVs,
for both the proposed method and the baseline scenario,
we let CAVs communicate with the coordinator at each
intersection and plan their trajectories to pass the intersection
without any collision. The difference is in the route selection
mechanism, where the proposed method uses a prediction
of the future traffic condition while the baseline scenario
considers the traffic condition at the moment.

B. Simulation Results

First, we compared the number of computations in Fig.
3 to evaluate the computational cost of different algorithms.
To reduce the computational cost, we searched person-by-
person optimal solutions only among the CAVs that were
delayed by other CAVs. This method made it possible to
find a person-by-person optimal solution without checking
all CAVs resulting in less computation than the number
of all routes. The number of computations for Problem 1
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increased up to 2.98 × 1025 while the proposed method
required 68 computations. Figure 4 illustrates the total travel
time of CAVs increasing as the number of CAVs increased.
In the baseline scenario, new CAVs naturally delayed other
CAVs’ trips, even though they selected the shortest-time
path considering the traffic condition at the moment. On the
other hand, by using coordination information, the proposed
method found the route with smaller delays.

V. CONCLUDING REMARKS

In this paper, we proposed a re-routing strategy for CAVs
using coordination and control information. We formulated
an optimal route selection problem with candidate routes
for all CAVs. The problem was solved in a distributed
manner, which resulted in yielding a person-by-person
optimal solution. We demonstrated the effectiveness of our
method through the simulations. Future research should
consider generating optimal candidate routes for each CAVs
and analyzing performance bounds of the person-by-person
optimal solution.
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