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Abstract— In this paper, we develop an optimal weight adap-
tation strategy of model predictive control (MPC) for connected
and automated vehicles (CAVs) in mixed traffic. We model
the interaction between a CAV and a human-driven vehicle
(HDV) as a simultaneous game and formulate a game-theoretic
MPC problem to find a Nash equilibrium of the game. In the
MPC problem, the weights in the HDV’s objective function can
be learned online using moving horizon inverse reinforcement
learning. Using Bayesian optimization, we propose a strategy
to optimally adapt the weights in the CAV’s objective function
so that the expected true cost when using MPC in simulations
can be minimized. We validate the effectiveness of the optimal
strategy by numerical simulations of a vehicle crossing example
at an unsignalized intersection.

I. INTRODUCTION

Recent advancements in connected and automated vehicles
(CAVs) provide a promising chance in reducing both energy
consumption and travel delay [1], [2]. In our previous work
[3]–[5], we addressed coordination and routing problems for
CAVs given full penetration of CAVs. However, CAVs will
gradually penetrate the market and co-exist with human-
driven vehicles (HDVs) in the next decades. Therefore,
addressing safe and efficient motion planning and control for
CAVs in mixed traffic given various human driving styles is
highly important. Several control approaches have been pro-
posed in the literature such as model predictive control [6],
[7], learning-based control [8], [9], game-theoretic control
[10], and socially-compatible control [11], [12].

Among those control approaches, model predictive control
(MPC) has received significant attention since (1) it can be
integrated into other methods such as learning-based control
or socially-compatible control, and (2) it can handle multiple
objectives and constraints concurrently. However, like in
many MPC approaches for dynamical systems, some objec-
tives, constraints, or system dynamics in motion planning
and control for CAVs are usually simplified or approximated
so that the resulting MPC problems can be solved in real-
time. In addition, the objective function in MPC is generally
formed by a linear combination of multiple features, in which
the weights are chosen empirically. As a result, true cost
optimization might not be achieved leading to performance
degradation if the weights are chosen inappropriately. An ef-
ficient technique to overcome these difficulties in practice is
automatic weight tuning [13] which aims to derive a strategy
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to tune the weights of MPC so that the best true cost can
be achieved. Marco et al. [14] used Bayesian optimization
to optimize weights of a cost function to compensate for
the discrepancy between the true dynamics and a linearized
model. Gros and Zanon [15] utilized reinforcement learning
for parameter adaptation in nonlinear MPC. Jain et al. [16]
focused on finding an MPC rollout having a low true cost
using covariance matrix adaptation evolution strategy.

Furthermore, in the control applications involving human
decisions, e.g., CAVs interacting with HDVs in mixed traffic,
the controller must address the stochasticity and diversity
caused by human behavior. Generally, MPC with fixed
weights cannot guarantee to work well in such applications.
For example, overly weighting toward the safety objective in
the MPC design while encountering a driving scenario with
a conservative HDV may cause traffic delay. In contrast, if
CAVs and HDVs behave aggressively then unsafe situations
may occur. Therefore, the weights of the MPC problem need
to be adapted online depending on the human driving model.

In the recent research effort [17], we developed a control
framework to address the motion planning problem for CAVs
in mixed traffic. We modeled the interaction between a CAV
and an HDV as a simultaneous game and proposed an MPC
objective function to find a Nash equilibrium of the game.
The weights in the objective function are parameterized by
social value orientation (SVO), and depending on the online
estimate of the SVO for the HDV, the MPC weights are
adapted heuristically. In this paper, we propose a method for
optimal weight adaptation of MPC for CAVs in mixed traffic
based on Bayesian optimization. Using the proposed method,
we can derive offline the optimal weight adaptation strategy
for the MPC with respect to the HDV’s objective weights
so that the true desired performance can be achieved. Then
by learning the objective weights that best describe human
driving behavior online using real-time data and the moving
horizon inverse reinforcement learning (IRL) technique [18],
the MPC weights are adapted accordingly. We demonstrate
the proposed method by a vehicle crossing example at an
unsignalized intersection, and show the benefits by compar-
ing with the heuristic method in [17].

The remainder of this paper is structured as follows.
Section II presents the game-theoretic MPC formulation and
the moving horizon IRL technique. In Section III, we develop
the method to derive the optimal weight adaptation strategy
with Bayesian optimization. In Section IV, we demonstrate
the proposed framework by an intersection crossing example,
while numerical simulation results are provided in Section V.
Finally, we conclude the paper in Section VI.
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II. MOTION PLANNING FOR CAVS IN MIXED TRAFFIC
WITH MODEL PREDICTIVE CONTROL

In this section, we present a game-theoretic MPC formu-
lation for motion planning of a CAV while interacting with
an HDV along with the moving horizon IRL technique to
learn the objective weights of the HDV from real-time data.

A. Model Predictive Control for Motion Planning

We consider an interactive driving scenario including a
CAV and an HDV whose indices are 1 and 2, respectively.
The goal of the MPC motion planner is to generate the
trajectory and control actions of CAV–1 while considering
the real-time driving behavior of HDV–2. To guarantee that
CAV–1 has data of HDV–2’s real-time trajectories, we make
the following assumption:

Assumption 1: A coordinator is available to collect trajec-
tories of HDV–2 and transmit them to CAV–1 without any
significant delay or error during the communication.

We formulate the problem in the discrete-time domain, in
which the dynamic model of each vehicle i is given by

xi,k+1 = fi(xi,k,ui,k), (1)

where xi,k and ui,k, i = 1, 2, are the vectors of states
and control actions, respectively, at time step k ∈ N. We
utilize the control framework presented in [17], in which
the interaction between CAV–1 and HDV–2 is modeled
as a simultaneous game, i.e., the game without a leader-
follower structure, in which the objective of each vehicle
includes its individual objective and a shared objective.
Let l1

(
x1,k+1,u1,k) and l2

(
x2,k+1,u2,k) be the individual

objective functions of CAV–1 and HDV–2, respectively, and
l12

(
x12,k+1,u12,k

)
, where x12,k+1 = [x⊤

1,k+1,x
⊤
2,k+1]

⊤ and
u12,k = [u⊤

1,k,u
⊤
2,k]

⊤, be the cooperative term at time
step k. We assume that CAV–1 and HDV–2 share the
same cooperative objective, e.g., collision avoidance. Those
objective functions are usually designed as weighted sums
of some features as follows

li
(
xi,k+1,ui,k) = ω⊤

i ϕi

(
xi,k+1,ui,k), i = 1, 2, (2)

l12
(
x12,k+1,u12,k) = ω⊤

12ϕ12

(
x12,k+1,u12,k), (3)

where ϕi, ϕ12 are vectors of features and ωi ∈ Wi, ω12 ∈
W12 are corresponding vectors of weights, where Wi and
W12 are the sets of feasible values. For ease of notation,
we define −i for each i ∈ {1, 2} as the other vehicle than
vehicle i. We consider that given any control actions u−i,k

of the other vehicle, each vehicle i applies the control actions
u∗
i,k that minimizes a sum of its individual objective and the

shared objective, i.e.,

u∗
i,k=argmin

ui,k

li
(
xi,k+1,ui,k)+l12

(
x12,k+1,u12,k), ∀u−i,k.

(4)
Next, we formulate an MPC problem with a control

horizon of length H ∈ N. Let t be the current time step and
It = {t, . . . , t +H − 1} be the set of all time steps in the
control horizon at time step t. We can recast the simultaneous
game between CAV–1 and HDV–2 presented above as a

potential game [19], the game in which all players minimize
a single global function called the potential function. In
the potential game, a Nash equilibrium can be found by
minimizing the potential function. The potential function in
this game at each time step k is

lpot
(
x12,k+1,u12,k)

=
∑
i=1,2

li
(
xi,k+1,ui,k) + l12

(
x12,k+1,u12,k) (5)

Therefore, we propose utilizing the cumulative sum of the
potential function over the control horizon as the objective
function in the MPC problem, which can be given by

JMPC =
∑
k∈It

lpot,k
(
x12,k+1,u12,k). (6)

Hence, the MPC problem for motion planning of CAV–1
is formulated as follows

minimize
{u12,k}k∈It

JMPC (7a)

subject to:
(1), i = 1, 2, (7b)
gj(x12,k+1,u12,k) ≤ 0, ∀j ∈ Jieq, (7c)
hj(x12,k+1,u12,k) = 0, ∀j ∈ Jeq, (7d)

where (7b)–(7d) hold for all k ∈ It. The constraints (7c) and
(7d) are inequality and equality constraints with Jieq and Jeq
are sets of indices.

In the objective function of the MPC problem (7), assume
that we can pre-define the features ϕi, i = 1, 2 and ϕ12,
if we learn online ω2 and ω12 that best describe the human
driving behavior, the CAV’s objective weights ω1 are adapted
to achieve the desired performance. The optimal strategy
for adapting ω1 can be derived offline using Bayesian
optimization as presented in Section III.

B. Moving Horizon Inverse Reinforcement Learning

To identify the weights ω2 and ω12 in the individual
objective function of HDV–2 and the shared objective, we
utilize the feature-based IRL approach [18], [20], a ma-
chine learning technique developed to learn the underlying
objective or reward of an agent by observing its behavior.
We define the vector of all features and the vector of all
corresponding weights in HDV–2’s objective function as
f = [ϕ⊤

2 ,ϕ
⊤
12]

⊤ and θ = [ω⊤
2 ,ω

⊤
12]

⊤, respectively. Let f̃
be the vector of average observed feature values computed
from data and Ep[f ] be the expected feature values with
a given probability distribution p over trajectories. With
feature-based IRL, the goal is to learn the weight vector
θ ∈ Ω, where Ω = W2 × W12 so that expected feature
values can match observed feature values.

In moving horizon IRL, at each time step, we utilize
the L ∈ N most recent trajectory segments to update the
weight estimate, where L is the estimation horizon length.
Let t be the current time step and Rt = {rm}m=1,...,L

be the set of L sample trajectory segments collected
over the estimation horizon at time t, in which rm =
(x12,t−m,x12,t−m+1,u12,t−m), for m = 1, . . . , L, is the
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tuple representing the trajectory segment. We use the maxi-
mum entropy IRL approach [18] that utilizes an exponential
family distribution for p and maximizes the entropy of the
distribution, yielding the following optimization problem

maximize
θ∈Ω

∑
rm∈R

log p
(
rm |θ

)
. (8)

To solve (8), one can use gradient-based methods where
the gradient can be approximated by the difference between
the expected and the empirical feature values [18]

∇Lθ = f̃ − Ep[f ]. (9)

The average observed feature values f̃ can be computed from
an average of feature values for all training samples

f̃ =
1

L

∑
rm∈R

f(rm). (10)

Meanwhile, Ep[f ] can be approximated by the expected
feature values of the most likely trajectories as follows

Ep[f ] ≈ f
(
argmax

r
log p(r |θ)

)
. (11)

More specifically, for each sample trajectory rm, we fix θ,
the trajectory {x1,k,x1,k+1,u1,k} of CAV–1, and the initial
condition x2,k, then find the optimized control actions of
HDV–2 u2,k that minimize θ⊤f(rm). We denote the system
trajectories resulted from the optimized HDV–2’s actions as
{rθ1 , . . . , rθL}. Next, we evaluate the features for all optimized
trajectories and compute the approximated expected feature
values Ẽp[f ] by

Ẽp[f ] =
1

L

∑
rm∈R

f(rθm). (12)

Using (9), (10), and (12), the gradient of the objective
function in (8) with respect to θ can be computed. Therefore,
the estimate of θ can be updated by projected gradient ascent
method as follows

θ(j+1) = ProjΩ
(
θ(j) + η∇Lθ(j)

)
, (13)

where η ∈ R+ is the learning rate and θ(j) denotes the
estimate of θ at iteration j ∈ N of the algorithm.

Therefore, given L sample trajectories over the estimation
horizon, the moving horizon IRL procedure for learning
HDV–2’s objective weights is summarized as follows. At
each time step, we start with initial weights θ(0), and at each
algorithmic iteration j, the gradient ∇Lθ(j) of the objective
function in (8) with respect to θ at θ = θ(j) is computed and
used to update the estimate of θ by (13). For more details,
the readers are referred to [18] on maximum entropy IRL
and to [17] on moving horizon implementation.

III. OPTIMAL WEIGHT ADAPTATION WITH BAYESIAN
OPTIMIZATION

In this section, we first introduce the optimal weight
adaptation problem for MPC motion planning in mixed
traffic, then propose using Bayesian optimization to solve
the problem.

A. Optimal Weight Adaptation Problem

Let xMPC and uMPC be the state and control trajectories of
the agents in the simulation using MPC to control CAV–1.
We define the true cost in the simulation corresponding to
using an MPC with a tuple of weights ω = (ω1,ω2,ω12) as
Jω

true(xMPC,uMPC). Note that generally the true cost function
Jtrue can only be obtained after performing the simulations or
experiments and evaluating the state and control trajectories
of the agents. We aim to seek the optimal weights of
CAV–1’s individual objective ω∗

1 ∈ W1 corresponding to
each (ω2,ω12) that minimize the expected true cost given
prior distribution of initial conditions xMPC(0). This can be
achieved by solving the following optimization problem

ω∗
1 = argmin

ω1∈W1

J̄ω
true(xMPC,uMPC) (14)

where

J̄ω
true(xMPC,uMPC) = E

xMPC(0)

[
Jω

true(xMPC,uMPC)
]
, (15)

in which the expected true cost can be computed approx-
imately by the average true cost of ns ∈ N independent
and identically distributed (i.i.d.) simulations with the initial
states sampled from a prior distribution.

Solving the problem in (14) can be computationally in-
tractable since the objective is a black-box function of the
optimization variable ω1. Moreover, it takes a significant
amount of time to evaluate that objective function because it
requires multiple simulations with different initial conditions
to obtain the expected true cost. Those reasons motivate us
to utilize Bayesian optimization to solve (14).

B. Bayesian Optimization

Bayesian optimization is a machine learning-based op-
timization technique commonly used for minimizing (or
maximizing) a black-box objective function in which we
can observe only the output of the function by sampling
and no first- or second-order derivatives [21]. In Bayesian
optimization, the objective function is learned by a surrogate
model, e.g., Gaussian Process (GP), which can provide a
posterior distribution of the function. The surrogate model
is combined with an acquisition function to decide the
next candidate of the optimal solution. As a result, at each
algorithmic iteration, by optimizing the acquisition function
over the current surrogate model, the next sampling candidate
is found. The objective value at that sampling candidate is
then evaluated and added to the training data set to re-train
the surrogate model.

In our problem, let f(ω1) = J̄ω
true(xMPC,uMPC) be the

black-box objective function of the variable ω1 which needs
to be minimized with Bayesian optimization, i.e.,

minimize
ω1∈W1

f(ω1), (16)

We use Gaussian process (GP) model [22] to learn the
black-box objective function. The GP of f(ω1) is denoted
by Gf (ω1). The GP surrogate model is combined with an
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Algorithm 1 Bayesian optimization for optimal weight
adaptation

Require: jmax, jinit ∈ N, ω2,ω12

1: procedure INITIALIZATION
2: for j = 1, 2, . . . , jinit do
3: Randomly sample ω

(j)
1 ∈ W1

4: Compute average true cost J̄ω(j)

true
5: Add (ω

(j)
1 , J̄ω(j)

true ) to a training dataset D
6: Learn a GP model G(ω1) with D
7: procedure BAYESIAN OPTIMIZATION
8: for j = 1, . . . , jmax do
9: Find next candidate ω

(j∗)
1 by optimizing the

acquisition function
10: Compute average true cost J̄ω(j∗)

true
11: Add (ω

(j∗)
1 , J̄ω(j∗)

true ) to D and re-train G(ω1)

12: return ω∗
1

acquisition function ξ leading to the following optimization
problem for finding the next candidate of the optimal solution

maximize
ω1∈W1

ξ
(
µ(ω1), σ(ω1)

)
. (17)

where µ(ω1) and σ(ω1) denote the mean and variance
of the GP prediction, respectively. In this paper, we use
the expected improvement acquisition function defined as
follows

EI(ω1) = E
[
max{∆(ω1), 0}

]
, (18)

where ∆(ω1) = f(ω+
1 ) − µ(ω1) is the difference between

the previous best sample f(ω+
1 ) at ω+

1 and the predicted
output at ω1. The expected improvement under the GP model
can be derived analytically as follows [23]

EI(ω1) = σ(ω1)φ

(
∆(ω1)

σ(ω1)

)
+∆(ω1)Φ

(
∆(ω1)

σ(ω1)

)
, (19)

where φ and Φ are the probability density function (PDF) and
the cumulative distribution function (CDF) of the standard
normal distribution, respectively.

The entire algorithm to determine the optimal value of ω1

for each (ω2,ω12) is summarized in Algorithm 1. Note that
we denote the candidate of the optimal solution obtained by
optimizing the acquisition function at algorithmic iteration j

as ω(j∗)
1 , which is different to the global solution ω∗

1 returned
by Bayesian optimization that is the best candidate evaluated.

IV. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the control formulation
presented in Section II and the optimal weight adaptation
problem in Section III by a vehicle crossing example at
an unsignalized intersection illustrated in Fig. 1. We define
the surrounding area of the intersection inside of which the
vehicles can communicate with the coordinator as a control
zone, while the location where a lateral collision can occur
is called a conflict point. The dynamics of each vehicle i are

described by the following double-integrator dynamics

pi,k+1 = pi,k +∆Tvi,k +
1

2
∆T 2ai,k,

vi,k+1 = vi,k +∆Tai,k,
(20)

where ∆T ∈ R+ is the sampling time, pi,k ∈ R is
the longitudinal position of the vehicle with respect to the
conflict point at time k, and vi,k ∈ R and ai,k ∈ R are the
speed and acceleration of the vehicle i at time k, respectively.
The state and control input of vehicle i are defined by
xi,k = [pi,k, vi,k]

⊤ and ui,k = ai,k, respectively.
The individual objective for each vehicle in the MPC

problem includes: (1) minimizing the control input for
smoother movement and energy saving, and (2) minimizing
the deviation from the maximum allowed speed to reduce
the time to cross the intersection, i.e.,

li(xi,k+1, ui,k) =

[
ωi,1

ωi,2

]⊤ [
a2i,k

(vi,k+1 − vmax)
2

]
, (21)

for i = 1, 2, where ωi,1, ωi,2 ∈ R+ are positive weights.
The shared objective function takes the form of a logarith-
mic penalty function corresponding to a collision avoidance
constraint as follows

l12(x1,k+1,x2,k+1) = −ω12 log
(
γ(p21,k+1+p22,k+1)

)
, (22)

where ω12 ∈ R+ is a positive weight and and γ ∈ R+ is a
parameter of the logarithmic penalty function.

Next, we consider the following state and control con-
straints for CAV–1

vmin ≤ v1,k+1 ≤ vmax, umin ≤ a1,k ≤ umax, ∀k ∈ It, (23)

where umin, umax ∈ R are the minimum deceleration and
maximum acceleration, respectively, and vmin, vmax ∈ R
are the minimum and maximum speed limits, respectively.
Moreover, we impose the following safety constraint

r ≤
√
p21,k+1 + p22,k+1, ∀k ∈ It, (24)

to guarantee that the predicted distances between CAV–1 and
HDV–2 are greater than a safety threshold r ∈ R+.

The MPC problem for CAV–1 in this example is thus
formulated as follows

minimize
{u1,k,u2,k}k∈It

∑
k∈It

( ∑
i=1,2

li(xi,k+1, ui,k)

+ l12(x1,k+1,x2,k+1)
)
,

(25a)

subject to:
(20), ∀k ∈ It, i = 1, 2, (25b)
(23), (24), ∀k ∈ It, (25c)

We define a true cost function called time-energy efficiency
with safety that is computed by

Jω
true(xMPC,uMPC) = αt1,f + βEt + λI

(
g(xMPC)

)
, (26)

where α, β, and λ ∈ R+ are constant weights and λ is
sufficiently large compared to α and β to prioritize safety
rather than time and energy efficiency, t1,f is the time that
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CAV:

HDV: 
Conflict point

Control zone

Fig. 1: An unsignalized intersection scenario with a CAV
and an HDV.
CAV–1 exits the control zone, E is the total amount of
energy consumption of CAV–1 while traveling in the control
zone, and I

(
g(xMPC)) is the indicator function of the safety

constraint g defined as

I
(
g(xMPC)

)
=

{
0, if g(xMPC) ≤ 0

1, otherwise
. (27)

The safety constraint is g(xMPC) = r − d12,min ≤ 0
where d12,min is the minimum distance between two vehicles.
Within Bayesian optimization framework that requires a
continuous objective function, we approximate the indicator
function by a sigmoid function. To evaluate the total fuel
consumption Et of CAV–1, we consider the polynomial
meta-model and coefficients from an engine torque-speed-
efficiency map of a typical car presented in [24].

V. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed method,
we conduct numerical simulations for the intersection cross-
ing example described in Section IV.

A. Simulation Setup

For the implementation, since the solution of the MPC
problem does not change if all the weights are scaled by a
positive factor, we fix the shared objective weight ω12 = 103

to reduce the dimension of the problem. We consider Wi =
{ωi,1, ωi,2 | 10−2 ≤ ωi,1, ωi,2 ≤ 102}, for i = 1, 2 and create
a grid of size 9× 9 linearly spaced in log scale for ω2. For
each ω2 in the grid, we employ Bayesian optimization to
find the optimal value for ω1. The average true cost of MPC
is computed by averaging the true cost values in ns = 100
i.i.d. simulations with uniformly distributed initial positions
and velocities. The parameters in the Bayesian optimization
algorithm and in the true cost are chosen as jmax = 25,
jinit = 5, α = 1.0, β = 1.0, λ = 103, r = 10.0 (m),
ξ = 10.0. The grid and corresponding solutions are then
used as training data for GP regression to learn the weight
adaptation strategy. The derived optimal weight adaptation
strategy can be illustrated by heat maps in Fig. 2.

In the testing simulations, we generate the actions of
the human drivers by using the solution of (4) in which

−2 −1 0 1 2
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2
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−1
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(a) Heat map for log10(ω1,1)
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−2
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2

(b) Heat map for log10(ω1,2)

Fig. 2: Heat maps for the optimal weight adaptation strategy
(in log scale). The black crosses represent the sampled values
of log10(ω2).
the weights are varied to imitate different driving behav-
ior. Note that in all the simulations the HDV–2’s objec-
tive weights are unknown to CAV–1 and must be learned
online by moving horizon IRL. The parameters of MPC
and moving horizon IRL are chosen as: ∆T = 0.2 s,
H = 10, γ = 1.0, vmin = 0.0 (m/s), vmax =
12.0 (m/s), umin = −5.0 (m/s2), umax = 3.0 (m/s2),
L = 20, η = 0.01. The simulation is implemented
in Julia programming language, and KNITRO solver [25]
is used for solving MPC problems. The code for sim-
ulations is available online at https://github.com/
vietanhle0101/MPC-BayesOpt-Mixed-Traffic.

B. Results and Discussion

Using the obtained strategy for MPC weight adaptation,
we first evaluate the control framework in two specific sim-
ulations with an altruistic driver and with an egoistic driver
to demonstrate that CAV–1 behaves differently depending
on human driving behavior. The video for those simulations
can be found in https://sites.google.com/view/
ud-ids-lab/mpc-bayesopt.

Comparison with a baseline strategy: We compare the
performance of the optimal weight adaptation strategy with
a baseline strategy using SVO [17]. To extensively assess
the benefits of the proposed method, we conduct 5000
simulations with different initial conditions of the vehicles
and heterogeneous driving styles of the human drivers. First,
we compare by two metrics: (1) the number of simulations
without unsafe situations, and (2) the number of simulations
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TABLE I: Comparison between weight adaptation strategies
using Bayesian optimization (BayOpt) and SVO.

Comparison metrics BayOpt SVO

Number of simulations with safety 4983 (99.7%) 4981 (99.6%)
Number of simulations with time-
energy improvement1

3921 (79.0%) 1043 (21.0%)

−60 −40 −20 0 20 40 60
0

50

100

150

Percentages (%)

N
um

be
r

of
si

m
ul

at
io

ns

Fig. 3: A histogram for percentages of improvement in 5000
simulations.
with time-energy improvement among all the configurations
in which using both strategies do not cause unsafe situations,
as indicated in Table I. It can be observed that with a
roughly similar level of safety (higher than 99%), MPC
weight adaptation with the optimal strategy performs better
than with the socially cooperative strategy in approximately
80% of the simulations. Furthermore, we also compute the
percentages of improvement in time-energy costs and show
the results in a histogram form in Fig. 3. We have been able
to improve the average performance by 20.7%.

VI. CONCLUSIONS

In this paper, we presented a method to derive an optimal
weight adaptation strategy of MPC for CAVs in mixed traffic
with Bayesian optimization. By numerical simulations of
a vehicle crossing example at an unsignalized intersection,
we showed that the proposed optimal weight adaptation
strategy has approximately 20% improvement on average
over a baseline strategy using social value orientation. As a
future research direction, we plan to focus on (1) enhancing
the framework with a safety-guarantee mechanism, and (2)
validating it in an experimental testbed [26].
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